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1. Introduction

Possibilistic logic is a logic of uncertainty tailored for reasoning under incomplete evidence

and partially inconsistent knowledge. At the syntactic level it handles formulas of propositional

or first-order logic to which are attached numbers between 0 and 1, or more generally elements

in a totally ordered set. These weights are lower bounds on so-called degrees of necessity or

degrees of possibility of the corresponding formulas. The degree of necessity (or certainty) of a

formula expresses to what extent the available evidence entails the truth of this formula. The

degree of possibility expresses to what extent the truth of the formula is not incompatible with

the available evidence.

At the mathematical level, degrees of possibility and necessity are closely related to fuzzy

sets (Zadeh, 1965, 1978a), and possibilistic logic is especially adapted to automated reasoning

when the available information is pervaded with vagueness. A vague piece of evidence can be

viewed as defining an implicit ordering on the possible worlds it refers to, this ordering being

encoded by means of fuzzy set membership functions. Hence possibilistic logic is a tool for

reasoning under uncertainty based on the idea of (complete) ordering rather than counting,

contrary to probabilistic logic.

To figure out how possibilistic logic could emerge as a worth-studying formalism, it might

be interesting to go back to the origins of fuzzy set theory and what is called "fuzzy logic".

Fuzzy sets were introduced by Zadeh (1965) in an attempt to propose a mathematical tool

describing the type of model people use when reasoning about systems. More particularly,

1 This work is partially supported by the DRUMS project (Defeasible Reasoning and Uncertainty Management
Systems), funded by the Commission of the European Communities under the ESPRIT Basic Research
Action number 3085.
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Zadeh focused on the presence of classes without sharp boundaries in human-originated

descriptions of systems, and fuzzy sets are meant to represent these classes ; the idea is to turn

class membership into a gradual notion instead of the usual all-or-nothing view.

Then a fuzzy set F on a referential set Ω is simply described by a membership function µF
that maps elements ω of Ω to the unit interval [0,1], 0 standing for non-membership, 1 for

complete membership, and numbers in between for partial membership. The choice of the unit

interval for a membership scale L contains some arbitrariness. It has been motivated by the fact

that set characteristic functions take values in the pair {0,1} usually. Clearly any sub-interval of

the reals can be used instead, including  itself, once completed by –∞ and +∞. But more

abstract scales might fit as well such as any finite chain, any totally ordered set L. Clearly, a

real interval is the most simple example of a totally ordered set L such that ∀ a ∈ L, b ∈ L,

a < b, then ∃ c ∈ L, a < c < b. This property, (which is not satisfied by a finite chain) ensures a

smooth membership gradedness. The particular choice of the unit interval also makes sense in

the scope of comparing fuzzy sets and probability (e.g. Dubois and Prade, 1989).

Based on the notion of membership function, it is easy to extend many mathematical

definitions pertaining to sets over to fuzzy sets. Set-theoretic operations for fuzzy sets were

thus defined as follows (Zadeh, 1965)

union F ∪ G : µF∪G = max(µF,µG) (1)

intersection F ∩ G : µF∩G = min(µF,µG) (2)

complementation F : µF = 1 – µF (3)

Note that (1) and (2) just require a lattice structure for the membership scale (Goguen, 1967)

while (3) further requires some order-reversing mapping on the lattice. The justification for

these definitions in the unit interval came a long time later (e.g. Dubois and Prade (1985a) for a

survey). Subsequently relations were extended into fuzzy relations, especially equivalence and

ordering notions were turned into so-called similarity and gradual preference relations (Zadeh,

1971).

Considering the usual assimilation between predicates and their extensions as sets, it is not

surprizing that fuzzy set-theoretic operations were quickly interpreted as logical connectives. In

other words, the natural connections between set theory and logic has led to a similar

connection between fuzzy set theory and multiple valued logic at least at the naïve level. This

state of facts prompted a revival of multiple-valued logic inspired by the birth of fuzzy sets, and

the name "fuzzy logic" was coined in the seventies by R.C.T. Lee (1972) who tried to extend

the resolution rule to a multiple-valued logic that handle clausal forms by means of the three

truth-functional basic fuzzy set connectives given above. This path was followed later on by
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Mukaidono (1982), and gave birth to logic programming tools (Mukaidono et al., 1989 ; Orci,

