
INTRODUCTION

This document describes a packet Traffic Generator (TG) program that can be used to
characterize the performance of packet-switched network communication protocols. The TG
program generates and receives one-way packet traffic streams transmitted from the UNIX 1 user
level process between traffic source and traffic sink nodes in a network. Different protocols, or
versions of the same protocol, may be tested to ascertain differences in performance.

The TG program is controlled by a simple, but flexible, specification language that allows
access to different operating modes, protocols, addressing functions, and experimentation with traffic
parameters. The specification language allows traffic of several different packet lengths and
interarrival time distributions to be generated. In the current implementation, the TCP and UDP
transport protocols, with unicast and multicast addressing (UDP only), are supported. The scope of a
multicast flow can be controlled by setting the time-to-live (TTL) field. Quality/Type of Service
parameters include setting the DiffServ field 2 and controlling the send and receive buffers.

While the name "Traffic Generator" focuses on the packet generator aspect of the program, the
TG program also serves as a traffic sink. In order to record packet transmission statistics, a TG
configured as a traffic sink must be active to receive the test traffic. The received traffic stream is
logged in a file by the traffic sink for post-test analysis. When connection-oriented transport services
are used, a traffic sink is needed to accept an incoming connection request. The TG serving as the
traffic source always logs datagram transmit times. This mode of operation may be useful for
analyzing network blocking characteristics or for loading a network.

Depending upon whether connection-oriented or connectionless transport services are used, one
or more traffic sinks may be needed. For datagram protocols like UDP, multiple traffic sources may
send their traffic to the same sink process (a many-to-one relationship). The TG serving as a traffic
sink logs all received datagrams.

When TCP protocols are used, there must be a one-to-one mapping between a traffic source and
a traffic sink for each connection. Each invocation of the TG program is able to sustain a single
stream; the TG is currently unable to service more than one active connection at a time.
Consequently, if two connections are desired between a pair of nodes, two traffic sinks are required.

USER GUIDE

This section describes how to use the TG program. We describe the function of the TG program
and the syntax of its command specification language.

Note that keywords and names of programs are shown in typewriter font, while parameters
(values that you supply) are shown in italic font. Optional parameters are enclosed in brackets []:
these parameters may be safely omitted. During our discussion of the syntax of TG specification and
log files, angled brackets < > are used to delimit metavariables.

In our discussion, all numeric parameters can be entered as decimal, octal, hexadecimal integer,
or floating-point numbers. In general, a number may be an integer (1), a decimal (1.0), or a floating-
point number (1E-3). Octal (010) and hexadecimal (0x10) numbers are also supported, although they
are not too useful for our application.

All time values supplied to the TG program are expressed as hours:minutes:seconds (H:M:S)
separated only by colons and without intervening white spaces. These time fields are not limited, so
you can, if you desire, work only in seconds or minutes.

If the H:M:S time format is not followed, the fundamental unit of measure for time defaults to
units of "seconds," or fractions thereof. Note that the unit of measure for the packet size random
variables is bytes.

Internally, the TG deals with most parameters as double precision floating-point values, so that

Page 1 sur 101 INTRODUCTION

05/02/2003http://www.postel.org/tg/tg2002.html

even very small values are represented correctly. The precision of a number will be preserved,
in spite of the potential inability of a system to generate packets at the specified resolution.

SOFTWARE DISTRIBUTION HIERARCHY
The software distribution hierarchy consists of several top-level directories, which follow

common UNIX conventions. Three programs form the TG distribution: the first is the traffic
generator (tg), the second is a filter (dcat) for reading TG log files, and the third is a perl script
(gengraph.pl) that generates information used by graphing tools (Xplot , Gnuplot , and Xgraph are
the currently supported graphing tools).

The directories and their contents are as follows.

� ./bin --Executable versions of Solaris 3 , SunOS 4 , FreeBSD and Linux 5 binaries,
and the perl script for graphing TG data

� ./docs --Documents and other notes
� ./examples --Sample TG specification files 6
� ./src --Source code for the TG distribution.

