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Introduction Mathematical background

from fuzzy sets to possibilistic logic

fuzzy set F on set U defined by membership function
wur U —[0,1]

@ mathematical tool describing model people use when
reasoning about systems

@ "John is tall" modelled as a fuzzy set F of with a universe U
of sizes,

o ur(x) with x € U expresses membership of x to fuzzy set of
tall sizes (x is known)

@ attention: possibilistic logic # classical fuzzy logic
(multi-valued logic)

@ but: fuzzy restriction possible truth values of a formula
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Let x be a variable in U

possibility distribution 7, : U — [0, 1] attached to x

o 7x(u) =0 means x = u is impossible
o 7x(u) =1 means x = u is completely allowed
o my(u) > my(u') means x = u is preferred to x = v/’

normalization requirement: Ju € Umy(u) =1 (at least one
value of x is completely allowed)

@ Ty < T, means T, is more specific than 7/, (more informative)
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Introduction Mathematical background

Possibility theory

@ Let x be a variable in U

@ possibility distribution 7, : U — [0, 1] attached to x

o 7x(u) =0 means x = u is impossible
o 7x(u) =1 means x = u is completely allowed
o my(u) > my(u') means x = u is preferred to x = v/’

@ normalization requirement: Ju € Uny(u) =1 (at least one
value of x is completely allowed)

@ Ty < T, means T, is more specific than 7/, (more informative)

@ principle of miniminum specificity leads to maximal degree of
possibility
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Introduction Mathematical background

Two measures deriving from possibilty distribution

@ possibility measure M(A) = supyeamx(u) (extent of value
a € A that stands as a value for x)

@ necessity measure N(A) = 1 —T1(A) (extent all possible values
of x belong to A)

@ measures allowing modelling uncertainty-qualified statements:
ex. N(A) > « means x is A is at least a-certain
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Damien P., Amadou S., Antoine D./C., Loic C., Narges H. Possibilistic Logic



Syntax
Necessity-valued (possibilistic) logic Semantics

a fragment of possibilistic logic

@ here only necessity valued formulas (certainty qualified
statements N(¢) > «)

@ later general possibilistic logic (possibility qualified statements

N(¢) = @)
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Syntax
Necessity-valued (possibilistic) logic Semantics

Syntax

Definition

A necessity-valued formula is (¢a), where ¢ classical first-order
formula, o € (0,1], thus N(¢) > «, only conjunctions are allowed
A necessity-valued knowledge base: finite set of necessity valued
formulas
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Syntax
Necessity-valued (possibilistic) logic Semantics

Little repetition: semantics in classical logic

© F={¢1,...,¢n} a set of formulas
o ) be a set of interpretations,

@ M(F): set of all models of F (VI € M,Vf € F: I |=f)
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Syntax
Necessity-valued (possibilistic) logic Semantics

Little repetition: semantics in classical logic

("]
]
("]
(*]

F=A{é1,...,0n} a set of formulas
Q be a set of interpretations,
M(F): set of all models of F (VI € M,¥f € F : | |=f)

F induces a partition of Q into two subsets: M(F) and
M(—=F)
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Syntax
Necessity-valued (possibilistic) logic Semantics

Link to necessity-valued logic

@ valuations can be intermediary

o Let F = {(¢101),...,(¢pnan)} a set of necessity valued
formulas

o mr(w) = min{l — ajlw = —¢;,i=1,...,n}

e 7x is the least specific possibility distribution (principle of
minimal specifity)

@ thus m# membership function to fuzzy set of models of F
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Syntax
Necessity-valued (possibilistic) logic Semantics

Best models

Definition

The interpretations w* maximizing 7w is called best models of F.

