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1 Introduction

In real life there are some situations where only
incomplete information is available. This infor-
mation can be seen as an incomplete evidence.
Yet, it is important to reason in with the help
of an incomplete knowledge base and partially
inconsistent knowledge. Possibilistic logic offers
an approach in this direction by respecting the
”fuzzyness” of the available information.

2 Relationship of possibility
theory and fuzzy sets

In order to reason in an incomplete knowledge
base it is important to introduce at least some
basic mathematical background and to explain
the relationship of possibilisitc logic with the
concept of fuzzy sets which emerged as a math-
ematical tool describing the type of model peo-
ple usually use when reasoning about systems.
Roughly, fuzzy sets allow to model sentences like
”John is tall” and ”the tomato is red” where
the definition of what can be seen as tall or red
are fuzzy and not exactly defined. The degree
of membership is expressed by the membership
function and can have values between 0 and 1.
However, possibilistic logic is not fuzzy logic in
terms of being a multi-valued logic. It is more a

technique to reason in systems, where necessity
and certainty qualified statements appear. It is a
fuzzy restriction of the truth value of a sentence.

The notion of a possibility distribution plays
a major role in possibility theory. In fact, a pos-
sibility distribution πx(u) attached to a variable
x, whose value is unknown, expresses the possi-
bility of the equality x = u.

• πx(u) = 0 means x = u is impossible

• πx(u) = 1 means x = u is completely al-
lowed

• πx(u) > πx(u′) means x = u is preferred to
x = u′, where πx > π′x means π′x is more
specific than πx

The principle of minimal specificity leads to the
maximal degree of possibility in terms of a maxi-
mal possibility distribution. The possibility dis-
tribution allows to express two kinds of state-
ments, necessity qualified statements concerning
a sentence and certainty qualified statements,
where the first kind of statements expresses to
what extent the available evidence entails the
truth of this sentence, whereas the degree of pos-
sibility expresses to what extent the truth of of
this sentence is not incompatible with the avail-
able evidence. For reasoning in a knowledge base
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consisting of necessity valued statements it is suf-
ficient to know or to calculate the possibility dis-
tribution fulfilling the principle of minimal speci-
ficity. The set of models (interpretation where
the sentence is true) is also a fuzzy set meaning
that there are no clear boundaries. The possibil-
ity distribution is equivalent to the membership
function of all interpretations to the fuzzy set of
models.

3 Automated deduction

Dubois and Prade conceived in 1991 a formal
system (that is to say a set of axioms and in-
ference rules) which can be used to deduce au-
tomatically the certainty of any formula given a
knowledge base. This system only uses neces-
sity qualified statements. The knowledge base
is therefore a set of formulas weighted with a
degree of certainty. Usually this degree is ex-
pressed with a number between 0 (for totally
uncertain statement, what does not mean that it
is a false statement!) to 1 (for a totally certain
statement). In fact, only an ordered relationship
on the formulas is required. For instance, auto-
matic deduction can be made with the following
knowledge base (inspired by the French real-TV
show ”Super Senior”):

Φ1 ((Eliminated(Loretta) ∨
Eliminated(Georgette)) ∧
(¬ Eliminated(Loretta)
∨ Eliminated(Georgette)) ”certain”)

Φ2 (∀x ¬ LosesHerDentures(x) ∨
Eliminated(x) ”moderately certain”)

Φ3 (LosesHerDentures(Loretta) ”quite uncer-
tain”)

Φ4 (∀x ¬ SwimsWith(x, Jean-Edouard)
∨¬ Eliminated(x) ”almost certain”)

Dubois and Prade also proved that if
you apply repeatedly the inference rule

(c1 α1),(c2 α2)
` (R(c1,c2) min(α1,α2))

(where R is any classical
resolvent of c1 and c2, two clauses from the
knowledge base, and αi the degree of certainty
of ci) named ”resolution rule”, you generate
only clauses that can actually be infered by
possibilistic logic. Moreover you can generate
all of them.