BUILDING THE TG PROGRAM
The TG is released with source code so that enhancements can be added to support new

protocols or additional statistical distributions that may be needed for future experimentation. Note
that the TG distribution includes compiled binaries in the ./bin directory.

To rebuild the traffic generator, change to the ./src directory and execute the make command.
Your system will also need the lex and yacc programs to rebuild the TG program. If FreeBSD is
used, flex can be used in place of lex. Note that the software has been compiled and tested only on
the SunOS, Solaris, FreeBSD, and Linux operating systems; however, the software should work on
other UNIX-based operating systems.

INVOKING THE TG
The syntax for invoking the TG program is:
tg [-f] [-i input-file] [-o output-file]

By default, the TG program reads the standard input (stdin) device for a TG specification file and
writes its log file to the standard output device (stdout). The traffic generator accepts the -i and -o
options, which override the default input/output behavior. The -i option specifies an input file that
contains TG test specification entries. The destination of the log file can be changed with the -o
option. The -f option specifies that the buffer be flushed to the log file after every write.

Alternatively, specification and log files may be stored on disk by using the I/O redirection
features present in many command interpreter shells. For example, the following command in the
UNIX csh redirects the contents of input-file into the traffic generator program, and writes the log
file to output-file.

tg < input-file > output-file

TG SPECIFICATION FILE
A specification file consists of commands in the following forms, and in the order specified:
< start-time >
< association-spec >
< tg-action-list >

The start-time clause indicates the time that a test run is supposed to start, relative to the time
the clause is parsed. Upon satisfying the start-time clause, the actions listed in the association-spec
and tg-action-list clauses are executed. Before test traffic can be generated, an association-spec entry
must be provided to specify an association, or binding, between a traffic source and a traffic sink.
The association-spec also provides the ancillary test parameters used in a test session. The tg-action-
list is a list of tg-action clauses; each clause specifies an action to be performed, such as causing the

Page 2 sur 101 INTRODUCTION

05/02/2003http://www.postel.org/tg/tg2002.html

TG program to generate test traffic with specified distributions.
A file inclusion capability is supported. A line of the form
include "filename"

causes the named file to be read and parsed. Double quotes must enclose the filename. The
maximum depth of inclusion is precompiled into the program and can be changed by redefining
MAX_INCLUDE_LEVEL. A specification file, therefore, contains a complete set of commands--
i.e., start-time, association-spec, and tg-action-list--or an include file followed by zero or more tg-
action clauses.

Starting Time
The experiment starting time is specified relative to the current time as an offset value. The

offset value is in modulus-time form, where the supplied parameter specifies the next time boundary
that an action will take place. The syntax for the start time is

on H:M:S

During an invocation of the TG, the on clause can appear at most once in a specification file.
This scheme is relatively independent of local time. The advantage of the scheme is scripts can

be rerun without modification. It also allows scripts to synchronize to within a few milliseconds of
each other, despite having been started several seconds out of synchronization (e.g., due to network
delay to geographically remote hosts, or "telephone slew" between human operators). The quality of
the synchronization is limited only by the ability of the time protocol (e.g., Network Time Protocol)
to synchronize time, and by operating-system factors such as scheduling granularity and delays.

For example:
on 15

starts at the next fifteen-second interval (x:00, x:15, x:30, or x:45), while
on 1:00

starts at the beginning of the next minute.
For the very patient:
on 1:00:00

starts at the beginning of the next hour.
After the on clause has been satisfied, the association-spec and tg-action-list in the following

lines are executed. Note that the on clause is designed to provide session-level synchronization
between the TG processes, and does not cause traffic to be generated. Traffic is not generated until a
tg-action clause has been parsed, as discussed in See TG Action List .

Association Specification
An association-spec is a binding between a traffic source and a traffic sink. An association-spec

may take one of the following two forms:
protocol local-address serve r [quality-of-service]

or
protocol remote-address[quality-of-service]

Traffic Source/Sink Modes. The TG program can serve both as a traffic source and a traffic
sink. The word server in the first form of the association-spec clause is a keyword that indicates that
the traffic generator should act as a traffic sink. Once in the server mode, the TG program will wait
indefinitely for incoming connections or traffic and will act upon the received messages as
appropriate.

