The Evolution of Protégé An Environment for
Knowledge-Based Systems Development

John H. Gennari,* Mark A. Musen,?> Ray W. Fergerson,? William E. Grosso, Monica Crubézy, 2
Henrik Eriksson,® Natalya F. Noy,? and Samson W. Tu?

! Biomediical and Hedlth Informatics, University of Washington
“Stanford Medical Informatics, Stanford University
* Department of Computer and Information Science, Linkdping University

Abstract

The Protégé project has come a long way since Mark Musen first built the Protégé metatool for knowledge-based
systems in 1987. The original tool was a small application, aimed at building knowledge-acquisition tools for a few
specialized programs in medical planning. From thisinitial tool, the Protégé system has evolved into a durable, exten-
sible platform for knowledge-based systems development and research. The current version, Protégé-2000, can be
run on avariety of platforms, supports customized user-interface extensions, incorporates the Open Knowledge Base
Connectivity (OKBC) knowledge model, interacts with standard storage formats such as relational databases, XML,
and RDF, and has been used by hundreds of individuals and research groups. In this paper, we follow the evolution
of the Protégé project through 3 distinct re-implementations. We describe our overall methodology, our design deci-
sions, and the lessons we have learned over the duration of the project.. We believe that our successis one of infra-
structure: Protégé is a flexible, well-supported, and robust development environment. Using Protégé, devel opers and
domain experts can easily build effective knowledge-based systems, and researchers can exploreideasin avariety of
knowledge-based domains.

1. Motivation and Protége Timeline

The Protégé system is an environment for knowledge-based systems devel opment that has been evolv-
ing for over a decade. Protégé began as a smdl gpplication designed for a medical domain (protocol-
based thergpy planning), but has evolved into a much more generd-purpose set of tools. More recently,

Protégé has developed a world-wide community of users, who themselves are adding to Protég€' s ca-
pabilities, and directing its further evolution.

The origind god of Protégé was to reduce the knowledge-acquisition bottleneck (Hayes-Roth, Water-
man, & Lenat, 1983) by minimizing the role of the knowledge engineer in congructing knowledge
bases. In order to do this, Musen posited that knowledge-acquisition proceeds in well-defined stages
and that knowledge acquired in one stage could be used to generate and customize knowledge-
acquisition tools for subsequent stages (Musen, 1989a; b). Thus, the origind verson of the Protégé
software (heregfter referred to as Protégé-1) was an gpplication that took advantage of structured i
formation to smplify the knowledge-acquisition process. Musen described Protége-1 asfollows:

Protégé is neither an expert system itself nor a program that builds expert systems directly; instead,
Protégé is a tool that helps users build other tools that are customtailored to assist with knowl-
edge-acquisition for expert systemsin specific application areas. (Musen, 19893, p. 2)

Protégé-1 demonstrated the viability of this approach, and of the use of task-gpecific knowledge to gen-
erate and customize knowledge-acquisition tools. However, it was custom-tailored to support a particu-
lar type of gpplication. In particular, Protégé-1 grew out of the Oncocin project and subsequent d-

-1-

Protégé-l development: descended — -
from Oncocin & Opal. Protégé/Win development: amoreinte-
Runs only on Xerox LISP machines grated set of tools.
Limited application—assumed asingle Runsunder MSWindows.
problem-solving method. Small world-wide user community.
Protégé-1l development: includes domain- Protégé-2000 development: includes
Opal independent problem-solving methods the OKBC knowledge model and
and automatic forms generation. Runs an AP for extensibility.
on NeX TStep machines. Runs on any system with aJavaVM.
= ' — = Expanding user group: Protégé Users
— Group Meetings.
[]
[
I >
1988 1990 1992 1994 1996 1998 2000

Figure 1. A chronology of Protégé development.

tempts to build expert systems for protocol-based medicad thergpy planning (Shortliffe, Scott, et d.,
1981). Thus, the origind system was limited in its gpplication.

Over more than a decade, through four distinct releases, the Knowledge Modeling Group at Stanford
Medicd Informatics has worked to turn Protégé into a genera- purpose environment for knowledge-
modeling. Figure 1 shows a chronology of these four releases, dong with afew of the sdient features of
each release. The current system, Protégé-2000, is far more generd than the origina version, yet it
maintains the origina focus on the use of meta-knowledge to create usable knowledge-acquigtion tools.

We have guided the evolution of Protége by a build-and-test methodology: We built systems and tested
each generation of Protégé on red-world problems so as to solicit user feedback about strengths and
weaknesses. Thus, our motivation has been more pragmetic than theoretic: Our primary god has been
to make Protégé an easily-used environment, with the assumption that research issues will arise from
use. Our research in knowledge-based systems has been grounded in this cycle of development: New
versons of Protégé have not only extended its technical capability, but aso uncovered new research
guestions to investigate.

In this paper, we describe the evolution of Protégé. We begin with a discussion of knowledge acquisi-
tion in the mid-1980s and a description of Opd, the immediate ancestor of Protégé-1. We then follow
Protégeé through the three re-implementations shown in Figure 1, discussing how they differ, and how
they have led to a broader and more generd- purpose environment. One concluson we draw from this
evolution is the sgnificance of testing ideas on red-world problems. Our iterative methodology insured
that the requirements for Protégé and the architecture for its implementation were constantly questioned
and reconsidered. A related concluson we draw is that long-term projects such as Protégé that span
more than a decade can yidd important results—the sorts of re-implementations we built could not have
been carried out in the time span that is more typica for academic research projects (often 3 years, and
at most 5 years).

Stage Description Performed By

1. Identification Characterize important aspects of problem. Identify par- ~ Domain experts, knowl-
ticipants, problem characteristics, resources, and goals. edge engineer

2. Conceptualization ~ Makekey concepts and relations from the Identification Knowledge engineer

stage explicit.

3. Formalization Identified concepts are represented in aformal language. Knowledge engineer

4. |mplementation Knowledge from formalization stage isrepresentedinan ~ Knowledge engineer
expert-system shell.

5. Testing The completed system is tested on sample cases and Domain experts, knowi-
weaknesses are identified edge engineer

6. Revision Redesign and reimplement the system, in light of there- Knowledge engineer

sults from testing.

Table 1. The classical modd of expert system development (after Buchanan, B., Barstow, et al., 1983).

2. Protégée Roots: Expert Systems and Knowledge Acquisition in the 1980s

The early 1980s were a heady time for Artificid Inteligence. Expert systems research had produced
some stunning successes (Bachant & McDermott, 1984; Buchanan & Shortliffe, 1984). To many peo-
plein the fidd, it ssemed that Al was on the verge of a dramatic breakthrough. Perhaps Hayes-Roth et
a. put it best when they wrote:

Over time, the knowledge engineering field will have an impact on all areas of human activity
where knowledge provides the power for solving important problems. We can foresee two
beneficia effects. The first and most obvious will be the development of knowledge systems
that replicate and autonomously apply human expertise. For these systems, knowledge engi-
neering will provide the technology for converting human knowledge into industrial power. The
second benefit may be less obvious. As an inevitable side effect, knowledge engineering will
catalyze a global effort to collect, codify, exchange and exploit applicable forms of human
knowledge. In this way, knowledge engineering will accelerate the development, clarification,
and expansion of human knowledge. (Hayes-Roth, Waterman, & Lenat, 1983, page xi)

However, even in this volume, which in some ways represents the high-water mark of expert-system
optimism, the bulk of the papers discussed difficulties inherent in developing expert systems. In particu-
lar, the volume discussed the difficulties inherent in moddling expert knowledge, beginning with an ex-
amination of the role of the knowledge engineer, who is involved in al phases of sysem congtruction
(Buchanan, Barstow, et a., 1983). The knowledge engineer must become familiar with the problem
domain, characterize the reasoning tasks necessary to solve the problem, identify the mgor domain
concepts, categorize the type of knowledge necessary to solve the problem, identify the reasoning
strategies used by experts, define an inference structure for the resulting application, and formdize all
this knowledge in a generic and reusable way. Table 1 summarizes this generd- purpose iterative model
of system development, where the knowedge engineers participate in al stages of devdopment, while
domain experts are seen Smply as resources for knowledge engineers to draw upon.

2.1 Expert Systems Shells

The classca model of expert-system development is based on the idea of an expert-system shell—an
inference engine that knowledge engineers can reuse with different knowledge bases, to produce differ-
ent expert systems. Figure 2 diagrams this early view of expert sysem development. In this view,

-3-

Knowledge N
Base
7, Expert
Knowledge : ” gjlem
Inference Engne

Base

J

Figure 2. Expert system development from a reusable shell and knowledge bases.

knowledge acquisition was the work a knowledge engineer carried out when building a particular
knowledge base. As became gpparent, not only was it difficult and time-consuming to build knowledge
bases, the introduction of a knowledge engineer between the domain expert and the knomedge base
could lead to errors and misunderstandings. One of the main goas of Protégé was to overcome this
problem, alowing domain experts to build knowledge bases more directly.

2.2 Protégé Ancestry: Oncocin and Opal

The evolution of Protégé began with the development of Opa (Musen, 1987), a knowledge-acquistion
tool for the Oncocin system (Shortliffe, Scott, et d., 1981). Oncocin was an advice system for proto-
col-based cancer therapy, where information about the history of a specific patient could be entered by
adomain user (a physcian or nurse) and the system would give advice about treatment and tests. The
origind Oncocin was developed using the methodology of Table 1 and Figure 2—Knowledge engineers
talked to medica specidists and then created the knowledge base used in the Oncocin system. The
knowledge base was a set of if—then rules and other data structures that captured the semantics of can-
cer clinicd trid protocols.

The god of the Opa knowledge-acquistion tool was to dlow the domain-expert to enter directly some
forms of domain-specific knowledge (i.e., to remove the knowledge engineer from stage 4 of Table 1).
Opa used domain-specific concepts and ideas in order to present cancer-pecidids with carefully-
designed forms for dructured data entry. Instead of typing individua production rules, the physicians
themsalves described complete cancer protocols by filling out specid-purpose graphicd forms.

Opd then trandated the expert’s input into Oncocin's internd representation. Figure 3 shows the data
flow that resulted from this approach. This design implicitly asserts a quditative division among the types
of information a knowledge-based system requires.’ There are at least three different types of knowl-
edge implicit in Figure 3: (1) The knowledge engineer needs structural domain conceptsin order to
build the Opa knowledge-acquisition tool; (2) a domain expert (oncologist) must ingtantiate these con-
cepts with domain knowledge (for Oncocin, these are the ancology protocols); and (3) the end-user
provides case data to the resulting expert system for decision support in particular cases of oncology
treatment. The assertion that information can be partitioned in this way was crucia to Opd, Oncocin,
and, as we will show, to Protége.

1 Sometime during the early 1990s, the term “expert system” became | ess fashionable. Since then, the more general
term of “knowledge-based system” has been used, to emphasize knowledge, and to indicate that such systems are
not intended as replacements for human expertise.