1989 ; Ishizuka and Kanai, 1985). Another important trend in the multiple-valued logic view of

fuzzy sets stems from a seminal paper by J. Goguen (1969). In this work, directly inspired by

Lukasiewicz logic, the author points out the difficulty to produce a syntax for the logic of vague

concepts, when this syntax is in fact the one of classical logic. Ten years later Pavelka (1979)

found a solution to Goguen's problem by introducing truth values in the language (see also

Novák, 1990). Apart from these two "schools" of fuzzy logic, still other works have been

published on the relationship between multiple-valued logics and fuzzy sets (see Dubois, Lang

and Prade (1991a) for a survey).

Interestingly enough, Zadeh himself did not participate to these logical developments, but

started focusing on the representation of vague aspects in natural languages. In his (1975a) he

introduced the concept of fuzzy restriction, as a fuzzy relation that restricts the possible values

of a vector of variables in a flexible way, and developed a calculus of fuzzy relations which

extends all basic notions of constraint propagation, and can be viewed as a pioneering work in

hypergraph-based methods for reasoning under uncertainty (e.g. Shafer and Shenoy, 1990).

Quite at the same time, fuzzy truth-values were proposed as a means to evaluate the truth of a

vague statement, in the face of another vague statement that is taken as the reference. Zadeh

(1975b) names "fuzzy logic" a logic that handles vague statements and fuzzy truth-values. At

this point a misunderstanding apparently grew up between Zadeh and the community of

logicians. "Fuzzy logic" after Zadeh was severely criticized (Morgan and Pelletier, 1977 ;

Haack, 1979) for basically two reasons : first, Zadeh's fuzzy logic was claimed not to be a

logic. Indeed it has no syntax, and the problem of developping a syntax for a logic of vague

concepts has indeed never been addressed by Zadeh who adopted a computational view of

fuzzy reasoning, based on non-linear programming. A second critique addressed the usefulness

and meaningfulness of fuzzy truth-values, and the question of truth-functionality. Zadeh's

works were viewed as a debatable attempt to extend truth-functional logics beyond classical

logic, and fuzzy truth-values as a strange and gratuitous extension of numerical truth-values,

whose meaning has ever been controversial for logicians themselves. Apparently, Zadeh's

main thrust, namely that a truth-value was a local notion (Bellman and Zadeh, 1977), pertaining

to a state of knowledge itself expressed in fuzzy terms, was missed, perhaps due to the term

"fuzzy logic" that was used by other researchers to denote multiple-valued logic.

In his (1978a), Zadeh introduced the measure of possibility as a scalar index that evaluates

the consistency of a fuzzy proposition with respect to a state of knowledge expressed by means

of a fuzzy restriction. Attempts at introducing a non-probabilistic view of uncertainty, similarly

to Zadeh's approach can be traced back to a proposal by Shackle (1961) which was never

completely formalized. The notion of fuzzy restriction corresponds to a radical change in the

semantics of the membership function. A fuzzy restriction is a fuzzy set of possible values, and
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its membership function is thus called a possibility distribution. Soon after, the dual notion of

certainty (Zadeh, 1979a) or necessity (Dubois and Prade, 1980) was introduced as a scalar

evaluation of the strength of entailment of a fuzzy proposition from a given fuzzy restriction. At

this point, it became patent that Zadeh's "fuzzy logic" was not just another multiple-valued

logic, but rather an approach to reasoning under uncertainty and incomplete knowledge

described by fuzzy restrictions — what Zadeh (1979b) called "approximate" reasoning.

Moreover the basic scalar evaluations, possibility and necessity, are not truth-functional.

Possibility and necessity valuations could then play a role similar to probabilities in logic ; in

particular, they could come on top of a classical logic language. Instead of considering a

probability distribution on a set of possible worlds (or interpretations), a possibility distribution

can be considered. The result is possibilistic logic. As it will be seen, a possibility distribution

on a set of possible worlds expresses a preference ordering among the worlds. Thus the

semantics of possibilistic logic departs from the semantics based on a similarity relation

between worlds, recently proposed by Ruspini (1991). Ruspini's semantics rather looks as a

fuzzy set extension of the logic of rough sets (Fariñas del Cerro and Orlowska, 1985) which

implements a semantics induced by an equivalence relation modelling indiscernibility (Pawlak,

1982).