When the server keyword is used, the local-address field specifies the local address where TG
will accept traffic. The address must be for the local host, as the TG binds to the named port. Note
that the IP address may be specified as 0.0.0.0.

Protocols. The protocol argument is a string (such as tcp or udp) that selects the appropriate
transport-layer protocol to carry the test traffic. The current implementation supports only TCP and

Page 3 sur 101 INTRODUCTION

05/02/2003http://www.postel.org/tg/tg2002.html

UDP protocols; however, the internal protocol table may easily be expanded to accommodate
new protocols as they are developed.

Addressing. The current implementation does not resolve host names. All addresses must be
supplied in the standard Internet dotted address form (e.g., 128.18.4.100.1234). Note that the port
number is appended to the address. For example, the address 128.18.4.100.1234 specifies a
rendezvous point of port 1234 at the host with the address 128.18.4.100.

Traffic streams are multiplexed by protocol port addresses. In many UNIX implementations,
port numbers less than 1024 are privileged and can only be accessed by programs with root access
privileges. It is recommended that port numbers between 1024 and 216 - 1 be used. If a port is
already being used, select a different port number and reexecute the program.

The remote-address field selects the destination endpoint of the association; e.g., the destination
of a datagram or a peer in a connection. The address can be an IP multicast address. Note that
addresses used in the association specification include the port number. The example below sets up
the TG program so that subsequent UDP transmissions are sent to the process running on
128.18.4.29 and listening at port 2345.

udp 128.18.4.29.2345

Quality of Service. The quality-of-servic e (QOS) field includes the following entries, specified
in any order:

average bandwidth number
peak bandwidth number
average delay number
peak delay number
average loss number
peak loss number
interval number
mtu number
rcvwin number
sndwin number
tos number
ttl number

These options were designed to serve as subscription/connection setup profiles. In the current
TCP and UDP protocol implementation, these QOS options may be omitted. Eventually, these
options may be used or ignored as the protocol's connection setup function sees fit. Currently, rcvwin
and sndwin control the number of bytes in the receive and send window of TCP and UDP. TTL
controls the scoping of the multicast traffic. TOS sets the IP ToS field: now known as the
Differentiated Services field plus bits 6 and 7. All other options are ignored, though the numbers are
parsed and inserted in the protocol data structure.

TG Action List
Traffic is generated via tg-action-list clauses. The tg-action-list is a list of tg-action elements,

each of which consists of
[at time-literal] tg-action

The optional at clause specifies a time relative to the start time that the associated tg-action will
execute. The time-literal is a time specified in the H:M:S colon format. If the at clause is omitted, the
action will commence upon completion of the previous action.

A tg-action consists of either
setup

by itself or
wait [time-literal]

by itself or
log datetime-format

Page 4 sur 101 INTRODUCTION

05/02/2003http://www.postel.org/tg/tg2002.html

by itself or
arr ival distribution lengt h distribution

in that order. These entries may be followed by a list of any or all of the following, specified in any
order:

data number
packet number
time time-literal
seed number

The setup clause forces an association setup to occur. If no setup clause is present, an implicit
setup will occur at the time specified by the on start-time clause. It is illegal to have more than one
setup clause; if a setup clause is present, it must precede all tg-action clauses that generate traffic.

The wait clause causes the traffic generator to pause, as specified by the time-literal argument,
or by the succeeding at clause (or forever, if there is no time-literal argument and this is the last tg-
action; this is useful for servers). The log clause opens a new log file. The datetime-format is the
desired strftime format specification 7 (for example, log "%D"). The new filename is

output-file.< strftimeresult>
where output-file is the filename specified when tg was invoked and < strftimeresult> is the string
returned from strftime with all forward slashes replaced by underscores. If the name of the output-
file contains a suffix, the suffix is appended after the string from strftime .