Knowledge Oncologists
Engineers

Knowledge- >
acquisition tool

f

Engine

Opal Knowledge Bases Oncocin

Figure 3. The Oncocin expert system and Opal, atool for building Oncocin knowledge bases. Knowl-
edge engineers who understand the domain build Opd, and provide it with structural knowiedge; on-

cologists use Opd to build domain knowledge into knowledge bases; and end-users provide Oncocin

with case data at run-time.

By adopting this information-partitioning hypothesis, Oncocin and Opa modified the classca mode of
knowledge-based system development in two ways. Firdt, the structural domain concepts identified in
stage 2 (see Table 1) were built into actud tools developed for knowledge acquistion—Opa induded
concepts that were specific to the domain of protocol-based health care. Second, in stage 4, the domain
expert is directly responsgible for building the knowledge base. Opa aimed to improve the classica ex-
pert system development approach by moving tasks from the knowledge engineers to the domain ex-
perts, thereby reducing the likelihood of errors and streamlining knowledge base congtruction (Sandahl,
1994).

3. Protégé-l

Protégé-1 (Musen, 1989a; b) began as a generdization of the Oncocin/Opa architecture—rather than
expecting knowledge engineers to build new knowledge-acquistion tools like Opa for every new do-
main, the Protégé meta-tool generated a knowledge-acquisition tool (KA-tool) from a set of structura
concepts. Thus, we designed Protége-1 to further reduce the load on a knowledge engineer. Figure 4
shows a flow diagram for the use of Protégé-1, with three classes of wsers: (1) Knowledge engineers
provide structural concepts and use Protégé-1 to build the KA-tooal, (2) domain experts use the KA tool
to build and edit specific knowledge bases, and (3) end-users interact with the find expert system for
decision support. This figure makes clear that Protégé-1 adopts the information partitioning hypothes's,
dividing the knowledge and uses of a knowledge-based system into three types.

The generd methodology is that knowledge is acquired in stages, and the information acquired in each
dage is meta-knowledge for subsequent stages that helps lower the barriers to knowledge acquisition.
Acquiring the domain structurd concepts is smplified by the presence of core structural concepts. In
turn, the domain structurd concepts are used to automatically generate user-interface forms, which
make it eeder to acquire domain knowledge from experts.

3.1 Assumptions of Protégé-I

In order to build a system in which this methodology could be quickly tested, Musen initidly made some
strong methodologica assumptions (Musen, 1989a). These assumptions were naturd given the early
need to show that that the overdl system could actudly turn over and produce a usable knowledge
base. As we evolved the Protégé environment to be more generd-purpose, we were ableto relax each
of the fallowing assumptions in later versions of Protége.

-5-

Doman

experts End-users

uistiontool [;
A meta-tool = _>
KA-tools Inference
Expert systems
like Oncocin

Figure 4. A diagram showing the use of the Protégé-1. Opal has been replaced by a customizable,
knowledge-acquisition tool automaticaly generated from previoudy-acquired domain structura concepts
(Musen, 1989z, b).

Knowledge bases are problem-specific artifacts

Protégé grew out of the Oncocin and Opa systems, and therefore assumed that the knowledge-bases
being congtructed were for use with the Oncocin inference engine. As part of this inference engine, On-
cocin used the episodic skeletal-plan refinement method, or ESPR (Tu, Kahn, et a., 1989), a plan
ning method based on the ingtantiation and gradud refinement of skeletd plans for specific problems.

Because it assumed knowledge about the problem-solving process during knowledge-acquisition, and
because the knowledge-acquisition process was o highly structured, Protégé-1 knowledge bases in-
cluded only those concepts and distinctions that were important for the ESPR problem:- solving method.
Therefore, the KA-tools generated by Protégé-1 and the resulting knowledge bases were redly only
well-suited for applications that used some sort of skeletd planning agorithm.

The problem-solving method provides semantics

In Protégé-1, very little attention was paid to specifying a formal knowledge model, such as promoted
by Hayes (Hayes, 1979), or by Chaudhri et d. (1998). In some sense, aforma modd for specifying the
semantics of Protégé-1 knowledge bases was unnecessary because the ESPR problemt solving method
operationdly defined these semantics A more forma semantic model became necessary only when
Protége knowledge bases were used by multiple sysems and multiple problem-solving methods.

Knowledge bases and problem-solving methods are atomic

Findly, when Protégé-1 was devel oped, we assumed that knowledge bases and inference engines were
atomic. That is, the acquired knowledge bases were entirely sdlf contained—they did not reference any
other knowledge bases or knowledge sources at dl. Likewise, we assumed that there was only asingle,
monoalithic problem-solving method—the ESPR dgorithm. Later, as Protégé applications and KBs be-
come larger and more complex, we adopted a more componential view of both knowledge bases and
problem-solving methods (Musen & Tu, 1993).

3.2 Higtorical Counterpartsto Protégé-I

Protégé was not the only knowledge-acquisition tool built in the mid-1980s that attempted to use
knowledge about the target inference agorithm to smplify knowledge acquisition. Systems such as
MOLE (Eshdman, Ehret, et d., 1987) and SALT (Marcus & McDermott, 1989) made smilar
assumptions about their inference dgorithms, aso with the god of smplifying knowledge acquistion.
However, these systems, and their ideologica descendants, such as Expect (Gil & Mdz, 1996), used
this knowledge in a very different way from Protégé. Rather than focusing on the congtruction of an
easy-to-use KA-tool, systems like MOLE aimed to correct and complete the user’ s knowledge base:

MOLE understands that experts are not very good at providing such information and so does
not require that the expert provide a fully specified network of associations. Instead, MOLE re-
lies on its expectations about the world and how experts enter data in order to mold an under-
specified network of associations into a consistent and unambiguous knowledge-base.
(Eshelman, Ehret, et al., 1987, p. 46)

This gpproach requires a stronger set of assumptions about the inference agorithm that will be used with
the knowledge base. As we will see, we took the opposite tack, weakening such assumptions, so that
Protégé knowledge bases would become more genera-purpose, and reusable by multiple problem-
solving methods.

3.3 Summary of Protégé-I

Protégé-1 succeeded in substantidly lowering the barriers to knowledge acquisition for medica advice
systems. Protégé-1 was important because it introduced the idea of generating knowledge-acquisition
tools from structured meta-knowledge. However, the knowledge bases that these systems built were
neither reusable nor genera- purpose—Protégé-1 knowledge bases were method- specific (for use with
skeletd planners only), and lacked any forma semantics that might make them interpretable in other set-
tings. The assumptions made for Protégé-1 had the effect of limiting the system’ s use to well-understood
medica examples where episodic skeleta plan refinement could be goplied. To generdize Protégé, we
had to go beyond ESPR, and thiswas amajor god of the Protégé- 11 development.

4. Protégé-ll: Problem-solving M ethods and the Downhill Flow Assumption

The mogt sgnificant difference between the origind Protégé and the Protégé- 11 verson was the idea of
reusable problem-solving methods. Following Chandrasekaran (1983; 1986), Protégé-Il alowed
developers to build inference mechanisms in an entirely separate component, a problem: solving method,
which could be developed independently from the knowledge base. These problem-solving methods
(PSMs) were generic dgorithms that could be used with different knomedge bases to solve different
real-world tasks. Examples of PSMs include the episodic planning agorithm used by Protégé-1, and
methods such as “propose-and-reviss’ used by the SALT system to solve congtraint satisfaction prob-
lems. As Figure 5a shows, Protégé was initidly designed with a sngle problem-solving method (the
ESPR method) which could be applied to different knowledge bases. Figure 5b shows the shift to a
more generic, component-based approach, where dternative PSM s are applied to knowledge bases.

As we describe in greater detail below, to achieve the component-based reuse shown in Figure 5b, we
needed additiona congtructs and modifications to the Protégé methodology. In generd, to support these
new capabilities, we needed to use the notion of an ontology, aforma modd of a shared domain of
discourse (Guarino & Giaretti, 1995). In Protégé, our domain ontologies became the basis for the gen

/

Knowledge-

st |
e 7|

(a) Protége-| (b) The Protégé-I1 approach

e/

Figure 5. The evolving Protégé methodology. (a) Although different knowledge bases (KBs) could
be created with Protégé-1, they were al expected to work with the ESPR problem-solving method,
and this structure was built into the KBs. (b) In Protégé-11, both KBs and problem-solving methods
(PSMs) are reusable components that become part of the resulting knowledge-based system.

eration of knowledge-acquisition tools. We aso used ontologies to specify the knowledge representa
tional and communication needs of problem-solving methods. Findly, our development of a methodol-
ogy for building ontologies, problem-solving methods, and knowledge bases led to an extension of the
“information partitioning hypothesis’ that we presented earlier: Definitions of classesin an ontology lead
“downhill” to knowledge-acquisition tools, which then lead downhill to specific knowledge bases.

4.1 Developing Knowledge-based Systemswith Protégé-l |

Protégé-11 extended the origina two-step process—generating a knowledge-acquisition tool and using
it to ingantiating a knowledge base—with additiona steps that dedlt with the problem: solving method.
The Protégé- 11 methodology consisted of: (1) developing or reusing a problem-solving method, (2) de-
fining an gppropriate domain ontology, (3) generating a knowledge-acquistion tool, (4) building a
knowledge base using the tool, and (5) integrating these components into a knowledge- based system by
defining mappings between problem-solving methods and specific knowledge bases. Below, we -
scribe each of these stepsin detail.

Developing or Reusing a Problem-Solving Method

One benefit of separating problemsolving methods from knowledge bases, is that the former are rla
tively stable. Domain knowledge can quickly become out- of-date and require substantial modifications.
In contrast, problem-solving methods, such as propose-and-revise seem well-understood and lesslikely
to change. Thus, once aPSM is defined, it can be reused with a number of different knowledge bases.

To further enhance reuse bendfits, the Protégé-11 methodology included the idea of decomposable
PSMs (Puerta, Egar, et d., 1992; Puerta, Tu, & Musen, 1993; Eriksson, Shahar, et al., 1995). Thus,
methods could be decomposed into sub-methods for carrying out smdler sub-tasks within the larger
method. This gpproach might alow developers to configure a generic problem-solver for more specific
tasks by sdecting the appropriate sub-methods for the problem at hand. Eriksson et a. described how
to specidize chronological backtracking to other methods, such as the board-game method and the
propose-and-revise methods (Eriksson, Shahar, et d., 1995).

Defining an Ontology

Protégé- 1l formadized the ontologies that constrained its knowledge bases and knowledge-acquisition
tools. Protégé-11 was designed to leverage the CLIPS expert system shell and its knowledge represent
tation system (see hitp://mwww.ghg.net/clipgCLIPShtml). Because this was an object-oriented sub-
system, we designed our ontologies to use a frame-based formaism. Thus, Protégé-I1 took an impor-
tant first step by providing a precise language for its ontologies, based on sandard frame language cor+
ceptsof classes, instances, slots and facets Multiple inheritance among classes was supported. Being
more precise about how to specify ontologies provided several benefits

It clarified the conflation between structura knowledge about the domain versus more spedific
knowledge supplied by the domain expert. Protégé- 11 used classes for the former, and instances for
the latter sort of knowledge.

It alowed graphicd tools to manipulate ontologies in a user-friendly way. Protégé-11 included atool
cdled Maitre, which enabled developersto edit ontologies graphicaly (Gennari, 1993).