Most compatible with F among the set of all interpretations 2.
(membership degree of fuzzy set of models of F)
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Syntax
Necessity-valued (possibilistic) logic Semantics

Deduction problem

Let F be a set of possibilistic formulas, ¢ a classical formula, then

F = (90) = 7 = (¢0)

Knowing 7 sufficient for any deduction
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Formal system and Deduction
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A formal system for necessity-valued logic Axioms schemata
Inference rules
A formal system for necessity-valued logic

Axioms schemata

Al (¢ = (¥ =) 1)
A2 (= (W —=8)—=((e—v) = (p—8))1)
A3 ((mp = ) = (e = ¥) = ©) 1)
A4 ((Vx (¢ = ¥)) = (¢ — (Yx¥)) 1)

if x does not appear in ¢ and is not bound in ¥
A5 ((Vx p) — 1y 1) if x is free for tin
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A formal system for necessity-valued logic Axioms schemata
Inference rules
A formal system for necessity-valued logic

Axioms schemata

Al (¢ = (¥ =) 1)
A2 (= (W —=8)—=((e—v) = (p—8))1)
A3 ((mp = ) = (e = ¥) = ©) 1)
A4 ((Vx (¢ = ¥)) = (¢ — (Yx¥)) 1)

if x does not appear in ¢ and is not bound in ¥
A5 ((Vx p) — 1y 1) if x is free for tin

The axioms of the Hilbert formal system for classical logic
weighted by 1.
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A formal system for necessity-valued logic Axioms schemata
Inference rules
A formal system for necessity-valued logic

Inference rules

o (¢ a),(e—=v B)
F (¥ min(a,3))

% if x is not bound in ¢

° —F(‘(p@‘)g) if < a
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A formal system for necessity-valued logic Axioms schemata
Inference rules
A formal system for necessity-valued logic

A formal system for necessity-valued logic

The proposed system is sound and complete with respect to the
inconsistency-tolerant semantics of possibilistic logic :
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Two automated deduction methods
Automated deduction Resolution
lllustrative example

Two automated deduction methods

Two well-known automated deduction methods:
@ Resolution (in a second...)

@ The Davis and Putman semantic evaluation procedure
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Two automated deduction methods
Automated deduction Resolution
lllustrative example

Resolution

Resolution rule

(C1 Ozl),(Cz 042) . o
e o o) where R is any classical resolvent of ¢;

and ¢
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Two automated deduction methods

Automated deduction Resolution
lllustrative example

Resolution

Resolution rule

(a1 a),(c o)
F(R(c1,¢2) min(ag,an
and ¢

) where R is any classical resolvent of ¢;

Soundness of the resolution rule
Let C be a set of possibilistic clauses, and C = (¢ «) a possibilistic
clause obtained by a finite number of successive applications of the
resolution rule to C; then C = C
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Two automated deduction methods
Automated deduction Resolution
lllustrative example

Refutation by resolution

Given a set F of possibilistic formulas and a classical formula ¢,
Val(p, F) = sup{a € (0,1]|F = (¢ )} can be computed as
follows:

Refutation by resolution
@ Put F into clausal form C
@ Put ¢ into clausal form; let ci, ..., ¢y, the obtained clauses
QC —CU{(-cl),..B(-cl}

© Search for a deduction of (L &) by applying repeatedly the
resolution rule from C’, with & maximal

Q Val(p, F) — &
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Two automated deduction methods
Automated deduction Resolution
lllustrative example

Super Senior!

The knowledge base F

1 ((Eliminated(Loretta) Vv Eliminated(Georgette)) A
(— Eliminated(Loretta) V Eliminated(Georgette)) 1)
(Vx = Snores(x) V Eliminated(x) 0.5)

®3 (Snores(Loretta) 1)
(
(
(

0

by
o5
OF

Vx — LosesHerDentures(x) V Eliminated(x) 0.6)
LosesHerDentures(Loretta) 0.2)
Vx = SwimsWith(x, Jean-Edouard) V— Eliminated(x) 0.7)

y
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Two automated deduction methods
Automated deduction Resolution
lllustrative example

Super Senior!

The knowledge base F

1 ((Eliminated(Loretta) Vv Eliminated(Georgette)) A
(— Eliminated(Loretta) V Eliminated(Georgette)) 1)
(Vx = Snores(x) V Eliminated(x) 0.5)

®3 (Snores(Loretta) 1)
(
(
(

0

by
o5
OF

Vx — LosesHerDentures(x) V Eliminated(x) 0.6)
LosesHerDentures(Loretta) 0.2)
Vx = SwimsWith(x, Jean-Edouard) V— Eliminated(x) 0.7)

y

The burning question
How certain will Loretta be eliminated?
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Two automated deduction methods
Automated deduction Resolution
lllustrative example

Super Senior!