This paper is organized as follows : Section 2 pursues the overview by introducing

background material on fuzzy set and possibility theory, including comparative possibility

relations that underlie possibility and necessity measures. Section 3 forms the main body of the

paper and presents formal aspects of a fragment of possibilistic logic where formulas are valued

by a lower bound on their degree of necessity. It includes an axiomatization and a refutation

method based on extended resolution that is liable of implementation on a computer and

supports partial inconsistency. The remainder of Section 3 lays bare the existing links between

possibilistic logic and non-monotonic logics on the one hand, and belief revision on the other

hand. It is indicated that possibilistic logic can be cast in the frameworks of preference logics

after Shoham (1988), counterfactual logics after Lewis (1973) and epistemic entrenchment

theory after Gärdenfors (1988). In the presence of partial inconsistency, possibilistic logic

behaves as a cumulative non-monotonic logic whose properties have been suggested by

Gabbay (1985), and studied by Makinson (1989) and Kraus et al. (1990). Section 4 considers

a richer possibilistic logic where formulas can be weighted by a lower bound on possibility or

necessity degrees. Then it briefly sketches some other potentially interesting extensions of

possibilistic logic, whereby the valuation set may become partially ordered, the weights may

become variable or convey the interpretation of costs, and the predicates may become vague.

Section 5 describes some applications of possibilistic logic to truth-maintenance systems,

inconsistency handling in logical data bases, discrete optimization and logic programming.
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2. Possibility theory

Let x be a variable taking its values in a set U. A possibility distribution πx attached to x

describes a state of knowledge about the value of x. This value, although unknown, is
supposed to be unique. πx is a mapping from U to the unit interval, such that πx(u) = 1 for at

least one value u. The following conventions are adopted

πx(u) = 0 means that x = u is impossible ;

πx(u) = 1 means that x = u is completely allowed ;

πx(u) > πx(u') means that x = u is preferred to x = u'.

The normalization requirement πx(u) = 1 means that in U there is at least one value of x that is

completely allowed. Zadeh (1978a) explains how fuzzy sets give birth to possibility

distributions. For instance the sentence "John is tall" can be modelled by means of a fuzzy set F

on a set of sizes, which represents the set of possible values of John's size. Here U is the set of

sizes, x is the variable representing John's size, F the fuzzy set representing "tall" in a given
context, and the possibility distribution πx is taken as equal to µF. Following Zadeh (1979b),

the fuzzy set F is viewed as a fuzzy restriction "which serves as an elastic constraint" on the

value that may be assigned to the variable x.

In this view the sentence "John is tall" is considered as a piece of incomplete evidence, and

is supposed to be the only available information about x. The advantage of using a fuzzy set in

the modelling of "tall" is to convey the information that if u > u', u is a better potential value for
x than u', (if µtall is an increasing membership function). More generally, the preference

expressed by means of the degree of possibility πx(u) reflects the closeness of u to the

prototypes of the fuzzy set F. This view completely differs from another interpretation of "John

is tall" where the value of x is known (say x = 1.78 m) and "tall" is used as a linguistic

substitute to this value. In this latter situation, a "degree of truth" of "John is tall" can be
computed (as µF(1.78)) if needed, because the underlying information is complete. This is the

case of the multiple-valued logic understanding of fuzzy logic, where sentences can be attached

degrees of truth ; however there is a danger to obtain the paradoxical situation where given a

membership function and a degree of truth, the size of John may be recomputed. This paradox

has often been the source of criticisms addressed to fuzzy set theory. It is completely obviated

when a proposition like "John is tall", taken as a piece of evidence, is modelled as an elastic

constraint.

Possibility distributions are liable of interpretations that differ from membership functions of

fuzzy sets. Probabilistic interpretations include upper probability bounds, consonant random
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sets (Dubois and Prade, 1988) and likelihood functions (Smets, 1982), and infinitesimal

probabilities (Spohn, 1988).

