Master Informatique 1

Module BIA

TD 1

Représentation et résolution de problème (1)

Nadia Kabachi, Damien Cram, Alain Mille

1 Introduction

Le TD est prévu sur 3 tiers-temps avec des passages d'étudiants au tableau. Ce document ne donne donc que le sujet.

2 Résolution de problème par exploration d'espace d'états

2.1 Représentation du problème du Taquin (30 min)

2	R	3	1	2	3
1	6	4	8		4
7		5	7	6	5

Etat Initial Etat But

Proposer une représentation d'un état du taquin. Proposer des opérateurs pour passer d'un état à un autre. Voyez-vous une heuristique permettant de ne pas explorer l'ensemble des états ?

2.2 Recherche heuristique : mise en œuvre de l'algorithme A* (30 min)

L'algorithme A* qui correspond à ce qui a été décrit en cours est le suivant : (A* est un algorithme de type A avec une heuristique h minorante, i.e. pour tout u, $h(u) \le h^*(u)$, où $h^*(u)$ est le coût d'un chemin optimal - s'il existe, sinon $h^*(u) = +\infty$ - joignant l'état u à un état but)

```
Algorithme A*
1.
         Initialisation : OUVERTS \leftarrow u_0; FERMES \leftarrow \emptyset; g(u_0) \leftarrow 0; u \leftarrow u_0
2.
         Itérer tant que [OUVERTS \neq \emptyset et u non terminal]
2.1
               Supprimer u de OUVERTS et le mettre dans FERMES
2.2
               Itérer sur les nœuds v successeurs de u
                        Si [v \notin (OUVERTS \cup FERMES) ou g(v) > g(u) + coût(u, v)] Alors faire :
                                   g(v) \leftarrow g(u) + coût(u, v)
                                   f(v) \leftarrow g(v) + h(v)
                                   p\`ere(v) \leftarrow u
                                   Ranger v dans OUVERTS, dans l'ordre f croissant, puis g décroissant
               Fin Itération 2.2
2.3
               Si OUVERTS \neq \emptyset Alors u \leftarrow tête(OUVERTS)
               Fin Itération 2
3.
         Si OUVERTS = \emptyset
                                 Alors le problème n'admet pas de solution
```

Comprendre et appliquer cet algorithme au problème du taquin tel qu'il est posé dans ce document avec les différentes heuristiques. Il s'agit donc de faire « tourner à la main » l'algorithme en traçant les différentes structures et variables utilisées.

2.3 Résolution par décomposition de problèmes (30 min)

Rappel : la décomposition d'un problème en sous-problèmes plus simples est un principe applicable à des problèmes modélisables de manière récursive, mais pas seulement !

Un algorithme de recherche aveugle permettant de faire une recherche dans un graphe ET/OU (hypergraphe particulier) **sans circuit** issu de la décomposition d'un problème est le suivant : (en absence de coût et pour borner l'espace exploré, on utilise un majorant sur le rang des états, noté rg(u) ; BSH retourne « Echec » si le rang est supérieur à un Seuil)

```
BSH(u) Backtrack Search dans un Hypergraphe
1.
       Si u terminal Alors Retourner « Succès »
2.
       Si aucune règle de décomposition n'est applicable en u ou si rg(u) > Seuil
       Alors Retourner « Echec »
3.
       Itérer sur les règles de décomposition i applicables en u
3.1.
          Flag ← vrai
3.2.
          Tant que Flag, itérer sur les nœuds v, successeurs de u en lesquels la règle i décompose u
               Si v ∉ RESOLUS Alors faire :
                      Si v \in INSOLUBLES Alors Flag \leftarrow faux
                      Sinon faire:
                             rg(v) \leftarrow rg(u) + 1
                             Si BSH(v) = « Echec » Alors faire :
                                    Mettre v dans INSOLUBLES
                                    Flag ← faux
                             Sinon mettre v dans RESOLUS
              Fin Itération 3.2
3.3
          Si Flag Alors faire:
              Mettre u dans RESOLUS
              règle(u) \leftarrow i
              Retourner « Succès »
          Fin Itération 3
4.
       Mettre u dans INSOLUBLES
5.
       Retourner « Echec »
```

Dans cet algorithme, RESOLUS est l'ensemble 1) des états terminaux, et 2) des états u tels qu'il existe un connecteur $S_i(u)$ dont tous les successeurs v sont dans RESOLUS ; INSOLUBLES est l'ensemble 1) des états non terminaux sans successeur, et 2) des états u tels que pour tout connecteur $S_i(u)$ il existe un successeur v qui est dans INSOLUBLE.

Comprendre et appliquer cet algorithme à un problème qui serait décomposé selon les règles de décomposition suivantes :

$R1: d \rightarrow g, h$	Les problèmes terminaux sont : b,c,e,l
$R2: d \rightarrow a, e, f$	
$R3: d \rightarrow a, k$	Le problème à résoudre est : d
$R4: f \rightarrow i$	
$R5: f \rightarrow c, j$	Considérer les règles dans l'ordre croissant et
$R6: a \rightarrow b, c$	les sous-problèmes de « gauche à droite ».
$R7: k \rightarrow e, 1$	
-,-	Dessiner le graphe/arbre de décomposition.

Faire « tourner à la main » l'algorithme en traçant les structures et variables importantes.