The equivalent set of possibilistic clauses C

c1 (Eliminated(Loretta) v Eliminated(Georgette) 1)
— Eliminated(Loretta) Vv Eliminated(Georgette) 1)
— Snores(x) V Eliminated(x) 0.5)
Snores(Loretta) 1)

o (
(
(
¢s (- LosesHerDentures(x) V Eliminated(x) 0.6)
(
(

a

C4

LosesHerDentures(Loretta) 0.2)
— SwimsWith(x, Jean-Edouard) V- Eliminated(x) 0.7)

C6

(or
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Two automated deduction methods
Automated deduction Resolution
lllustrative example

Super Senior!

The equivalent set of possibilistic clauses C

c1 (Eliminated(Loretta) v Eliminated(Georgette) 1)
¢ (— Eliminated(Loretta) V Eliminated(Georgette) 1)
(= Snores(x) V Eliminated(x) 0.5)
¢4 (Snores(Loretta) 1)
¢s (- LosesHerDentures(x) V Eliminated(x) 0.6)

(

(

a

¢ (LosesHerDentures(Loretta) 0.2)

c7 (= SwimsWith(x, Jean-Edouard) V= Eliminated(x) 0.7)

C is completely consistent: Incons(C) =0
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Two automated deduction methods
Automated deduction Resolution
lllustrative example

Super Senior!

The equivalent set of possibilistic clauses C

c1 (Eliminated(Loretta) v Eliminated(Georgette) 1)

¢ (— Eliminated(Loretta) V Eliminated(Georgette) 1)
c3 (- Snores(x) V Eliminated(x) 0.5)
(Snores(Loretta) 1)
¢s (- LosesHerDentures(x) V Eliminated(x) 0.6)
(LosesHerDentures(Loretta) 0.2)

(

c7 (= SwimsWith(x, Jean-Edouard) V= Eliminated(x) 0.7)

Let's search for a deduction of (L &) by applying repeatedly the
resolution rule from C U {(— Eliminated(Loretta) 1)}, with &

maximal. L
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Two automated deduction methods
Automated deduction Resolution
lllustrative example

Hot news: Loretta swims with Jean-Edouard!

The new set of possibilistic clauses C’

c1 (Eliminated(Loretta) v Eliminated(Georgette) 1)
¢ (- Eliminated(Loretta) V Eliminated(Georgette) 1)
c3 (- Snores(x) V Eliminated(x) 0.5)
¢4 (Snores(Loretta) 1)
¢s (— LosesHerDentures(x) Vv Eliminated(x) 0.6)
(LosesHerDentures(Loretta) 0.2)
(= SwimsWith(x, Jean-Edouard) V= Eliminated(x) 0.7)
(

SwimsWith(Loretta, Jean-Edouard) 1)

C6
C7

8
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Two automated deduction methods
Automated deduction Resolution
lllustrative example

Hot news: Loretta swims with Jean-Edouard!

The new set of possibilistic clauses C’

c1 (Eliminated(Loretta) v Eliminated(Georgette) 1)
¢ (- Eliminated(Loretta) V Eliminated(Georgette) 1)
c3 (- Snores(x) V Eliminated(x) 0.5)
cs (Snores(Loretta) 1)
¢s (- LosesHerDentures(x) V Eliminated(x) 0.6)
(LosesHerDentures(Loretta) 0.2)
(= SwimsWith(x, Jean-Edouard) V- Eliminated(x) 0.7)
(

SwimsWith(Loretta, Jean-Edouard) 1)

C6

C7

a8

C’ is inconsistent: Incons(C’') = 0.5 ~
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Two automated deduction methods
Automated deduction Resolution
lllustrative example

Hot news: Loretta swims with Jean-Edouard!