Let πx and π'x be two possibility distributions attached to x. Then, πx is said to be more

specific than π'x (Yager, 1983) if and only if πx < π'x. Specificity refers to the level of

precision of a possibility distribution. When πx < π'x, πx is more informative than π'x.

Especially, if ∃ u0 ∈ U, πx(u0) = 1 while πx(u) = 0 for u ≠ u0, the state of knowledge is said

to be complete (we know that x = u0). Contrastedly, a state of total ignorance is easily

expressed as πx(u) = 1, ∀ u ∈ U. Of importance in possibility theory is the principle of

minimum specificity which says that given a set of constraints restricting the value of x, πx
should be defined so as to allocate the maximal degree of possibility to each u ∈ U, in

accordance with the constraints. This principle points out that given a piece of evidence of the
form "x is F" where F is a fuzzy set, the equality πx = µF is only a consequence of the

constraint πx ≤ µF acting on the values of x, together with the principle of minimal specificity.

Similar informational principles can be encountered in several non-monotonic inference

systems (e.g. in Pearl (1990) with the idea of compact ordering of defaults, with the rational

closure of a conditional knowledge base (Lehman, 1989), or when worlds are assigned to the

smallest sphere in a sphere system in conditional logic (Lamarre, 1992).

More generally, Zadeh's theory of approximate reasoning considers that the available
information pertaining to a situation is stored in a data base, and involves a set {x1, …, xn} of

variables that take their values on U1, U2, …, Un. The data base contains the representation of

pieces of information that define fuzzy restrictions on U1 × U2 ×… × Un. Zadeh has devised a

method that systematically translates several kinds of natural language sentences into possibility
distributions on U1 × U2 ×… × Un. This translation method called PRUF (Zadeh, 1978b) is

not described here ; for details see also Dubois and Prade (1980, 1991d). For the sake of

simplicity, we shall assume that the available knowledge is described by means of m possibility
distributions π1, …, πm that model m pieces of available knowledge in a data base D.
Answering a query may consist in computing the possibility distribution πxi that represents the

fuzzy domain of possible values of xi. Approximate reasoning is understood as a procedure
that computes πxi from the knowledge of π1, …, πm. This procedure involves three basic

steps (Zadeh, 1979b) :

– cylindrical extension : if πj is a fuzzy restriction on the Cartesian product ×k∈K Uk, the

cylindrical extension cπj of πj on U = U1 × U2 ×… × Un is

cπj(u) = πj(uK)

where u = (uK ,uK ), uK  is a vector of values of variables xk, k ∈  K, uK  is the

complementary vector of values of variables xk, k ∉ K ;
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– combination : the least specific possibility distribution induced by π1, π2, …, πm is

πD = minj=1,m cπj              (4)

which represents the state of knowledge contained in D = {π1, π2, …, πm} ;

– projection : the marginal possibility distribution πxi attached to the variable xi is defined by

πxi(ui) = supuk,k≠i πD(u1, u2, …, un) = supuk,k≠i minj=1,m cπj(u1, …, un).

This kind of procedure for approximate reasoning involving cylindrical extension, combination

and projection operations has been applied to other theories of uncertain reasoning such as

belief functions (Shafer, 1976 ; Shafer and Shenoy, 1990) with a different combination step.

Clearly it offers a semantics for approximate reasoning but does not presuppose the existence

of a syntax.

Note that in (4), it may happen that πD(u) < 1, ∀u. Then πD is said to be subnormalized,

and subnormalization corresponds to a lack of consistency between π1, π2, …, πm. The

degree of consistency of D is cons(D) = supu πD(u). In Section 3, the proposed framework

will cope with this situation.

Another natural type of query to a fuzzy data base D, is to check whether a given statement
S is a consequence of {π1, π2, …, πm}. Let πS be the possibility distribution which

represents the fuzzy restriction on U induced by the statement S. Zadeh (1979b) introduces the

notion of semantic entailment in possibility theory as follows : S follows from D =
{ π1, π2, …, πm} if and only if πD ≤ πS where πD is given by (4). In other words, the

consequences of D should not be more specific than D.