The arrival clause specifies the interarrival time distribution, and the length clause specifies the
packet length distribution.. The data clause limits the total amount of data to be sent in bytes
(mimicking, for example, a file transfer operation). Similarly, the packet clause specifies the number
of packets to send while the time clause limits the total amount of time spent transmitting. The seed
clause sets the random-number generator seed (before generating random variables for the arrival
and length clauses).

Where possible, the program attempts to deduce implicit time clauses and at clauses from those
of surrounding tg-action-list clauses. In the following example, deduction is not possible:

arrival exponential 0.030 length 120
data 1000000
arrival exponential 0.060 length 240

The program cannot know in advance how long it will take to send one million bytes of data through
the network.

Statistical Distributions
Statistical distributions can be associated with packet interarrival and packet length random

variables. The interarrival distribution is specified with the keyword arrival, while the packet length
distribution is preceded by the keyword length. Currently, four types of distributions are supported--
additional distributions are planned and will be added when implemented. Four keywords are used to
specify the distribution that can be used with a tg-action clause.

constant value or value
unifo rm max oruniform min max
exponenti al mean orexponential mean min max
marko v2 number distribution number distribution

The constant distribution always returns the number specified in the supplied parameter; and if
desired, the constant keyword may be omitted entirely. The uniform distribution requires a number
specifying the maximum value of the open interval [0, max) from which the random number is
drawn. If the left endpoint is also specified, a random number is selected from the open interval
[min, max). The exponential distribution is the classic distribution with the specified mean. As with
the uniform distribution, it is possible to restrict the values that are returned from the exponential
distribution to only those within the open interval [min, max); the exponential distribution is
unchanged otherwise. Specifying an upper limit for the exponential distribution will force only
reasonably sized packets to be issued; otherwise there is a small probability that an infinite size

Page 5 sur 101 INTRODUCTION

05/02/2003http://www.postel.org/tg/tg2002.html

packet may be generated and will result in an error being reported. The markov2 keyword
specifies a two-state markov distribution: the first number gives the mean time in state 1; the second
number gives the mean time in state 2. Each state is associated with its own distribution; these
distributions could themselves be markov2 distributions, if desired. As shown above, the italicized
parameter distribution is a placeholder for a keyword from the set: constant, uniform, exponential,
and markov2.

EXAMPLES
The following simple example illustrates the specification entries for a TCP traffic source.
on 0:15
tcp 128.18.4.97.2345
at 5 setup
at 6 arrival exponential 0.1 length exponential 576
seed 321423 time 10

The on 0:15 command instructs the TG program to wait until the next 15-second time boundary
approaches before initiating any protocol activity. Since the keyword server is absent in the
association-spec line, TG will initiate a TCP traffic connection to the node address 128.18.4.97, port
2345. The setup command, which is activated 5 seconds after synchronizing on the closest 15-second
boundary, initiates a connection request to the traffic sink node. One second later, traffic will be sent
across the connection with an exponential interarrival distribution with a mean of 0.1 seconds. The
TCP segment size is also exponentially distributed with a mean of 576 bytes. The last line sets the
random number seed and limits the test duration to 10 seconds.

A TG must serve as a traffic sink, before TCP traffic can be exchanged with the traffic source.
The specification entries for a traffic sink are simpler, and are as follows:

on 0:15 tcp 128.18.4.97.2345 server
at 1.1 wait

Note that the server keyword is present, and that the TG enters into the TG wait state, 1.1 seconds
after the start time synchronization boundary.

Other examples of TG scripts can be found in the ./examples directory supplied with the
software distribution.

LOG FILE

The TG program records all notable events in a log file for post-test analysis. With the
exception of the header descriptor, the TG log file is encoded in binary form to conserve storage
space. Some binary fields are encoded with a variable-length code for additional space savings. Such
fields are stored as a sequence of bytes: seven bits per byte in little-endian format. The sign bit is set
to one, to indicate that the field continues into the next byte, or cleared to zero to indicate that this is
the last byte forming a number. Note that the value of the number is unaffected if the last byte is
0x00. This allows a trailing 0x00 to be used to flag the number as being special in some way.