The new set of possibilistic clauses C’

1 (Eliminated(Loretta) Vv Eliminated(Georgette) 1)
(— Eliminated(Loretta) V Eliminated(Georgette) 1)
(— Snores(x) V Eliminated(x) 0.5)
cs (Snores(Loretta) 1)
¢s (- LosesHerDentures(x) V Eliminated(x) 0.6)

(

(

(

(%)

a

c6 (LosesHerDentures(Loretta) 0.2)
— SwimsWith(x, Jean-Edouard) V= Eliminated(x) 0.7)

SwimsWith(Loretta, Jean-Edouard) 1)

(or

c8

C' = (Eliminated(Loretta) 0.5) becomes a trivial deduction...
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Two automated deduction methods
Automated deduction Resolution
lllustrative example

Hot news: Loretta swims with Jean-Edouard!

The new set of possibilistic clauses C’

c1 (Eliminated(Loretta) \V Eliminated(Georgette) 1)
(— Eliminated(Loretta) V Eliminated(Georgette) 1)
(— Snores(x) V Eliminated(x) 0.5)
cs (Snores(Loretta) 1)
¢s (- LosesHerDentures(x) V Eliminated(x) 0.6)

(

(

(

(%)

a

c6 (LosesHerDentures(Loretta) 0.2)
— SwimsWith(x, Jean-Edouard) V= Eliminated(x) 0.7)

SwimsWith(Loretta, Jean-Edouard) 1)

(or

c8

C' = (Eliminated(Loretta) 0.5) becomes a trivial deduction... .
...but now C’ |= (= Eliminated(Loretta) 0.7) which is not trivial. &8
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A few remarks

A few remarks

@ Some implementation finds out the refutation with & maximal
first

Damien P., Amadou S., Antoine D Loic C., Narges H.



A few remarks

A few remarks

@ Some implementation finds out the refutation with & maximal
first

@ A qualitative possibilistic knowledge base is enough

Damien P., Amadou S., Antoine D./C., Loic C., Narges H. Possibilistic Logic



A few remarks

A few remarks

@ Some implementation finds out the refutation with & maximal
first

@ A qualitative possibilistic knowledge base is enough

o Possibilistic logic is linked to the belief revision theory (since
possibilistic logic is non-monotonic)
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A few remarks

A few remarks

@ Some implementation finds out the refutation with & maximal
first

@ A qualitative possibilistic knowledge base is enough

o Possibilistic logic is linked to the belief revision theory (since
possibilistic logic is non-monotonic)

@ | do not like real TV
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Part Il

Generalization of possibilstic logic
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Using both possibility- and necessity-qualifications

s R . Variable valuation
Generalization of possibilistic logic o e

L-possibilistic logics
Reviewing the OR and AND axioms

We need to handle:
@ possibility-qualified sentences
i.e: “It is possible that John comes.”

@ conditional sentences
i.e: “The later John arrives, the more certain the
meeting will not be quiet.”

@ sentences involving vague predicates

i.e: “If the temperature is high enough, there will
be only few participants.”

Damien P., Amadou S., Antoine D Loic C., Narges H.



Using both possibility- and necessity-qualifications

s R . Variable valuation
Generalization of possibilistic logic o e

L-possibilistic logics
Reviewing the OR and AND axioms

We had two kinds of formulas:
@ necessity-valued formulas
e denoted (¢ (N «))
o expressing that N(¢) > «
@ possibility-valued formulas
e denoted (¢ (M B))
e expressing that M(y) > «
Then we extend the language to make it handle both.
Thus, a knowledge base F (a set of formulas) can combine both
forms.

ie: F=A{(p (N0.7)), (=pVvq(M08))}
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Using both possibility- and necessity-qualifications

s R . Variable valuation
Generalization of possibilistic logic o e

L-possibilistic logics
Reviewing the OR and AND axioms

Knowing the relation between the two forms, we can extend
simply all the previous notions.

Relation: M(p) =1 — N(—yp)
“The less an event is possible, the more it is sure that it
will not happen.”