It enabled early experiments in knowledge-base reuse across knowledge-modding frameworks.
For example, the Ontolingua system (Gruber, 1993) included a Protégé trandator that alowed On-
tolingua knowledge- bases to be exported to and imported from Protégé-11. Although this capability
did not result in Sgnificant knowledge sharing, this attempt at interoperation led to the devel opment
of more robust knowledge representation standards, which we embraced with Protégé-2000.

Ontologies can be used for different purposes, and the Protégé-11 approach included three classes of
ontologies—domain, method, and application ontologies (Gennari, Tu, et d., 1994; Eriksson, Shahar,
et a., 1995). Domain ontologies define the concepts related to an application domain (e.g., different
symptoms, anomdies, and remedies). Method ontol ogies specify the data requirements of the problem:
solving methods (i.e., the input and output structure of each method). Application ontologies define the
concepts that are specific to a particular application or implementation. Thus, domain and method o
tologies can be potentialy reused across severa gpplications, whereas the application ontologies are
gpecific and not intended for reuse. Later in this section, we describe how these different ontologies can
be integrated via mappings that connect particular eements across the ontologies.

Generating a Knowledge-Acquisition Tool

Like Protégé-I, Protégé-1l was a meta-level knowledge acquistion system that generated domain-
specific knowledge-acquisition tools (K A-tools). Unlike Protégé-1, we built Protégé-11 to be independ-
ent of any particular problem solving method. Instead, the domain ontology is the basis for KA-tool
generation. Figure 6 shows a flow through the three subcomponents of Protégé-11: Maitre, for building
ontologies, Dash, for manipulating the default layout of the KA-tool, and Meditor, which domain ex-
perts used to build and edit knowledge bases. As shown in the Figure, the process started with ontology
condruction. The class definitions in this ortology defined the formsin the KA-tool that Dash produced,
and these forms would then be used within Meditor to acquire instances of the classes that made up the
knowledge base.

Dash provided a sgnificant benefit by alowing users to manipulate the format and arrangement of dl
knowledge acquisition forms, thereby custom-tailoring the layout of the KA-tool (Eriksson, Puerta, &
Musen, 1994). The mogt sgnificant benefit of the new, ontology-based gpproach isthat it dlowed more

rapid KA-tool development. Users could more easily experiment with different versions of a KA-tool,
and deve opers could refine ontologies and their corresponding KA-tools incrementaly and in paralld.

Building a Knowledge-Base Using the Tool

Once the knowledge-acquisition tool is completed the next step is © build the knowledge base. For
Protégé-I1, this meant that domain experts created instances of those classes that were pre-defined in
the domain ontology. Thus, there was an assumption that nstances can be created only after their
classes have been fully defined. This assumption became part of a generd “downhill flow” modd of
knowledge acquisition. Knowledge- base construction begins at the “top,” with higher-leve class defini-
tions, and then proceeds downhill to the process

Maitre of creating instances of those classes. As Figure
6 shows, knowledge-base developers had to (1)
define an ontology, (2) generate a KA-tool, and

lOntoI ogy (3) build the knowledge base in that order. D-
verting from the downhill flow often meant addi-

DASH 4—»@ tional work. Making changes to the ontology &-

o Repository of ter ingtances in_the kr_lovvledge base had been
Tool definition custom tool created resulted in certain problems:
adjustments . Changesto adass definition affected dl in-

M editor stances of that glaqsin akrpwledge base

possibly removing information or making in-

formation invalid in those instances.

| st\§§
nstances W . Changes to aclass definition affected the

formsin the knowledge-acquidtion tool gen-
Figure 6. Protégé-11 components for building erated by Dash and therefore could change

knowledge bases. The knowledge engineer uses (eg., invdidate or ater) domain knowedge.

Maitre to define ontologies. Dash generates a tool _ o _ -
definition based on the ontology. Findlly, Meditor ~ D@sh induded functiondlity for partially aleviating

runs the tool definition and allows domain experts the latter problem by storing custom adjustments
to build and edit knowledge bases. from previous sessions in a repository (see Fig-
ure 6). Nonetheless, we found that the Protégé-
[I gpproach made it difficult for developers to refine or change the ontology (e.g., creating new classes)
after acycle of KA-tool generation and knowledge base construction.

I ntegrating the Components of a Knowledge-Based System—Mappings

A knowledge-based system is not complete until its components have been integrated into a working
unit. After developers have sdected the problemsolving method, kuilt a domain ontology, created a
KA-tool, and populated the knowledge base, the resulting system must be assembled for actua use.2
However, since the Protégé-1l methodology separated the processes of PSM development from the
task of knowledge base development, it is likely that the requirements of the PSM were not exactly

2|t is sometimes useful to build knowledge baseswithout any PSM or performance system, such as knowledge bases
for documentation or information visualization. However, when we developed Protégé-I1, we viewed such KBs as
unusual and exceptional.

-10 -

Marble

_ mapping editor
Domain ontology Method ontology

Mapping
')‘G relations ‘)é'
[/

Mapping
interpreter ‘Method
view of KB

Domain Knowledge
Base

Domain
view of KB

Figure 7. Using mappings to connect reusable problem-solving methods (PSMs) to knowledge
bases. Marble was a special KA-tool for building knowledge bases of mapping relations. These re-
lations describe how the input requirements of a particular PSM are met by a particular knowledge
base. The method and domain ontologies are used to build the mapping relations.

matched by the classes and instances in the knowledge base. Thus, we introduced the idea.of mapping
relations to connect knowledge bases and PSMs, while dlowing each of these components to be inde-
pendent and reusable (Gennari, Tu, et d., 1994).

To connect a particular knowledge base to a particular PSM, developers must examine the source and
target class definitions and create an appropriate set of mapping relations. To help with this task, we
developed a speciad KA-tool, known as Marble, that built knowledge bases of mappings. Mappings
created with Marble were then applied by a generic mappings interpreter to a source knowledge base,
thereby producing an appropriate view of this information for the target (the PSM). Figure 7 illugtrates
this process.

In an earlier publication, we discussed a basic example of this style of reuse in Protégé-11 (Gennari,
Altman, & Musen, 1995). We implemented asmple condraint-satisfaction method, Propose-and-
Revise, and then reused this method in an gpplication that worked with ribosoma configurations. As one
would expect, the knowledge base about base-pair sequences and configuration congtraints had to be
viewed from a particular perspective before we could apply the Propose-and-Revise problemsolving
method. Rather than modifying the ribosoma knowledge base, we built mapping rdations to provide
this method- specific view of the knowledge base.

The introduction of mappings and Marble demonsirated how component reuse could occur with Pro-
tégé knowledge-based systems. Although these mapping relaions do not guarantee successful reuse,
they help make it more practica. One compelling, longer-term god is to provide partid autometion to
the process of connecting components. For example, given alibrary of problem-solving methods, and a
task specification, it might be feasible to sdect an gppropriate method and then to generate putative
mappings to a particular domain ontology (Crubezy, Lu, et d., 2001). Such automation has been the
focus of recent research in our group.

4.2 Historical Counter partsto Protégé-11

The idea of reusable problem solving methods was not unique to Protégé. Chandrasekaran, (1983;
1986) was one of the first researchers to recognize the need for reusable methods. His approach to ge-

-11-

neric tasks attempted to create a taxonomy of different types of problem solving. By the late-1980s,
researchers had begun discussng and formdizing the idea of libraries of inference dgorithms, which
could be easily reused across a number of different applications (McDermott, 1988).

One gpproach to include a library of reusable inference patterns was the KADS methodology
(Widinga, Schreiber, & Breuker, 1992). Like Protégé, KADS is a methodology for developing knowi-
edge-based systems. However, KADS takes a larger, more systems-leve view of the process, includ-
ing early-stage requirements and knowledge management anadlysis. Protége focuses exclusively on the
latter stages of knowledge base development, which KADS refers to as the model of expertise. With
the KADS methodology, developers build up the mode of expertise by providing four layers of knowi-
edge: (1) the domain layer, for static knowledge about the domain, (2) the inference layer, for proce-
durd knowledge about the gpplication task, (3) the task layer, for sequencing a set of inferences to
provide a complete problemsolving solution, and (4) the strategy layer, for sdecting anong dterretive
tasks. In Protégé-11, the domain layer was captured in the domain ontology, while the other three layers
were folded into the choice and development of an appropriate problem-solving method.

A second sgnificant difference between KADS and Protégé is that Protégé models are operationd: The
ontology is compiled into a knowledge-acquisition tool, which is used to build a knowledge base that
we expect to be directly accessed and used by the sdlected problemsolving method. In contrast, a
KADS modd of expertise is mogt typicaly awritten specification, which mainly provides guidance for
engineers who must design and build the system as a separate step. In many settings, the organizationd
and knowledge management problems overwhem any technicd issues with implementation. In such
stuations, the KADS approach seems appropriate, because it focuses on solving these problems, and
relegates implementation as an easier find step of congruction from the specifications. Protégeé focuses
exclusvely on this last sep—thus, it could be used in conjunction with a KADS approach, and in set-
tings where there is Sgnificant complexity in the knowledge modding and application-building phases of
development.

At around the same time, Steelsimplemented the KREST workbench (Stedls, 1990), based on hisview
of components of expertise (Steels, 1992). KREST had smilarities to Protége-11, induding the use of
domain ontologies (models) and PSMs as the basic building blocks. Except for requiring a method on-
tology, Protégé-|1 treated the actua development of a PSM as an externd task, which dlowed for in-
dependence from programming language choices. In contrast, KREST required an internd development
of aPSM, and exposed the implementation details (in Common Ligp) to the system builder.

As with Protégé, KADS dso has evolved over time. CommonKADS arose by usng more precise,
forma languages for modds of expertise as wdl as by including some ideas from Steds' components of
expertise (Schreiber, Wielinga, et d., 1994; Schreiber, Akkermans, et a., 1999). CommonKADS aso
introduced the idea of alibrary of reusable problem-solving methods, built up from the KADS inference
layer and task layer moddls (Breuker & Velde, 1994).

In the United States, researchers began to experiment with the incorporation of discrete PSMs within
systems based on description logic (Gil & Mdz, 1996). The PSMs included within the EXPECT
architecture tended to be more domain-specific and of smdler granularity than those used within Pro-
tége-11, but the approach corroborated the utility of usng PSMs as an abdtraction for control knowi-
edge in large knowledge-based systems. EXPECT dso demongtrated the value of description logic in
fadlitating the acquisition of knowledge-base instances.

-12 -

4.3 Summary of Protégé-11

Protégé-1l was a dgnificant extenson and generdization of the origind Protégé system. Important
changes included:

Reuse of problemsolving methods as components (rather than the use of a single morolithic prob-
lem-solving method). The god was to remove the implicit semantics of the ESPR method from Pro-
tégé-1, and to dlow for dternative problem-solving methods.

Ontologies and the adoption of amore forma frame-based representation language. Ontologies
play an important role in Protégé-I1. Both as input and output definitions for problem-solving meth-
ods and as the basis for generation of knowledge-acquistion tools.