In general, the supplied dcat program should be used to expand a TG log file into readable text
form. The dcat filter is distributed with the release in the ./binand ./src/dcat directories. The syntax
for invoking the dcat program is:

dcat[-a]
The -a option indicates the timestamps should be reported as absolute rather than relative. This

allows time-correlation of data from multiple log files.

LOG FILE HEADER
An ASCII header prefaces each log file and provides general information about the test session

that generated the log data. The information stored in the header of the log file includes the
following:

Page 6 sur 101 INTRODUCTION

05/02/2003http://www.postel.org/tg/tg2002.html

� Header file version
� Version of the TG program used
� User who created the log file and the machine name where TG was executed
� Machine configuration
� Name of the TG specification file
� Start time of the test
� Name of the protocol under test
� Address family indicator.

The ASCII header portion of the log file may be viewed directly by using the UNIX filter head
to extract the first several lines of the file. The ASCII header is delimited by the strings <Begin TG
Header> and <End TG Header>. Note that the first character on the next new line, following the
ASCII header, contains a binary TG log record.

LOG FILE RECORD FORMAT
The dcat program converts TG log records into a readable ASCII format and prints its output to

stdout. The output from the dcat program can be fed into awk, perl, or other similar string processing
programs. Gengraph.pl is provided as an example (See Visualization Support) Dcat output lines
have the following format:

<Event Timestamp> <Event Type> <Address> <Event Data>

An example of the output from the dcat program is shown below.

Event Timestamp. The event timestamp field is printed as the number of seconds since the start
of the test run; that is, the time since the on clause was satisfied unless the [-a] option was given.
Note that the event timestamp is not specified relative to the at clause. Although the timestamp field
is printed with microsecond resolution, the actual precision of the timestamp depends upon the
granularity returned by the gettimeofday system call.

Event Types. TG event types include the majority of the common events that can be observed
from the UNIX user-process level. The event types include the following:

� Receive --indicates a packet was received.
� Transmit --indicates a packet has been transmitted.
� Setup --indicates protocol initialization is complete.
� Accept --indicates a connection has been established.
� Teardown --indicates a connection has been torn down.
� Error --indicates an error in the program was detected.

Addresses. The address field specifies the TG peer that generated the event. Depending upon
the event type, the address may indicate the source of a received packet or the destination of a
transmitted packet. Addresses take the form of an Internet address with a port number appended to it.

Event Data. Event data are present only for certain event types. For Receive and Transmit
events, a datagram/segment identification number is printed. The length of the received

Time Type Address ID Length

0.003678 Setup
10.061812 Accept 128.18.6.90.1626 Association 4
11.041100 Transmit 128.18.6.90.2346 0 1460
11.041244 Receive 128.18.6.90.1626 0 1460
16.006682 Teardown

Page 7 sur 101 INTRODUCTION

05/02/2003http://www.postel.org/tg/tg2002.html

datagram/segment is also printed. For Accept events, the address of the connection peer is
printed, together with the association number. For Setup and Teardown events, no other data is
provided.

An identification number is used to reference a datagram or a segment within a stream. For
stream protocols, the identification field specifies the position of the first received byte in the stream:
consequently, the identification field added to the length field gives the total number of bytes
transferred at the event time.

An Error event type is also provided to record errors as they occur during the execution of the
program. Depending upon when the error takes place, an address may or may not be recorded in the
log file. The error codes are described in log.h and are reprinted below.

INTERNAL LOG FILE FORMAT
For those wishing to write their own filters or data manipulation programs in order to process a

log file directly, the log file is organized as a sequence of records, with each record having as a
minimum the record type, control, and timestamp fields. The form of the binary log file is similar to
the tables printed by the dcat program. The source code in the dcat filter should provide a good
starting point. The format is as follows.