Thus, we can:
@ express knowledge about ignorance from what we know
@ express inconcistancy in a better way

Damien P., Amadou S., Antoine D Loic C., Narges H.



Using both possibility- and necessity-qualifications

Generalization of possibilistic logic Wttt el e

L-possibilistic logics
Reviewing the OR and AND axioms

Previously the valuation was either:
@ constant,
as in (¢ (M w)) (w is constant)

@ depending on a quantifier (either V or 3),
as in (3x)(¢ (N w))

Then, the new notion is: “qualified possibilistic logic with variable
valuations”:

ie: (e(x) (N w(x)))

This boils down to have “dependencies between distributions”.

Damien P., Amadou S., Antoine D Loic C., Narges H.



Using both possibility- and necessity-qualifications

s R . Variable valuation
Generalization of possibilistic logic o oL

L-possibilistic logics
Reviewing the OR and AND axioms

The choice of a unit interval is not compulsory:
We just need a partially ordered set.
i.e:
@ a finit chain of symbolic certainty level (i.e: certain, quite
sure, likely, likely not, impossible)
@ periods of time (i.e: this morning, this afternoon, this evening,
this night)

Damien P., Amadou S., Antoine D Loic C., Narges H.



Using both possibility- and necessity-qualifications
Variable valuation

Generalization of possibilistic logic st bt

Reviewing the OR and AND axioms

Using back [0,1], we can change the axiom:
M(e A ) = min(N(e), N(4))

to something else that keeps the four extrema points.

For instance, we can use:
o M(p Av) = max(0,M(p) + N(v) — 1)
o M(p Ay) =TN(p)N(+))
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Using both possibility- and necessity-qualifications

s R . Variable valuation
Generalization of possibilistic logic o N

L-possibilistic logics
Reviewing the OR and AND axioms

All these generalisations allow to handle more accurately real
problems because we can now take into account all the precise
aspects of one particular real problem.
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ATMS - Part 1/2

ATMS = Assumption-based Truth-Maintenance System
Possibilistic ATMS can answering the following questions :
@ Under what configuration of assumption is the proposition p
certain to the degree o 7
@ What is the inconsistency degree of a given configuration of
assumption ?
© In a given configuration of assumptions, to what degree is
each proposition certain ?
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ATMS - Part 2/2

In a possibilistic ATMS, each piece of information is represented by
a propositional clause, which enables :

O A uniform representation for all pieces of knowledge,

@ The capability of handling negated assumptions as
assumptions,

© A simple and uniform algorithm for the computation of labels
and nogoods.

Usage : Smart help system, Planification, etc.
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Discrete optimisation

Possibility and necessity degrees can be interpreted in the scope of
constraint-based reasoning instead of linked to the partial absence
of information. In this framework :

© Tautologies are imperatives : N(T)(=TM(T))=1;

@ Contradictions are tolerated :
(p(Na)) A (=p(N1)) = (L(Na)) ;

© Violating one of two constraints can be allowed while
preserving a level of feasibility at most equal to 1 — min(«, ) ;

@ The possibility distribution £ induced by a set of N-Valued
constraints represents the fuzzy feasibility domain,

subnormalization indicating that some constraints which are
not fully imperative must be violated. -
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Negotiating agents

What is a negotiation ?

In a multi-agent system, every agent has his own set of goals, and
his own knowledge, but he needs to share informations and
resources with the others. Sometimes, two agents need to find a
compromise.

For instance lets imagine a buyer and a seller discussing the prices
of an object.
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Applications

Possibilistic logic as a negotiation model

Two ways to find a compromise
@ An external agent or program find the best compromise, for
instance by using heuristics.
@ or the two agents have a "real” discussion and negotiate.

Possibilistic Logic
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Possibilistic logic as a negotiation model

Two ways to find a compromise

@ An external agent or program find the best compromise, for
instance by using heuristics.

@ or the two agents have a "real” discussion and negotiate.

We want a real negotiation

We want to "simulate” the real process of negotiation. That
means that each agent has to convince the other one that his
solution is the best for them : the elements of the knowledge and
the priority of the goals are not fixed.

