

QBone Scavenger
Service

Implementation for
Linux

Mathieu Goutelle — Pascale Primet

Overview of the QBSS model

The QBSS model has been proposed by the Internet2 QoS Working
Group. It is part of the Non-Elevated Services promoted by the Internet2
team. The concept is based on the following constat: most of the time, the
capacity of a network is unused by the standard best effort service.

So, it can be a normal reaction to create a class which can use only the
idle capacity of a network but stop using it as soon as the best effort class
request more bandwidth. The complete specification of the QBSS model
are available on the QBSS web site: qbss-definition.txt and qbss-
deployment-recommendation.txt.

Our goal here is to implement this model in a standard Linux machine
running as a router, using the DiffServ tools bundled with the kernel and
the iproute package.

Presentation of our work

The implementation uses the CBQ scheduler included in the kernel. CBQ is
particularly adapted for this kind of bandwidth sharing work. To follow the
definition of QBSS and the deployment recommendation, we define two
classes: one for best effort, the other for QBSS. 99% of the available
output bandwidth is allocated to the first one, while we reserve the
remaining 1% for the second class. But, the QBSS class is allowed to
borrow the unused by best effort bandwidth.

The following script allows to configure the router to do the differenciation
described above: bandwidth allocation, capacity of the QBSS class to
borrow the unused bandwidth. It defines the parameters of the schedulers
too. The signification of this parameters and the value of the important
ones are explained and justified later.

#! /bin/bash
TC=/sbin/tc

Initialisation
echo Initialisation...
$TC qdisc del root dev eth1 > /dev/null 2>&1

qdisc configuration
echo qdisc configuration...
$TC qdisc add dev eth1 root handle 1: cbq bandwidth 100Mbit avpkt 1000b
$TC class add dev eth1 parent 1:0 classid 1:1 cbq bandwidth 100Mbit \

rate 100Mbit maxburst 200 prio 1 allot 1514b avpkt 1000b bounded

QBSS class definition
echo QBSS class definition...
$TC class add dev eth1 parent 1:1 classid 1:10 cbq bandwidth 100Mbit \

rate 1Mbit maxburst 20 prio 2 weight 1Mbit allot 1514b avpkt
1000b

best effort class definition
echo best effort class definition...
$TC class add dev eth1 parent 1:1 classid 1:20 cbq bandwidth 100Mbit \

rate 99Mbit maxburst 200 prio 3 weight 1Mbit allot 1514b avpkt
1000b bounded

Filters: need some customisation
echo Filters...
cluster15 - QBSS
$TC filter add dev eth1 parent 1:0 prio 100 protocol ip \

u32 match ip src 192.168.15.15 flowid 1:10
cluster16 - best effort
$TC filter add dev eth1 parent 1:0 prio 100 protocol ip \

u32 match ip src 192.168.16.16 flowid 1:20
DS Field filter
#$TC filter add dev eth1 parent 1:0 prio 100 protocol ip \
u32 match ip tos 0x20 0xff classid 1:10
#$TC filter add dev eth1 parent 1:0 prio 100 protocol ip \
u32 match ip tos 0x00 0xff classid 1:20

echo Verification...

$TC -d class show dev eth1

We will first described the parameters whose value are the same for all
the commands or which have no real influence on the scheduler (such as
descriptors for example):

� dev eth1 is the output interface of the router;
� handle allows us to associate a descriptor to the defined object, as

a major index followed by a ":";
� parent is followed by the descriptor of the parent object, as two

indexes (a major and a minor) separated with a ":";
� avpkt gives the average packet size (here 1ko for Ethernet frames).
� classid is followed by the defined class, as two indexes (a major

and a minor) separated with a ":". The major index must be the
same as the queuing discipline which ownes the class;

� allot defines the "chunkiness" of link sharing and is used for
determining packet transmission tables. It differs slightly with the
allot for class definition, where it specifies how many bytes the
scheduler can dequeue during each round, weighted by the class
weight. The value are the same nevertheless.

First, we erase all previous queuing discipline (If you don't want, comment
this line). Then, the root queuing discipline is defined as 1:, which will
contains all the classes. Her bandwidth is set to the maximum available
(100 Mbit/s). The "mother" class is defined after: the bandwidth
parameter defines the available bandwidth of the parent object while the
rate defines the bandwidth allocated to the current object.

The two classes are then defined, as two leaf of the previous class. The
QBSS class is allocated 1% of the capacity of the upper class, while best
effort is allocated 99%. The bounded keyword mean that the best effort
class cannot borrow bandwidth from the classes at the same level, in
order to prevent QBSS from starvation. On the contrary, the router can
allow QBSS to borrow the unused by best effort bandwidth, since the
QBSS class isn't bounded.

The weight parameter gives the traffic proportion the scheduler will send
from each class, like Weighted Round Robin. Since the two classes can
access the same rate, I logically set both weight at the same value.

The two last lines set up the filters for separating the traffic in the correct
class. Here, it is set up for the following validation. You can obviously do
what you want here, especially treating the streams according to their DS
field (001000 for QBSS), like it is done in the comments at the end.

Validation

In order to validate our configuration, we have tried to do the same kind
of experiments done by other teams with commercial routers. The testbed
used is described on the figure below.

cluster15 and cluster16 will send TCP traffic to cluster17 through the
router (cluster14). According to the previous script, traffic coming from
cluster15 is treated as QBSS and traffic coming from cluster16 is
treated as best effort. cluster15 will inject traffic during the whole
experiment while cluster16 will inject traffic later in the experiment, with
three streams not synchronized in time. The results are recorded on the
router using tcpdump and analysed using tcptrace.

As you can see, the QBSS stream (in red) has the expected behaviour:
when it is alone in the router, the whole bandwidth is available for him. As
soon as best effort traffic appears in the router, it gets only the 1% of
reserved bandwidth and best effort can use the remaining 99%. Off
course, when the three streams are together in the router, they share the
bandwidth. As soon as all the three streams have disappeared, QBSS gets
again the whole bandwidth.

Related work

As far as we know, experiments on QBSS use only commercial router
(Cisco and Juniper). Links on the configurations to provide the QBSS
differentiation on such routers and the associated validations are provided
on the QBSS website.

References

� QBone Scavenger Service (QBSS)
� Linux Advanced Routing & Traffic Control
� References on CBQ, Sally Floyd