Generation of knowledge-acquidition tools from any ontology (rather than from the instantiation of
ESPR). Protégé-11 took the metatool idea one step further and streamlined generation and custom
adjustments of knowledge-acquisition tools.

The “downhill flow” assumption of classes over indances. The Protégé-11 development process as-
sumed that ontologies (classes) were more durable than knowledge-bases (instances). We expected
that knowledge engineers would use one tool to define classes, and then domain experts would use
a separate tool (the KA-tool) to create and edit instances.

Declarative mappings between knowledge bases. Protégé- |1 introduced mappings as an approach
to bridge the gap between different types of ontologies, and to enable reuse of both ontologies and
problem-solving methods.

Protégé-11 was designed as a suite of applications (Maitre, Dash, Meditor, Marble) to support the de-
veloper and to define the Protégé methodology. Although these tools dlarified the digtinct stepsin the
process of building a knowledge-based system, as we gained more experience and more users, we
found that switching back and forth among the distinct tools eventualy became burdensome. As a par-
tial response, we added a control-panel application to Protégé-11, from which each of the separate ap-
plications could be launched. This control-panel was a forerunner for the more tightly-integrated Pro-
tégé/Win and Protégé-2000 systems.

An interesting aspect of this phase of Protégé development is that, in retrogpect, many of the important
changes involved moving from an informa mode to a more forma one. The centrd change, the remova
of method dependencies from the performance ystem, required a more forma knowledge modd,
which led to a degper understanding of the knowledge-base structures required by problem-solving
methods, and which spurred our development of mappings.

5. Protégé/Win: Popularizing Knowledge Base Systems

Protégé-11 introduced a number of significant conceptua changes to the basic Protégé idea. In contrast,
the development of Protégé/Win was primarily motivated by a pragmatic concern: Protégé-11 was built
to run only on the NeXTStep operating system, and to epand our user base, we needed to re-

-13-

implement our system to run under the Windows operating system.3 However, given the requirement to
re-implement, we choose to take this as an opportunity to improve on our system in severd ways

We dlowed for the use of modular ontologies, via an ontology inclusion mechanism
We designed for amore integrated, streamlined et of tools

We improved the task of custom-tailoring the knowledge-acquisition tool, storing layout and format
information separately from ether the ontology or the knowledge base

However, the most important contribution of Protégé/Win was the development of a significant externd
users group. Protégé/Win was fredly available as an easy-to-ingtdl application for any academic user.
For the fird time, we began to get off-site, real-world feedback about problems and features of the sys-
tem. Aswe describe, this feedback strongly influenced our development.

5.1 Includable Ontologies

As users began making larger and larger knowledge bases, it became difficult to modd an entire domain
with a monolithic ontology. Because smilar gpplications often share common concepts and terminology,
we wanted to identify and build reusable ontologies that contained these common sets of abstractions.
For example, many knowledge-based applications in the hedth-care domain share concepts such as
drugs and laboratory tests If we could do a good job building an ontology of these concepts, then we
could reuse thiswork across severd different knowledge bases for different medica applications.

To enable this type of ontology reuse, Protégé/Win implemented the idea of ontology inclusion. When
building a particular knowledge base, users could choose to include al of the concepts of some pre-
defined shared ontology. The concepts in the included ontology could not be altered, but they could be
referenced by other classes and instances in the knowledge base, as well as subclassed to introduce
specidizations of the shared concepts. Thus, ontology inclusion furthered the idea of knowledge-base
component reuse by enabling ontology reuse, complementing the problem:solving method reuse intro-
duced by Protégé-11. Ontology incluson alowed users to build large knowledge bases by “gluing” to-
gether a set of smaler, modular ontologies. As with software, modular ontologies scae to large prob-
lems better than monolithic ones.

The idea that a common set of abstractions (a shared ontology) could be used by multiple, related
knowledge bases was not unique to the Protégé work: The Ontolingua library was designed for this sort
of ontology reuse, and included low-leve ontologies such as “units & measures’ designed for incluson
into other, less generic ontologies (Fargahar, Fikes, et al., 1995). However, unlike users of the Static
Ontolingua library, Protégé/Win users could combine ontologies with problem-solving methods, and
could construct knowledge acquisition tools from composite ontologies.

5.2 Integrated Tools

In aiming to make the Protégé environment eesier to use, we wanted to streamline and integrate the set
of Protégé-11 tools for ontology building, KA-tool generation, and knowledge- base building. Mogt criti-
cdly, we found that the generation of a KA-tool from an ontology was particularly cumbersome, in part

3 This choice of operating system was also motivated by our funding sources. In any event, moving away from a
NeXTStep-based system proved fortuitous, as the company went out of business circa 1996.

-14-

because this process is highly iterative: During ontology congtruction, developers would want to see a
prototype tool, which might inspire further changes to the ontology, and then they would want to see the
resulting, next-generation KA-tool, and so on. In Protége-11, the generation of anew KA-tool required
a cumbersome compilation-style process which was time-consuming and potentidly frustrating.

In response, we built a“synchronization” capability into Protégé/Win: without reading or writing to files,
the KA-tool generator could be updated with the most recent version of an ontology. In this way,
changes to the ontology could be seen immediately in a KA-tool, which made it easier to move between
ontology editing and adjusting the layout of the corresponding KA-tool.

Figure 8 shows screens from two Protégé/Win tools with an example knowledge base about wines. The
ontology editor shows classes, and the layout interpreter (or KA-tool) shows instances. The layout edi-
tor (not shown) helps users custom-tailor the layout and appearance of forms and widgets in the KA-
tool. (As with Protégé-11, dl three tools could be launched from a control pand gpplication.) As users
edited a particular ontology, they could “synchronize’ their work with the layout editor, and thereby
preview the resulting KA-tool. Although our design did not completely integrate the toals, the synchro-
nizetion facility did make ProtégéWin easier to use than Protégé-11. Furthermore, this development led
the way to a complete tool integration in Protégé-2000.

5.3 Reifying Formsin the Knowledge-Acquisition Tool

With Protégé-11, we removed the assumption that ESPR would be the underlying method for the result-
ing expert system, and thus, we aso removed ancillary assumptions that were built in to the generation
of Protégé-1 KA-tools. However, Protégé-Il knowledge bases ill contained informetion that was
about the formatting of the KA-tool itsdlf, rather than any aspect of the domain knowledge being mod-
eled. In Protégé/Win we viewed ontologies more as reusable components—models that could be used
in different contexts (perhaps via the incluson mechanism), in different applications. Therefore, we
added a separate repogitory to store information that was specific to a particular KA-tool, and digtinct
from ather the domain ontology or the knowledge base of instances. This repository reified the KA-tool
information, tresting information about format as first class objects, digtinct from the domain knowledge.

For the first time, developers could generate multiple KA-tools, with different views and formats, from a
sngle ontology. For example, as part of a project to modd hedth-care guidelines, we built two tools
from a angle guiddine ontology (Fridsma, Gennari, & Musen, 1996). One tool, aimed at the nationa or
regiond levd, dlowed domain experts to define a hedth-care guiddine at a high levd, without the im+
plementation details that would be required to actudly carry out the guideline. A second tool, aimed at
loca hospitds, dlowed domain experts to indantiate the tool with details about the guiddine, including
resource and personne alocation decisons that must be made at alocal level. The second tool exposed
and made available a number of classes that the nationa-level tool had kept hidden. This approach was
possible only because Protégé/Win stored view-leve information separately from the domain-leve i
formetion.

-15-

%, Protege/Win (Intulum, Ed1tm - [wnwsExamp pont]

B -
= @ Drrink,
----- 578 Soft-drink,

EI Q Wine

I % 3 Dessert-wing

2453 Red-wine

-4 Beaujolais

-G 3 Cabemet-Sauvignon
&% Chianti

&3 Petite-Syrah
&% Pinat-Moir
&3 Port

+-4 3 Red-Burgundy

@ Red-kerot

%1 Red<infandel

¥ . Protege/Win LayoutInterpreter - winesWin.pins

4] body FULL MEDILM LIGHT
[£1 colar RED ROSE WHITE
[color RED ROSE WHITE

m arape YWine-grape

@ mak.er Wirery

@ name_

@ sLgar DRY SWEET OFF-DRY
@ tannin-level LW MODERATE HIGH

B _
' E'Wine

: Stering Merlat I
- Sterling Cabernet

LIGHT =]
MEDILM f2

OFF-DRY |_ I_ gar_ e
OFF-DRY =] e | e

DEUEATE : [Cabemet Sawrvignan
MODERATE

[flavar DELICATE MODERATE 5TR

Figure 8 The ProtégéWin interface. The Ontology Editor (above) shows classes on the

left and dots on the right from an ontology about wines. The Layout Interpreter (below)
shows two instances of the Wine class.

In genera, the KA-tool generator of Protégé/Win strengthened and codified parts of the “ downhill flow”
assumption. In particular, after users built an ontology of classes, they were then expected to use the
layout editor to format and custom-tailor the KA-tool that domain users would ultimately use to build a
knowledge base of instances. The layout editor assumed that (1) every class in an ontology had an as-
sociated KA-form, and (2) every dot in a given dass is associated with a knowledge-entry widget on
the KA-form. These widgets were selected from a pre-enumerated list, associated with dot types, and

they included widgets such as text fields and Boolean check-boxes.

In developing Protégé'Win, we assumed that a KA-tool composed of these types of forms would be
aufficiently expressve for knowledge acquisition and knowledge base visudization. For many domains,
this assumption worked well; by 1998 we had alarge user community who found the Protégé/Win tools
to be worthwhile in ther particular gpplication areas. On the other hand, it became apparent that other

-16 -

domains would require more specidized editing and visudization widgets. Implementing this idea be-
came one of our gods for Protégé-2000.

5.4 Higtorical Counterpartsof Protégé/Win

The Ontolingua language was origindly designed to support knowledge sharing and communication
across multiple knowledge base systems (Gruber, 1993). It was built up from aformd set-theoretic lan+
guage known as the Knowledge Interchange Format (Genesereth & Fikes, 1992). At about the same
time as our development of Protégé/Win, researchers at the Knowledge Systems Laboratory built the
Ontolingua ontology server and editor (Fargahar, Fikes, et a., 1995; Fargahar, Fikes, & Rice, 1997).
Like Protégé, Ontolingua focused on the declarative specification of knowledge, rather than the proce-
durd knowledge of inference mechaniams and problemsolving methods. For its time (early 1995), the
Ontolingua editor was unique in that it was soldy a web-based system. This design choice led to some
sgnificant user-interface differences when contrasted with Protégé/Win, a stand-aone, conventiona
gpplication. However, at a deeper leve, the knowledge representation of Ontolingua had cleaner, more
congstent semantics than did Protégé/Win. Because it was designed from alogica substrate, and aimed
to provide well-defined semantics across multiple knowledge based systems, it provided a more logica
and complete implementation of the basic concepts of class, instance, and dot. Aswe will see, Onto-
lingua s more well-defined semantics directly affected our development of Protégé-2000.