< Receive > < Control > < Time > < Address > < Id > < Size > [Errno]

< Transmit > < Control > < Time > < Address > < Id > < Size >
[Errno]
< Setup > < Control> < Time > [Errno]
< Teardown > < Control> < Time > [Errno]
< Accept > < Control > < Time > <Address > < Association > [Errno]
< Error > < Control > < Time > < Address > < Error Type >

Consult the tg and dcat source code for the elaboration of each field. As detailed above, the [Errno]
field holds the UNIX error file number and will very likely not be present in most records.

Visualization Support

The TG distribution includes a perl script called gengraph.pl in the ./bin directory. This script
takes the TG binary log files and produces information suitable for viewing by either xgraph , xplot ,
or gnuplot. Dcat is used as part of this process and must be in the user's path. The syntax for

#define LOGERR_INTFMT 1 /* Script format error */

#define LOGERR_MEM 2 /* Out of memory */

#define LOGERR_2SETUP 3 /* Two connections were established */

#define LOGERR_GETTIME 4 /* gettimeofday() failed */

#define LOGERR_SELECT 5 /* select() failed */

#define LOGERR_FCNTL 6 /* fcntl() failed */

#define LOGERR_GETPEER 7 /* getpeername() failed */

Page 8 sur 101 INTRODUCTION

05/02/2003http://www.postel.org/tg/tg2002.html

invoking this script is:
gengraph.pl [-h | --help] [-c client-file] [-s server-file] [-o output-file]
[-f xplot | xgraph | gnuplot] [-SQ] [-DR] [-S] [-R] [-IS] [-IR] [-D]
[-AD] [-J] [-AJ] [-L]

The client-file is the name of the binary log file produced by the client script while server-file is the
name of the binary log file produced by the server script. If the -c and -s option are not specified the
default filenames are client.log and server.log , respectively. The output-file is the name of the file
produced by gengraph.pl and is used by the appropriate graphing tool. 8 The default filename is
stats.xpl . The graphing tool is specified by the -f option. If no graphing tool is specified, the default
tool is xplot . The options following the graphing specification indicate the data the user is interested
in graphing. The kinds of information, which can be graphed, include the following:

� -SQ Sequence Numbers (UDP) or Accumulated Byte count (TCP)
� -DR Dropped Packets (UDP only)
� -S Send Rate
� -R Receive Rate
� -IS | -IR Interarrival times of datagrams as seen by the sender or the receiver
� -D Delay
� -AD Average Delay
� -J Jitter
� -AJ Average Jitter
� -L Packet Length

If the time scales and units are appropriate, different parameters of interest can also be combined into
a single graph by specifying more than one data parameter in the command line. If no parameters of
interest are specified, a sequence number plot is created.

For further information see the file gengraph.pdf in the ./doc directory of the TG distribution.

CONCLUDING COMMENTS

The TG software is provided "as is" without express or implied warranties. Neither SRI
International (SRI) nor USC /ISI will be held responsible for loss of data or inaccuracies resulting
from the use of this program. A mailing list has been set up for TG users. Please send any questions
or bug reports to tg@postel.org. To join the mailing list, send a message to tg-request@postel.org. If
any modifications are made to TG, we request you notify the mailing list so they can be incorporated
into the general distribution, as appropriate. The distribution is available at

http://www.postel.org/services.html.

1.UNIX is a registered trademark of UNIX System Laboratories, Inc.

2.The DiffServ field is set by calling setsockopt for TOS. By choosing an appropriate value, you can also set the other
bits not used by DiffServ. In the future this may change as operating systems get updated.

3.Solaris is a trademark of Sun Microsystems, Inc.

4.SunOS is a trademark of Sun Microsystems, Inc.

5.Linux RedHat distribution 7.1 and 7.2 have been tested.

Page 9 sur 101 INTRODUCTION

05/02/2003http://www.postel.org/tg/tg2002.html

6.TG specification files are also referred to as scripts.

7.see the strftime man page for format specifications

8.For Gnuplot, we produce two files: one named output-file .dem and the other output-file .dat.

Page 10 sur 101 INTRODUCTION

05/02/2003http://www.postel.org/tg/tg2002.html