With possibilistic logic we can represent this unstable mental state
of an agent ; degree of belief about his knowledge and priority of

his goals. (5>
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Mental state of an agent

Let's consider a negotiation between only two agents. Every
agent’'s mental state can be defined as three possibilistics bases,
containing uncertain values or priorities :
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Mental state of an agent

Let's consider a negotiation between only two agents. Every
agent’'s mental state can be defined as three possibilistics bases,
containing uncertain values or priorities :

Possibilistic bases

@ a static set of goals : K = {(kj,a;), i =1,...,n},

@ a knowledge base : G = {(g;, i), i =1,...m},

@ a set of goals for the other agent : GO = {(goj,d;), i =
1,...p}.
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Mental state of an agent

Let's consider a negotiation between only two agents. Every
agent’'s mental state can be defined as three possibilistics bases,
containing uncertain values or priorities :

Possibilistic bases

@ a static set of goals : K = {(kj,a;), i =1,...,n},

@ a knowledge base : G = {(g;, i), i =1,...m},

@ a set of goals for the other agent : GO = {(goj,d;), i =
1,...p}.

A possibility distribution is associated with each base : 7x, 7g,
mgo. X is the set of all the offers that can be made by an agent.
For instance, x € X it is the price of the object. *
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The acts of the negotiation

During the negotiation the agents play a dialog composed by
actions. Each action is chosen regarding the possibilistic model of
beliefs (possibilistic knowledge) and goals.
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The acts of the negotiation

During the negotiation the agents play a dialog composed by
actions. Each action is chosen regarding the possibilistic model of
beliefs (possibilistic knowledge) and goals.

Set of possible actions (1/2)

Basic actions :

o Offer(x) : the agent makes an offer of value x € X,
@ Defy(x) : the agent asks for an explanation of the offer,

o Argue(S) : the agent gives a new set of knowledge to explain
his last offer,

@ GiveUp() : the agent stops negotiating.

Damien P., Amadou S., Antoine D./C., Loic C., Narges H. Possibilistic Logic



ATMS
Applications Discrete optimisation
Negotiating agents

The acts of the negotiation

Set of possible actions (2/2)
And answers :
@ Accept(x) : the offer x is accepted, the negotiation ends,

@ Accept(S) : the knowledge set S is accepted,
o Refuse(x) : the agent considers the offer x as unacceptable.

Every negotiation terminates. And this termination is an Accept(x)
or a GiveUp() action.

Damien P., Amadou S., Antoine D./C., Loic C., Narges H. Possibilistic Logic



ATMS
Applications Discrete optimisation
Negotiating agents

An example of negociation...

What they want, what they believe...

@ Peter wants a country not expensive, possibly sunny.

@ Mary wants a country sunny, not very hot and not expensive

@ Peter believes that Tunisia is not expensive and that ltaly is
expensive.

@ Mary believes that Tunisia is sunny and that Italy is sunny,
not hot, and should not be expensive.
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An example...

Dialog between Peter and Mary

Mary : | suggest Italy. ((Offer(ltaly))
Peter : Why do you prefer Italy ? (Defy(ltaly))
Mary : Because ltaly is sunny, not very hot not very expensive.
(Argue({Sunny(ltaly), ~Hot(ltaly), —=Expensive( Tunisie)})
Peter : No, Italy is expensive, Tunisia is not expensive.
(Argue({ Expensive(ltaly), ~Expensive( Tunisie)})
Mary : | didn't know !
(Accept({ Expensive(ltaly), = Expensive( Tunisie)})
Peter : What do you think about Tunisia ?
(Offer( Tunisie))
Mary : OK ! (Accept( Tunisie)) “»

Damien P., Amadou S., Antoine D./C., Loic C., Narges H. Possibilistic Logic



Part VI

To conclude
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To conclude

@ Possibilistic logic is a logic of uncertainty.

@ It takes into account incomplete evidences an partially
inconsistent knowledge.

@ Possibilistic logic is different from fuzzy or probabilistic logic.
o Possibilistic logic is adapted to human reasoning.

@ It is an useful tool for artificial life.
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