Researchers at the University of Amsterdam compared the Ontolingua Editor and Protégé/Win as well
as with three other ontology editing systems (Duineveld, Stoter, et a., 2000). By the time this compari-
son was carried out, Protégé/Win was a mature, well-tested toal. (In fact, we had just released the first
verson of Protégé-2000.) Perhaps in part because of its maturity, Protégé did quite well in categories
such as dahility, usability, and help sysems. On the other hand, tools like the Ontolingua editor offered
features and expressve power not available in Protégé/Win. (In some cases these deficiencies were
remedied by Protégé-2000.) Disgppointingly, the overdl conclusion of the comparison was that none of
the tools was redly suitable for direct use by domain experts. Instead, dl required some training and
expertise with knowledge representation and modeling.

In contrast to either Ontolingua or Protégé&Win, the VITAL project focused on the development of ap-
propriate problem-solving methods for knowledge-based systems (Motta, O'Hara, et al., 1996). A
nove aspect of thiswork was the idea of a*“generdized directive modd” (GDM) to provide a grammar
for composing knowledge-based system building blocks—in particular, the inference mechanisms and
their links to knowledge bases (O'Hara, Shadbolt, & van Heijst, 1998). In addition, unlike much of the
KADS-related work, VITAL included a formd language, OCML, that could make the resulting infer-
ence procedure operationa. However, in many ways VITAL took an opposite approach from ours:
Whereas VITAL focused on the inference procedures, and on a compositiond grammar to drive the
congruction of knowledge-based systems, Protégé/Win focused on the declarative ontology, using that
to build an inference-independent KA-tool.

5.5 Summary of ProtégéWin

One the most important achievements of Protégé/Win was to expand our user community by providing
an easy-to-use system that ran on a widely available operating system. Part of our strategy was to in-
crease the number of users and the number of knowledge bases built with Protégé, with the idea that
our users would provide input and guidance for the design of future improvements. Eventualy, the Pro-
tégé/Win user base grew to about 200 researchers, working in applications that ranged from medical

-17 -

guiddines (Johnson, Tu, et d., 2000) to meta-modeling about problem-solving methods (Fensel, Ben+
jamins, et d., 1999).

Although it included some nove extensions (such as ontology inclusion), the Protégé/Win implementa-
tion was largely are-engineering of the ideas demonstrated in Protégé-11. However, this view should not
diminishits overal contribution to the Protégé project. Engineering improvements such as tighter integra-
tion of the knowledge-base development tools (e.g. the ontology editor and the knowledge-acquisition
tool) led directly to improved usability of the overdl system, which in turn, led to the growth of a Pro-
tégé user community.

6. Protégé-2000: The Current Implementation

As the ProtégéWin user community grew, and as we received ideas (and feature requests) from this
community, we redized it was time to re-engineer the Protégé environment one more time. In contrast
to previous iterations, we were motivated neither by the need to drastically change our approach, nor by
externd forces, such as the need to change hardware or operating system platforms. Instead, we were
responding to users requests for improving the functiondity and generdity of the Protégé methodology.
Particularly chalenging were well-intentioned requests that ultimately required a domain-specific adapta-
tion of Protégé for a particular class of applications. Although we remained attached to the god of a
domain-independent architecture, we began to realize that many users had needs that could not be ade-
quately addressed in a domain-independent manner.

Another problem uncovered by our users was the ingstence that our downhill flow assumption was too
limiting. Because this was one of the fundamenta underpinnings of previous versions of Protégé, alow-
ing for other modes of interaction required some soul-searching on part. However, we eventualy ec-
cepted the user need both to work with instances during class definitions, and to create and refer to
classes during knowledge acquisition.

Given these sorts of modifications, we redized that a revolutionary re-enginesring of the system would
be more appropriate than would any evolutionary modification of Protégé/Win. With Protégeé-2000, we
provided at least three Sgnificant augmentations. First, Protégé-2000 included an overhaul of the under-
lying knowledge model of Protégé. In order to improve the expressivity of our knowledge bases, we
worked with other knowledge base system developers to conform to a more consensus knowledge
modd for frame-based systems. Our am, like that of Ontolingua, was to dlow Protégé knowledge-
based systems to interoperate with ather knowledge- base formaisms. Second, to further improve us-
ability and to better match our new knowledge modd, we built Protégé-2000 as a sngle unified
application, continuing the trend from ProtégéWin. Fndly, in order to provide greater flexibility and to
better distribute the development effort, we designed Protégé-2000 based on a plug-in architecture, as

supported by the Java programming language.
6.1 The Protégé-2000 K nowledge M odel

In previous Protégé editions, rdatively little design went into the underlying knowledge representationa
model or structure: In Protégé-11 and Protégé/Win, we used a simple frame-based model provided by
CLIPS; in Protégé-I, we hand-coded Lisp objects to capture the necessary semantics. In contragt, for
Protégé-2000, we made an effort to evauate knowledge representation formaliams from a number of
other systems, especialy those that were frame-based. In particular, we were strongly influenced by the
line of work begun by Karp and others as the Generic Frame Protocol (Karp, Myers, & Gruber,

-18 -

1995), which evolved into the Open Knowledge Base Connectivity (OKBC) protocol (Chaudhri,
Farquhar, et a., 1998). These protocols attempt to specify a set of common semantics that could be
used to enable better interoperation among different knowledge-based systems. Thiswork was closdy
tied to the Ontolingua system; indeed, in some ways Ontolingua provided the canonical implementation
of the OKBC protocol.

For Protégée-2000, we abandoned the semantics of the CLIPS object system, and based our new
knowledge model on OKBC. (For adetailed description of the Protégé-2000 knowledge mode and its
relationship to OKBC, see Noy, Fergerson, & Musen, 2000.) In comparison to the knowledge modds
used by earlier versions of Protégé, the OKBC modd is sgnificantly more flexible. For exanmple, in pre-
vious versons of Protégé, we made a strong distinction between classes and instances—every object
was either one or the other. Although this gpproach worked well for many domains, we discovered that
in some cases, our knowledge moded was too restrictive. Domain speciaists sometimes needed to cre-
ate new classes as well as new instances. Congstent with OKBC, our solution to this dilemmaisto blur
the digtinction between classes and ingtances. In particular, Protégé-2000 alows for meta-classes,
classes whose ingtances are themselves classes—perhaps specid classes that domain experts might
build and edit.

Protégé-2000 till supports the idea that the labor of knowledge-base construction should be dvided
into (1) overdl ontology congtruction by a knowledge engineer and then (2) knowledge-base filling-in
by a domain expert. However, via meta- classes, we can extend the sorts of objects that domain experts
may create and edit. Unlike earlier versons, where domain experts were limited to creating instances,
Protégé-2000 is more agnostic about what sort of objects (classes or instances) get crested when. This
capability had an important implication for our user interface. While Protégé/Win had separate tools and
mechanisms for editing ingtances versus classes, in Protége- 2000, we musgt integrate these more tightly,
alowing domain experts to use the same editing tool to add specific knowledge, whether as instances or
as classes.

6.2 Tool Integration via Tabs

Although the Protégé/Win tools were more tightly integrated than previous implementations, they were
dill didtinct tools: Developers used one application to edit the class structure and then a different

application to modify the knowledge base of instances. Both Protégé/Win and Protégé-11 did include a
sngle unifying gpplication: a control pand that launched the individud tools for ontology creation, forms
editing, and knowledge acquigtion. In practice, these control panels were mostly just used for the
purpose of explanation and system demondtration. As such, they were very effective, transforming the
suite of tools into a much more easly understood system. In fact, the existence of these control panels
led drectly to the design and implementation of Protégé-2000 as asingle application that carries out Al

knowledge-base building tasks.

Figure 9 shows the standard Protégé-2000 user interface with the same knowledge base shown in Fig-
ure 8 The interface is divided into a set of tabs—Figure 9 has three tabs vigble, with the “classes &
instances’ tab on top. This tab includes the functiondity of both the ontology editor (modifying classes)
and the “layout interpreter” (modifying ingtances) of Protégé/Win. The left pane shows the class hierar-
chy, the middle shows instances, and the right shows details of either a selected class or a selected in-
stance. The “forms’ tab carries out the function of the Protégé/Win “layout editor”, and the “dots’ tabis
new, added because the Protégé-2000 knowledge modd treats dots as fird- classes objects, as per the
OKBC protocal.

-19-

Ei_‘:"}wines Protégé-2000 (D:applications Protege-2000texamples'wines.pprj)
Project Edit Window Help

Slaio) [o1c] B8
[(CliZ Classes & Instances [(S[[|Slots | 7] Forms |

Refationship|™ || V| €| @[%|!|class { &> Longriage Merlot (Meriot
T Consumable thing &&= Merlot :
== A M
@ (T Food ::© : ‘ it |
Dirink Al i |Longridge Merliot
) Clg’)@"u“ufine D'“"‘“lﬂ’a@’? :
o (©) White wine I Gary Farrell Merlot | 2
& (C)Redwine glétnn?ridgme Mletrl':'t | Body Color Maker IE
I erling Marlo :
g L [
{C) Red Zinfandel :
@ (C) Bordeaux :
(©) Sauterne (1) [l Flawvor Sugar Grape W
(C) Cabemet Frand | ||stronG ~| Ry = | D Merlot grane
(Tl Cabernet Sauy | ¢ :
(C) merlat (3 : :
(C)Pinat Moir (3| | /| Tannin Level
0 B T

Figure 9. The default user interface for Protégé-2000, showing awine ontology and one
ingtance of the class “Merlot”.

An important design congderation for Protégé-2000 was to retain the user-interface amplicity of the
earlier knowledge modd. Thus, the meta-class capability is largely hidden from naive users, and the
classlingtance digtinction is retained by the user interface. This design dlows Protégeé to be flexible and
powerful for developers and knowledge engineers, yet dso support smple tools that are easy for the
domain specidigt to understand and use. As part of this approach, any of the tabs in Protégé-2000 can
be configured as “hidden”, so that end-users see only the functiondity that they need. In fact, to further
shield the end user from the more abstract aspects of the knomedge base, we can build a completely
custom-tailored user interface by constructing a domain-specific plug-in.

6.3 The Protégé-2000 Plug-in Architecture

We had two motivations for re-building Protégé with a plug-in architecture. Firdt, as with any large
software development effort, we gain subgtantiad maintenance and scaability benefits from a more
modular architecture. With the use of plug-ins, we can distribute the development workload across mul-
tiple programmers, including externa programmers from our user base. Second, as alluded to in Section
5, we wanted to provide a greater range of custom+-tailored features to the Protégé user interface. As
both the number of Protégé users and the variety of uses of Protégé grew, it became clear that the de-
fault user interface widgets provided by Protégé/Win were insufficient. To provide knowledge-base
tools that were domain-specific and easy to use, we needed to dlow programmers to build their own
plug-ins to customize the interface and behavior of Protégé-2000.

-20-

| \{ |
| |
LL Slot Plug-ins Tab Plug-ins

User t t
Interface y

Protégé Default User Interface External KB Applications
Core Protégé Knowledge Model API

Protégé-
so00 | ((ProtéséKnowledgeModel)

/|/ft\<\

Mappings for read/write functions |

Persistent < i
Storage
Protégé Other Generic
Files files Schema

Flat file storage

Relational database storage

Figure 10. The Protégé- 2000 architecture. Developers may customize the default user inter-
face viadot and tab plug-ins, or build completely custom user interfaces and interact only
with the knowledge modd API. Additiondly, developers may build different persstent stor-
age mechanisms, athough mapping the Protégé knowledge modd to the stored format is
then the respongbility of the developer.