To compute the degree of certainty of the for-
mula ϕ = Eliminated(Loretta) we can use what
is called ”refutation by resolution”. The princi-
ple of this method is to add (¬ϕ ”certain”) =
(¬ Eliminated(Loretta) ”certain”) to the knowl-
edge base and then to apply repeatedly the res-
olution rule to compute the inconsistency degree
of this new knowledge base. This inconsistency
has been proved to be the degree of certainty of
ϕ.

With this example, we can prove that Elimi-
nated(Loretta) is quite uncertain. To do so we
apply the resolution rule with c1 = (¬ Elim-
inated(Loretta) ”certain”) and c2 = Φ2 and
deduce (¬ LosesHerDentures(Loretta) ”mod-
erately certain”) (since min(”certain”, ”moder-
ately certain”) = ”moderately certain”). Then
by applying again the resolution rule with c1 =
(¬ LosesHerDentures(Loretta) and c2 = Φ3 we
obtain a contradiction with a degree of certainty
”quite uncertain” (since min(”moderately cer-
tain”, ”quite uncertain”) = ”moderately cer-
tain”).

We can also prove that Eliminated(Georgette)
is totally uncertain since we cannot find any con-
tradiction by adding (¬ Eliminated(Georgette)
”certain”) to the knowledge base. Elimi-
nated(Georgette) is said to be consistent with
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the knowledge base.
Possibilistic logic is linked to the theory of be-

lief revision. In this theory, a knowledge base
must always remain consistent when updated by
the addition of new believes. To do so the least
strong believes (that is to say the ones with the
lowest degrees of certainty) are dropped if their
degrees of certainty fall under the inconsistency
degree of the updated knowledge base.

4 Generalisation

The ”basic” version of possibilistic logic that we
have discussed so far may be not sufficient to
model some kinds of incomplete information we
may wish to handle, such as :

• possibility-qualified sentences, for instance
”it is possible that John comes”

• conditional sentences, whose condition de-
pends on a fuzzy predicate ”the later John
arrives, the more certain the meeting will
not be quiet”

• sentences involving vague predicates, for in-
stance ”if the temperature is high then there
will be only a few participants”

Previously, we had two kinds of formulas:

• necessity-valued formulas

– denoted (ϕ(Nα))

– expressing that N(ϕ) > α

• possibility-valued formulas

– denoted (Π(Nα))

– expressing that N(Π) > α

Then we extend the language to make it han-
dle both. Thus, a knowledge base F (a set of
formulas) can combine both forms.

i.e: F = (p (N 0.7)), (p ∨q(Π 0.8))
Knowing the relation between the two forms,

we can extend simply all the previous notions.
Relation: Π(ϕ) = 1 - N(¬ϕ)
The less an event is possible, the more it is

sure that it will not happen.
Thus, we can:

• express knowledge about ignorance from
what we know

• express inconcistancy in a better way

• ...

All these generalisations allow to handle more
accurately real problems because we can now
take into account all the precise aspects of one
particular real problem.

5 Application to negotiation

In multi-agents systems, the agents sometimes
need share resources or informations, and to
obtain that they may need to negotiate. That
means that they have to find an compromise
that is satisfying for each of them. For instance,
let’s imagine a seller and a buyer discussing
the price of an object. The seller want to sell
his object at the higher price and the buyer at
the lower one. They are negotiating. There are
two ways to handle a negotiation ; a third part
agent or program can compute the best price,
or the agents involved in the negotiation can
discuss by themselves.

The possibilistic logic can help us to model the
second one, because it allows us to manipulate
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uncertain values, and, in our case, unstable
mental state. Three possibilistic bases will be
used for each agent :

• a static set of goals : K = {(ki, αi), i =
1,...,n},

• a knowledge base : G = {(gi, βi), i =
1,...,m},

• a set of goals for the other agent : GO =
{(goi, δi), i = 1,...,p}.

A possibility distribution is associated with
each base : πK, πG , πGO. Let be X the set of
all the offers that can be made by an agent. For
instance, x ∈ X it is the price of the object.