Figure 10 shows a schematic view of the Protégé-2000 plug-in architecture. At the core of Protégé-
2000 is its knowledge mode. Any programmatic interaction with the objects that reside in a knowledge
base (ingtances, classes, etc.) must be via the Protégé application programmers interface (API). The
development and publication of this API iswhat alows independent developers to build plug-in compo-
nents that add to or modify the functiondity of Protégé. There are a variety of different waysto usethis
API.

External Applications and Protégé-2000

At the coarsest level, developers may decide thet the entire default Protégé user interface is inappropri-
ate for a particular knowledge-acquistion Situation or knowledge-based application. In this case, devel-
opers might use the default Protégé KA-tool for designing and initidizing the ontology, and perhaps for
intermittent maintenance of the knowledge base, but then use an entirely separate, externd gpplication to
control users interaction with this knowledge base. This separate application would include calsto the
AP for retrieving or modifying Protégé knowledge base dements.

One example of this type of externd use of Protégé knowledge bases is our implementation of the
ATHENA decison-support system for management of patients who have high blood pressure, currently

-21-

a use a several VA hospitds (Goldstein, Hoffman, et d., 2000). Asis typicd for medicd domains,
ATHENA has a st of particular user-interface requirements that make the default Protégé-2000 user
interface insufficient for use in this complex medicad work-flow setting. Thus, ATHENA is a customt
tallored, externd gpplication that provides appropriate interfaces at the point of care for decison sup-
port. Nonetheless, we view ATHENA as a Protégé knowledge-base system: It uses the Protégé-2000
API to query and retrieve information from its knowledge base of hedthcare guiddines.

Tab Plug-ins

Providing an externd, custom-tailored application that uses a Protégé knowledge base is the most ex-
treme form of modifying the default Protégé user interface. As an dternative, developers may build tab-
levd plug-ins that provide a custom+tailored interface or view into a Protégé knowledge-base. With this
approach, the developer is responsible for building Java code that fulfills the requirements of an abstract
tab widget: something that provides the interface and layout informeation for a new Protégé tab. The re-
aulting user interface uses the same basic menu items as the default Protégé user interface (see Figure 9),
but in addition to the default tabs, a new, custom-tailored tab will gppear. Furthermore, since any tab
can be hidden, the developer could design the interface so that end-users see only the custom-tailored
tab. As with an externd gpplication, the tab plug-in may use any of the API cdls to access information
from the knowledge base.

There are severd reasons for building a tab plug-in. Firgt, a particular domain may have specific knowi-
edge-acquisition needs that can best be satisfied by building a specia-purpose knowledge-acquigition
tool. Second, because tab plug-ins are (partidly) independent software, it is possible to implement arbi-
trary functiondity and inferencing cgpability into these plug-ins. Thus, one can build tab plug-ins that im-
plement any generic problem-solving method (PSM), including the capability to connect that PSM to a
gpecific knowledge base. Findly, it is possble to build domain-independent tab plug-ins that provide
new functiondity for accessng, querying, or visudizing the entire knowledge base.

The OntoViz tab provides an example of a visudization tab plug-in, aswell as an example of distributed
software development. Built by Michagl Sintek, a developer from Germany, this tab plug-in can be used
to visudize any knowledge base as adiagram. Figure 11 shows the tab with part of our example knowi-
edge base of wines. This approach is in contrast to the default Protégé user-interface, which displays
classes and instances only as a collgpsible hierarchy (see the | eft-hand column of Figure 9). The Protégé
knowledge mode alows for multiple inheritance, and when this occurs, the OntoViz tab seems superior
to a hierarchicd view: When a dass has multiple parents, this Stuation is awkward to visudize with a
collgpsible tree hierarchy. Of course, if the knowledge base has a very large number of objects, then the
diagram can quickly become unmanageable. However, for smadl ontologies or for visudizing smal parts
of alarger ontology, the dternative diagramming visudization provided by OntoViz may be superior to
Protégé s default user interface.

Slot Widget Plugs-ins

At amuch finer granularity, the Protégé-2000 plug-in architecture dso alows deveopers to build plug-
ins for individud dements of the user interface. Because dements of a form correspond to particular
dotsin adass, changing the user interface for these eements means making a new dot widget. Devel-
opers build dot widgets when they are satisfied with most of the default Protégé knowledge-acquisition
tool, but need to modify the behavior for one particular type of data. For example, part of the data may

-22-

3 I [e]

Project Edit Window Help

bol=lal ==

Classes siots [[T])Forms || 1= Instances | #4 Queries | Ontoviz |

cont ISFEIEE [T

frame |5uh|sup| slxl isxl slt ‘ sle | inslsysl

Red Merlat | [0 | [l | 1 | 1| 0| [[| 0| 2 Consumable thing
iine | | | il

..-A
| »

O O3 e |) | lod | O [T
Wrinery DDDDDDD-DE;
: isa
Drink
Classes W : Isd
(©Winary (42) Bh
& (Chwine ragion A
§ (C) Consurnable thing B
& (T Food |
& () Drink =
© (C)wine
;r%\;\r;étiv\;:l;e wiine grape Redwine

(E) Beaujolais (1)
@ () Red Burgundy (1)
(C) Red Zinfandal (4)
@ () Red Dordeaus
() Pinot Moit (3
(©) Chianti (1)
(T Petite Syrah (2
@Sancerre (1
() Muscadet (1
(C) Red Meriot (%)
@CabernetSauvignon 5y :
(C) Cabernet Franc (1) = |
-

ol < Dl

isa

| Fed herlot

-

A i io .0
~

Stetling Merlat Gary Farrell Merlot Longridge herlaot

Figure 11. The OntoViz tab plug-in used to give an dternative visudization for the Pro-
tégé wines knowledge base shown in Figure 9.

be an image, perhaps stored as a GIF file, and the default Protégé K A-tool does not recognize thistype
of data.

To handle this sort of data, we have built a separate dot-widget plug-in that alows usersto sdlect a GIF
or JPG file as the vaue of some dot (which is stored as a string in the knowledge base) and to display
the corresponding image within the Protégé KA-toal. This plug-in is a piece of externad Java code that
fulfills the requirements of an abstract dot widget: something that can display (and optiondly alow for
editing) objects of some particular type. This imege-display dot widget is an example of a domain-
independent plug-in: This dot widget might be appropriate for avariety of different domains that include
images. However, because developers have access to the complete Protégé AP, they can aso design
domain-specific dot-widget plug-ins.

Because any developer can build domain-independent dot and tab plug-ins, we have encouraged the
user community to share these efforts, and we have built a library of these plug-ins, accessible viathe
Protégé home page. The existence and use of this library validates our gpproach: it is a modest example
of the benefits of distributed software development and software reuse.

Backend Plug-ins: File Formats and Databases

In addition to plug-ins for user-interface modifications, the Protégé- 2000 architecture alows for “ back-
end” plug-ins that read and write to different storage formats (see Figure 10). As a default, Protégé-

-23-

2000 dores its knowledge bases in a specid-purpose flat file format. However, it also has two other
built-in storage back-end plug-ins. These dlow for reading from and writing to RDF files (Resource De-
scription Framework) and for using a Protégé- specific schema to read from and write to a relationa
database format.

The laiter capability is essentia for large knowledge bases: With any knowledge base that exceeds the
physca sze of primary memory, our tools must have an efficient way to retrieve and process informe-
tion from secondary storage. An example is the Digital Anatomist Foundationa Modd, alarge, rich on-
tology of human anatomy. The designers of this ontology must use the Protégé database backend to
access the over 140,000 frames in this knowledge base (Noy, Musen, et d., 2002).

Building a new “back-end” plug-in is more chalenging than creeting others sorts of plug-ins. To build a
complete back-end, one must have a detailed understanding of the Protégé knowledge mode so as to
support reading and writing of al possble Protégé congructs. As an example, building the RDF
backend exposed some subtle differences between our knowledge modd and the semantics of RDF
(Noy, Sintek, et a., 2001). We are currently in the process of developing a back-end plug-in thet
would use XML Schema. We are building a generd-purpose XML schema that captures the Protége
knowledge moddl, o that individua knowledge bases can be written as XML files that conform to this
schema

6.4 Counter partsto Protégé-2000

By the time we released Protégé-2000, tools for ontology editing and knowledge base congtruction
were becoming more common. For example, in addition to Protégé-2000 and the Ontolingua Editor,
there were two other mgor ontology development tools built with the OKBC standard: the Ontosaurus
system built on LOOM (MacGregor, 1991), and the GKB Editor (Karp, Chaudhri, & Pauley, 1999).

Like the Ontolingua editor, the Ontosaurus system was built as a pure Web-based editing environment.
As such, it suffered from some of the same drawbacks in user interface, and ease-of-use, as described
in the Universty of Amsterdam comparison (Duineveld, Stoter, et d., 2000). However, the unique as-
pect of Ontosaurus was its underlying knowledge modd: The LOOM system included a description
language thet unified frame-based knowledge with an inference procedure for classfication of those
frames. Effectively, this provided a consstent way of embedding rules and inference into frames. How-
ever, because LOOM is not a pure frame-based system for knowledge representation, this made it dif-
ficult and awkward to map Ontosaurus to the OKBC standard.

In contragt, the Generic Knowledge Base (GBK) Editor was devel oped hand-in-hand with the Generic
Frame Protocol, and therefore it was easly mapped to OKBC. The GKB editor differed significantly
from Protégé, Ontolingua, and Ontosaurus in that it provided a graphical nodes-and-arcs view of its
knowledge bases (somewhat like OntoViz). In this approach, al knowledge congtruction occursin the
context of manipulating a diagram of nodes (objects or frames) and arcs (relations or dots). The We-
bOnto tool was another example of a knowledge base building tool that used this type of visudization
(Domingue, 1998).

OntoEdit borrows its user interface design partidly from Protégé, but differs significantly in its trestment
of axioms about entities in a knowledge base (Staab & Maedche, 2000). Protégé-2000 offers only
very wesk support for modeling such axioms, primarily because there are Sgnificant design and imple-
mentation difficulties in enforcing or vaidating a set of axioms againgt a particular knowledge base. Like

-24 -

Protégé-2000, OntoEdit is designed to read from and write to the Resource Description Framework
(RDF) standard.

6.5 Summary of Protégé-2000

If one had to summarize the changes from Protégé/Win to Protégé- 2000, the most important idealis that
of scalability. In particular, Protégé-2000 is more extensible, more flexible, and better suited to the de-
velopment of large knowledge bases than was Protégé/Win.

Because of its extensble user interface, it can be used in Stuations that require specific interaction
syles or user interfaces.

Because it is a Sngle tool with a more flexible knowledge modd, it can be used in Stuations where
domain users need to create instances aswell as classes.

Because of its capability to read and write to database systems, it can be used where knowiedge
bases exceed the sze of physca machine memory.