During the negotiation the agents play a
dialog composed by actions. Each action is
chosen regarding the possibilistic model of
beliefs (possibilistic knowledge) and goals. The
basic actions are :

• Offer(x) : the agent makes an offer of value
x ∈ X,

• Defy(x) : the agent asks for an explanation
of the offer,

• Argue(S) : the agent gives a new set of
knowledge to explain his last offer,

• GiveUp() : the agent stops negotiating,

• Accept(x) : the offer x is accepted, the ne-
gotiation ends,

• Accept(S) : the knowledge set S is accepted,

• Refuse(x) : the agent considers the offer x
as unacceptable.

It can be proved that every negotiation termi-
nates. And this termination is an Accept(x) or
a GiveUp() action.

Example : Mary and Peter are looking for
a vacation country.

• Peter wants a country not expensive, possi-
bly sunny.

• Mary wants a country sunny, not very hot
and not expensive

• Peter believes that Tunisia is not expensive
and that Italy is expensive.

• Mary believes that Tunisia is sunny and
that Italy is sunny, not hot, and should not
be expensive.

Efficiently searching in complex search space
is a common need in AI problem solvers. This ef-
ficiency has often been achieved by introducing
into the problem solver complex control struc-
tures that implicitly represent knowledge about
the domain, but such design are error-prone and
inflexible. Instead, the Assumption-based Truth
Maintenance System (ATMS) provides a gen-
eral mechanism for controlling problem solvers
by explicitly representing the structure of the
search space and the dependencies of the reason-
ing steps. The basic principle of the possibilistic
ATMS is to associate to each clause a weight
alpha which is its necessity degree in order to
handle more or less uncertain information.

A possibilistic ATMS is capable of answering
the following questions:

• Under what configuration of assumptions is
the proposition p certain to the degree al-
pha?
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• What is the inconsistency degree of a given
configuration of assumptions?

• In a given configuration of assumptions, to
what degree is each proposition certain?

In a possibilistic ATMS, each piece of informa-
tion is represented by a propositional clause,
which enables:

• A uniform representation for all pieces of
knowledge which means no differentiated
storage and treatment between justifica-
tions and disjunction of assumptions

• The capability of handling negated assump-
tions as assumptions, so environments and
nogoods can may contains negations of as-
sumptions

• A simple and uniform algorithm for the
computation of labels and nogoods

So far, possibility and necessity degrees have
been considered as degrees of uncertainty linked
to incomplete information. We can also inter-
pret them in a different way in the scope of
constraint-based reasoning. When the degree al-
pha of a clause is equal to one, the clause must
not be violated. When alpha is equal to zero,
the clause can be dropped. In this framework :

• Tautologies are imperatives

• Contradictions are tolerated

• Violating one of two constraints can be al-
lowed

• The possibility distribution induced by a
set of N-Valued constraints represents the
fuzzy feasibility domain, subnormalization
indicating that some constraints can be vi-
olated

Also, it is clear that for a given problem, there
generally exists a specific algorithm whose com-
plexity is better than, or at least as good as the
complexity of the necessity-valued semantic eval-
uation. However, the translation into necessity-
valued logic can be useful because :

• The search method is independent from the
problem

• The pruning properties of the semantic eval-
uation procedure can confer to the algo-
rithm a good average complexity

• Necessity-valued logic enables a richer rep-
resentation capability in the formulation of
a problem.

A typical example of such problem is the min-
max assignment also called ”bottleneck assign-
ment problem” : n tasks must be assigned to n
machines with one and only one task per ma-
chine. The total cost of the global assignment is
not the sum, but the maximum of the costs of
the elementary assignment.

6 Conclusion

• Possibilistic logic is a logic of uncertainty.

• It takes into account incomplete evidences
an partially inconsistent knowledge.

• Possibilistic logic is different from fuzzy or
probabilistic logic.

• Possibilistic logic is adapted to human rea-
soning.

• It is an usefull tool for artificial life.
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