Because of its more standard knowledge modd, it can be used in Stuations that require reading
from alegacy knowledge base, or writing to other modeling formaisms (eg., RDF).

To a certain degree, requests and feedback from the Protégé/Win user community led directly to each
of these advances. To continue these cycles of iterative improvement, we have wanted to further expand
our user community and to dicit additiond feedback for Protégé-2000. For example, as an entrée into
the W? RDF community, we decided to make Protégé-2000 “open source” under the Moxzilla public
license, making our system easily available to dl. This choice had the benefit of making our system a-
tractive to developers who might otherwise build smilar systems from scratch.

The new plug-in architecture, together with the availability of the source code, has led to the growth of
externd Protégé devel opers. Java programmers who have developed plug-ins that extend the capabili-
ties of Protégé. The existence of these developers and their contributions is evidence of the success of
our architecture; they show that we have succeeded in building an extensible system, and that we have
digtributed the development effort beyond our own laboratory.

In fact, the biggest obstacles to Protég€'s further growth and success are organizationd rather than
technical. As with any opensource development effort, it is a Sgnificant task to manage and work with
externa developers. For example, this group of users needs detailed, technica documentation for the
Protégé API. Also, in order to keep the Protégé user and developer communities vibrant, we have
maintained a lively “protege-discusson” mailing ligt, and spent condderable time and effort answering
questions and providing technical support. We have dso encouraged and helped organize a series of
Internationa Protégé Workshops both to solicit feedback from our users and to present the breadth of
gpplications within our community. We believe that our investment in documentation and user support is
worthwhile, for we derive sgnificant berefits from the feedback and red-world system-testing that our
USer community provides.

7. Summary and Discussion

The four generations of Protégé presented here represent over 16 years of research and system devel-
opment. Protégé has evolved from a proof of concept and initid prototype to a comprehensive system
with an active user community. As we described this evolution, we have highlighted the differences and

-25-

augmentations from one verson to the next. However, there have been some fundamentd ideas of
knowledge-based systems development that remained unchanged throughout this evolution:

K nowledge-based systems should be designed for use by domain experts, rather than exclusvey
by knowledge engineers.

Domain-specific knowledge-acquisition tools must be generated from an underlying domain model
or ontology.

During condruction of these KA-toadls, there is a divison of labor between structurd domain
modeling and tool design (mostly carried out by the knowledge engineer), versus filling in detalled
domain knowledge (mostly carried out by the domain expert).

Domain knowledge can be captured declaratively, without direct reference to an inference or prob-
lem-solving method. Conversdly, inference methods can be isolated as problem-solving methods or
(in Protégé-2000) as plug-in gpplications.

Findly, we have developed Protégé with a consstent meta-methodology that emphasizes pragmatics,
real-world problems, and feedback from users. The longevity of these ideas across al of the Protégé
implementations has resulted in a stream of derivative research efforts that leverage the flexibility of the
Protégé system. These research efforts cover awide variety of work in knowledge-based systems:

Knowledge-based software reuse. Beginning in the mid-1990s, our group has carried out research
that explores the ability to use the Protégé environment to support software reuse: dlowing re-
searchers to leverage older software development efforts for new (but related) tasks (Eriksson,
Shahar, et a., 1995). We tested this capability with the task of congraint satisfaction in domains of
computationd biology, medicd decison making, and enginering (Gennari, Altman, & Musen,
1995; Gennari, Cheng, et d., 1998).

Protégé and the semantic web. Recently, there has been a great ded of effort to annotate web
information with richer semantics, thereby building a Semantic Web (Berners-Lee, Hendler, &
Lassla, 2001; Hendler, 2001). We describe how Protégé-2000 can be used to author RDF o+
tologies and content, and how Protégé could support other Semantic Web languages, via construc-
tion of other back-end plug-ins (Noy, Sintek, et al., 2001).

Ontology merging and alignment. If multiple groups independently devel op ontologies that cover
the same domain content, then one often wishes to merge or &t least partidly dign these ontologies.
This problem is especidly germane to web content, where ontologies proliferate rapidly, and many
wish to leverage pre-existing content organizations. We describe a tool known as PROMPT for
automatic ontology merging and dignment (Noy & Musen, 2000). This tool is implemented as a
Protégé-2000 tab plug-in, and has been evaluated in severd different domains.

Medical decision support systems. The longest standing application of Protégé knowledge-bases
have been for medical decison support systems, beginning with protocol-based cancer therapy in
Oncocin. This work was continued with the EON Project, which agpplied the ideas of component-
based software and tempora databases to protocol therapy (Musen, Tu, et a., 1996). Tempord
information can be critica in medica applications, and thus, a number of Protégé KA tools have
been designed for the management of this type of knowledge (Nguyen, Shahar, et a., 1999; Sha-
har, Chen, et a., 1999). Most recently, by leveraging the Protégé-2000 tab plug-in capability, we

-26 -

have built systems that focused on supporting decisons with regard to patient digibility into dinicd
tria protocols (Rubin, Gennari, et d., 1999; Gennari, Sklar, & Silva, 2001).

Knowledge representation for health-care guidelines. The Protégé tools (beginning with Pro-
tégé/Win) have been applied throughout the development of the GLIF standard for representing
hedthcare guiddines (Ohno-Machado, Gennari, et a., 1998; Peleg, Boxwala, et a., 2001). Pro-
tégé has been useful for this effort both because the modds could be easily changed as GLIF
evolved, and because Protégé supports a diagrammatic visudization of guiddine dements

Each of these efforts resulted in scientific contributions in their own domain. Thus, publications describ-
ing these endeavors minimize discusson of the underlying Protégé platform per se, and ingtead focus on
their more specific research goals. In contrast, our development of Protégé itsdf was not driven by the
need to build something completely nove, but rather by users needs for aflexible, reliable, efficient, and
easy-to-use environment. In fact, because Protégé is so extensible and generd-purposg, it is somewhat
difficult to pinpoint the research contribution of the Protégé system itsdlf. In truth, Protége itsdf is no
longer revolutionary ressarch—however, it does provide a stable, robugt, flexible infrastructure for car-
rying out more specific research in knowledge-based systems. Without the existence of a well-
supported, stable infrastructure such as Protégé, al of the above research efforts would have been
nearly impossible to carry out.

Protégé s longevity has been due to a number of factors. First, we recognized early that designing asys-
tem for the long term would have clear benefits. We now have a long history of experiences that help
guide us when faced with different design choices. (In support of our am to design for the long-term, we
have been fortunate to retain many of our scientific Saff for reatively long periods of time.) Second, by
happenstance, we were forced to re-implement our system more than once, thereby discovering thet the
resulting re-enginesring led to a greetly improved system. The opportunity to carry out complete revi-
sons of the system has led to an architecture that is much more robust and flexible than any we could
have designed in a angle pass. Findly, we have strongly encouraged the growth of a user community.
To do this, we have had to baance providing new functiondity rapidly versus providing stable software
for our user community. We have dso had to invest time and energy into documentation and user sup-
port.

The vaue d our user community cannot be overstated. Of course, the value provided by user feedback
is wdl-recognized by the software engineering community and by commercid software enterprises.

However, Protégé is unusud in that it is a hybrid—it is nat a fully-supported commercia software prod-
uct, yet it is clearly much more robust and supported than typica research software produced by aca-
demic projects. Although the work required to transform research software into commercid softwareis
mundane (documentation, thorough testing, user support), we argue that there are redl research benefits
to carrying out at least some of this effort. For any research effort that claims to be of generd usg, it is
essentid that some of these mundane services be provided, for otherwise, the generdity clam cannot be
proven. Unlike some academic research efforts, we have successfully demondtrated the generdity of the
Protégé architecture by means of our user community—a variety of different users have worked with
Protége to achieve a variety of different research gods. Our user community islarge. Since the system is
open source, it is hard to estimate the number of users, but as of this writing, we have over 900 mem-
bers of the protege-discusson mailing ligt.

Unlike previous implementetions, Protége-2000 is extensible at the programming level: Externd devel-
opers can build plug-ins that change the behavior and appearance of the system. As aresult, we now

-27 -

have a modest library of these plug-ins, and a community of Protégé-developers outside of the Stanford
group. We strongly encourage this community, Since it represents a way to distribute the development
effort in a controlled manner. Indeed, our hope is that the Protégé system will be able to follow the
opensource modd of distributed development, which has proven so successful with projects such as
the Linux operating system or the Apache Web server.

The Protége effort illustrates the importance of combining a usable implementation for practica applica-
tions with a research platform for scientific experimentation. Protégé has undergone severd design itera-
tions, which helped us evauate Protégé progressively, understand and define the problems of using Pro-
tégé, and test new design solutions. The current Protégé-2000 architecture allows for distributed design,
whereby developers can experiment with new functiondity via plug-in congtruction, while taking advan-
tage of the well-established knowledge representation infrastructure of the Protégé knowledge modd.
We bdlieve that the Protégé system is an extensible and robust platform for awide variety of users from
knowledge-based system developers who build practica systems, to domain experts who provide ex-
pert knowledge, to researchers who explore new scientific ideas. Although 16 years is dready vener-
able in comparison to most academic projects, we believe that Protégé will remain a valuable tool for
knowledge-base systems, and will continue to grow and evolve for many more years.

Acknowledgements

Parts of this work were funded by the High Performance Knowledge Base Project of the Defense Ad-
vanced Research Projects Agency (contract N660001-97-C-8549) and the Space and Naval Warfare
Systems Center (contract N6001-94-D-6052). As should be clear, we are grestly indebted to our users,
for this project would not have flourished without their active and continued support. In addition to the au-
thors, we acknowledge and thank the many people who have contributed to the development of Protégé.
Protégé-2000 can be downloaded from http://protege.stanford.edu/

Refer ences

Bachant, J. and McDermott, J. D. (1984). R1 revisited: Four years in the trenches. Al Magazine, 5(3):
21-32.

Berners-Lee, T., Hendler, J., and Lassila, O. (2001). The semantic web. Scientific American, 284(5): 34-
43.

Breuker, J. A. and Velde, W. V. d. (1994). The CommonKADS Library for Expertise Modelling. Am-
sterdam, The Netherlands, 10S Press.

Buchanan, B., Barstow, D., Bechtd, R., et a. (1983). Constructing an expert system. In Building Expert
Systems. F. Hayes-Roth, D. Waterman, andD. Lenat, Eds., Addison-Wedley.

Buchanan, B. G. and Shortliffe, E. H., Eds. (1984). Rule-Based Expert Systems: The Mycin Experi-
ments of the Stanford Heuristic Programming Project, Addison-Wedley.

Chandrasekaran, B. (1983). Towards a Taxonomy of Problem-Solving Types. Al Magazine, 4(1): 9-17.

Chandrasekaran, B. (1986). Generic tasks in knowledge-based reasoning: High-level building blocks for
expert system design. |EEE Expert, 1(3): 23-30.

-28 -

Chaudhri, V. K., Farquhar, A., Fikes, R., Karp, P. D., and Rice, J. P. (1998). OKBC: A programmatic
foundation for knowledge base interoperability. Proceedings of AAAI-'98, Madison, WI, 600-607.

Crubezy, M., Lu, W., Motta, E., and Musen, M. A. (2001). The Internet Reasoning Service: Delivering
Configurable Problem-Solving Components to Web Users, Stanford Medical Informatics,
Technical Report SM1-2001-0895.

Domingue, J. (1998). Tadzebao and WebOnto: Discussing, browsing, and editing ontologies on the web.
Proceedings of the 11th Workshop on Knowledge Acquisition, Modeling and Management,
Banff, CA,

Duineveld, A. J.,, Stoter, R., Weiden, M. R., Kenepa, B., and Benjamins, V. R. (2000). Wondertools? A
comparative study of ontological engineering tools. International Journal of Human-Computer
Sudies, 52(6): 1111-1133.

Eriksson, H., Puerta, A. R., and Musen, M. A. (1994). Generation of knowledge-acquisition tools from
domain ontologies. International Journal of Human-Computer Sudies, 41: 425-453.

Eriksson, H., Shahar, Y., Tu, S. W., Puerta, A. R., and Musen, M. A. (1995). Task modeling with reusable
problem-solving methods. Artificial Intelligence, 79: 293-326.

Esheman, L., Ehret, D., McDermott, J. D., and Tan, M. (1987). MOLE: A tenacious knowledge-
acquisition tool. International Journal of Man-Machine Sudies, 26: 41-54.

Fargahar, A., Fikes, R., Pratt, W., and Rice, J. (1995). Collaborative Ontology Construction for Infor-
mation Integration, Stanford Knowledge Systems Lab, Technical Report KSL-95-63.

Fargahar, A., Fikes, R., and Rice, J. (1997). The ontolingua server: A tool for collaborative ontology con
struction. International Journal of Human-Computer Studies, 46(6): 707-728.

Fensd, D., Benjamins, V. R., Motta, E., and Wielinga, B. (1999). UPML.: A framework for knowledge
system reuse. International Joint Conference on Al, Stockholm, Sweden,

Fridsma, D., Gennari, J. H., and Musen, M. A. (1996). Making generic guidelines site-specific. Proceed-
ings of the 20th AMIA Annual Fall Symposium, Washington, DC, 597-601.

Genesereth, M. R. and Fikes, R. (1992). Knowledge Interchange Format, Version 3.0 Reference
Manual, Stanford University Computer Science Dep't, Technica Report Logic-92-1.

Gennari, J. H., Altman, R. B., and Musen, M. A. (1995). Reuse with Protégé-I1: From eevators to ri-
bosomes. Proceedings of the ACM-S gSoft 1995 Symposium on Software Reusability, Sedttle,
WA, 72-80.

Gennari, J. H., Cheng, H., Altman, R. B., and Musen, M. A. (1998). Reuse, CORBA, and knowledge-
based systems. International Journal of Human-Computer Studies, 49: 523-546.

Gennari, J. H., Sklar, D., and Silva, J. S. (2001). Protocol authoring to digibility determination: Cross-tool
communication. Proceedings of the AMIA Annual Symposium, Washington, DC, 199-203.

Gennari, J. H., Tu, S. W., Rathenfluh, T. E., and Musen, M. A. (1994). Mapping domains to methods in
support of reuse. International Journal of Human-Computer Studies, 41: 399-424.

Gil, Y. and Mdz, E. (1996). Explicit representations of problem-solving strategies to support knowledge
acquisition. Proceedings of the Thirteen National Conference on Artificial Intelligence
(AAAI-96), Portland, OR, 469-476.

Goldstein, M. K., Hoffman, B. B., Coleman, R. W., et d. (2000). Implementing clinical practice guidelines
while taking account of evidence: ATHENA, an easily modifiable decision-support system for

-29-

management of hypertenson in primary care. Proceedings of the AMIA Annual Symposium,
Los Angeles, CA, 300-304.

Gruber, T. R. (1993). A trandation approach to portable ontology specifications. Knowledge Acquisition,
5(2): 199-220.

Guarino, N. and Giaretti, P. (1995). Ontologies and knowledge bases. Towards aterminological clarifica-
tion. In Towards Very Large Knowledge Bases. N. J. |. Mars, Ed., |0S Press. 25-32.

Hayes, P. J. (1979). Thelogic of frames. In Readings in Knowledge Representation. R. J. Brachman
and H. J. Levesque, Eds., Morgan Kaufmann: 287-295.

Hayes-Roth, F., Waterman, D., and Lenat, D., Eds. (1983). Building Expert Systems, Addison-Wesley.
Hendler, J. (2001). Agents and the semantic web. |EEE Intelligent Systems, 16(2): 30-37.

Johnson, P. D., Tu, S. W., Booth, N., Sugden, B., and Purves, |. N. (2000). Using scenarios in chronic
disease management guidelines for primary care. Proceedings of the AMIA Annual Symposium,
Los Angeles, CA, 389-393.

Karp, P., Myers, K., and Gruber, T. (1995). The generic frame protocol. Proceedings of the 1995 Inter-
national Joint Conference on Artificial Intelligence, 768-774.

Karp, P. D., Chaudhri, V. K., and Pauley, S. M. (1999). A collaborative environment for authoring large
knowledge bases. Journal of Intelligent Information Systems, 13: 155-194.

MacGregor, R. M. (1991). Using a description classifier to enhance deductive inference. Proceedings
Seventh |EEE Conference on Al Applications, 141-147.

Marcus, S. and McDermott, J. D. (1989). SALT: A knowledge acquisition language for propose-and-
revise systems. Artificial Intelligence, 39(1): 1-37.

McDermott, J. D. (1988). Preliminary steps toward a taxonomy of problem-solving methods. In Automat-
ing Knowledge Acquisition for Expert Systems. S. Marcus, Ed., Kluwer Academic Publishers:
225-256.

Motta, E., OHara, K., Shadbolt, N., Stutt, A., and Zdrahal, Z. (1996). Solving VT in VITAL: astudy in
model construction and knowledge reuse. International Journal of Human-Computer Studies,
44: 333-371.

Musen, M. A. (1987). Use of adomain model to drive an interactive knowledge-editing toal. I nterna-
tional Journal of Man-Machine Studies, 26: 105-121.

Musen, M. A. (1989a). Automated Generation of Model-Based Knowledge-Acquisition Tools, Pitman
Publishing.

Musen, M. A. (1989b). Automated support for building and extending expert models. Machine Learning,
4: 347-376.

Musen, M. A. and Tu, S. W. (1993). Problem-solving models for generation of task specific knowledge
acquisition tools. In Knowledge-Oriented Software Design. J. Cuena, Ed. Amsterdam, Elsevier.

Musen, M. A., Tu, S. W.,, Das, A., and Shahar, Y. (1996). EON: A component-based approach to auto-
mation of protocol-directed therapy. Journal of the American Medical Informatics Association,
3: 367-388.

Nguyen, J. H., Shahar, Y., Tu, S. W., Das, A., and Musen, M. A. (1999). Integration of temporal reason+
ing and temporal-data maintenance into a reusable database mediator to answer abstract, time-
oriented queries. The Tzolkin system. Journal of Intelligent Information Systems, 13: 121-145.

-30-

Noy, N. F., Fergerson, R. W., and Musen, M. A. (2000). The knowledge model of Protégé-2000: Combin-
ing interoperability and flexibility. Second International Conference on Knowledge Engineer-
ing and Knowledge Management (EKAW 2000), Juar+les-Pins, France,

Noy, N. F. and Musen, M. A. (2000). PROMPT: Algorithm and tool for automated ontology merging and
alignment. Seventeenth National Conference on Artificial Intelligence (AAAI-2000), Audtin,
TX, 450--455.

Noy, N. F., Musen, M. A., Mgino, J. L. V., and Rosse, C. (2002). Pushing the envelope: Challengesin
a frame-based representation of human anatomy, Stanford Medical Informatics, Technical Re-
port SM1-2002-0925.

Noy, N. F., Sintek, M., Decker, S, et al. (2001). Creating semantic web contents with Protege-2000.
|EEE Intelligent Systems, 16(2): 60-71.

OHara, K., Shadbolt, N., and van Heijt, G. (1998). Generdised directive models: integrating model devel-
opment and knowledge acquisition. International Journal of Human-Computer Studies, 49(4):
497-522.

Ohno-Machado, L., Gennari, J. H., Murphy, S,, et d. (1998). The guideline interchange format: A model
for representing guidelines. Journal of the American Medical Informatics Association, 5: 357-
372.

Peleg, M., Boxwala, A. A., Bernstam, E., et al. (2001). Sharable representation of clinical guideinesin
GLIF: Relationship to the Arden Syntax. Journal Of Biomedical Informatics, 34(3): 170-181.

Puerta, A. R, Egar, J. W., Tu, S. W., and Musen, M. A. (1992). A multiple-method knowledge-acqusition
shell for the automatic generation of knowledge-acquisition tools. Knowledge Acquisition, 4: 171-
196.

Puerta, A. R, Tu, S. W., and Musen, M. A. (1993). Modeling tasks with mechanisms. I nter national
Journal of Intelligent Systems, 8: 129-152.

Rubin, D., Gennari, J. H., Srinivas, S, et d. (1999). Tool support for authoring digibility criteriafor cancer
trids. Proceedings of the AMIA Annual Symposium, Washington, DC, 369-373.

Sandahl, K. (1994). Transferring knowledge from active expert to end-user environment. Knowledge Ac-
quisition, 6: 1-21.

Schreiber, A. T., Akkermans, J. M., Anjewierden, A., et a. (1999). Knowledge Engineering and Man-
agement: The CommonKADS Methodology, MIT Press.

Schreiber, A. T., Wielinga, B., Akkermans, J. M., van de Veld, W., and de Hoog, R. (1994). Common-
KADS: A comprehensive methodology for KBS development. |EEE Expert, 9: 28-37.

Shahar, Y., Chen, H., Stites, D. P., et d. (1999). Semi-automated entry of clinical temporal-abstraction
knowledge. Journal of the American Medical Informatics Association, 6(6): 494-511.

Shortliffe, E. H., Scott, A. C., Bischoff, M. B., et a. (1981). ONCOCIN: An expert system for oncology
protocol management. International Joint Conference on Artificial Intelligence (1JCAI '81),
Vancouver, CA, 876-881.

Staab, S. and Maedche, A. (2000). Axioms are objects, too—Ontology engineering beyond the modeling
of concepts and relations. Proceedings of the ECAI 2000 Wor kshop on Ontologies and Prob-
lemSolving Methods, Berlin, Germany,

Steels, L. (1990). Components of expertise. Al Magazine, 11: 30-49.

-31-

Stedls, L. (1992). Reusability and configuration of applications by non-programmers, Vrije Univer-
Steit Brussel, Technical Report VUB 92-4.

Tu, S. W., Kahn, M. G., Musen, M. A., et a. (1989). Episodic skeletal-plan refinement based on temporal
data. Communications of the ACM, 32(12): 1439-1455.

Wielinga, B., Schreiber, A. T., and Breuker, J. (1992). KADS: A modeling approach to knowledge engi-
neering. Knowledge Acquisition, 4(1): 5-53.

-32-