The fuzzy truth-value of S is more generally defined as a possibility distribution πτ on [0,1]

such that (Zadeh, 1978b)
πτ(t) = supu:t=πS(u) πD(u)

This formula computes the fuzzy set τ = πS(D) of the possible truth-values of S if the available

information D were precise, and in accordance with the constraints {π1, …, πm}. It is easy to

verify that
D entails S ⇔ πD ≤ πS    ⇔   πτ(t) ≤ t

D entails S ⇔ πD ≤ 1 – πS    ⇔   πτ(t) ≤ 1 – t



8

where S denotes the statement opposite to S, represented by 1 – πS. The right-hand side

inequalities can thus be interpreted as follows : the fuzzy truth-values τ such that πτ(t) ≤ t mean

"true", while the fuzzy truth-values such that πτ(t) ≤ 1 – t mean "false". Indeed if πS = πD then

πτ(t) = t, if ∃u, πS(u) = t, and if πS = 1 – πD, then πτ(t) = 1 – t if ∃u, πS(u) = t. When πS is

the characteristic function of a subset A of U, πτ(t) = 0, ∀ t ≠ 0,1 since S cannot be but true or

false. Moreover we can compute

πτ(1) = supu∈A πD(u)

πτ(0) = supu∉A πD(u).

These indices correspond to the degrees of possibility that S is true and that S is false. Note that

the fuzzy truth value τ is local in the sense that it is relative to the state of knowledge described

by D. πτ(1) corresponds to the notion of possibility measure of A ⊆ U, introduced by Zadeh

(1978a). A possibility measure is a set function ∏ that attaches to each subset A ⊆ U a number

∏(A) ∈ [0,1]. The basic axioms of a possibility measure are

∏(Ø) = 0  ;  ∏(U) = 1
∏(∪i∈I Ai) = supi∈I ∏(Ai) (5)

for any index set I. A possibility measure derives from a possibility distribution π, which
verifies ∀ u ∈ U, πx(u) = ∏({u}). Especially we can write

∏(A) = supu∈A πx(u) (6)

∏(A) expresses to what extent there is a value u ∈ A that may stand as a value of x. The dual

set function is called a necessity measure, is denoted N, and is defined by (Dubois and Prade,

1980)
N(A) = 1 – ∏(A) = infu∉A 1 – πx(u)                 (7)

where A is the complement of A. N(A) evaluates to what extent all possible values of x belong

to A, i.e. to what extent one is certain that x belongs to A. A third quantity has been recently

emphasized by the authors (Dubois and Prade, 1992a), namely
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∆(A) = infu∈A πx(u)                     (8)

which evaluates to what extent all elements in A are possible values for x. Noticeable properties

of possibility and necessity measures are as follows

N(A ∩ B) = min(N(A),N(B))  ;  ∏(A ∪ B) = max(∏(A),∏(B))                        (9)

but we only have inequalities N(A ∪ B) ≥ max(N(A),N(B)), ∏(A ∩ B) ≤ min(∏(A),∏(B))

generally. Moreover

min(N(A),N(A)) = 0  ;  max(∏(A),∏(A)) = 1.                  (10)

These three degrees of uncertainty enable uncertainty-qualified statements of the form "x is

A is possible, certain, etc…" to be modelled in terms of sets of possibility distributions.

Especially, the piece of evidence "x is A is at least α-certain" where α ∈ [0,1], is equivalent

to the set of possibility distributions π such that

N(A) = infu∉A 1 – π(u) ≥ α               (11)

It is easy to see that this set of possibility distributions has a greatest element πx =

max(µA, 1 – α) where µA is the characteristic function of A. By virtue of the principle of

minimum specificity, this greatest element is the best representation of the piece of information.

Contrastedly, the pieces of information "some u in A is at least β-possible for x" and "all u

in A are -possible for x", can be modelled by the sets of possibility distributions π
respectively defined by the following inequalities :

∏(A) = supu∈A π(u) ≥ β (12)

∆(A) = infu∈A π(u) ≥ (13)

The maximal element of each set of possibility measures expresses the state of total ignorance

π(u) = 1, ∀u, and is obviously not informative. Indeed knowing that some or all u in A are

possible for x does not prevent elements in A from being possible too. Hence there is no

unique possibility distribution which may be a good representation of any of these sets. Note

that ∏(A) ≥ ∆(A) so that ∆(A) ≥  is more restrictive than ∏(A) ≥ . In possibilistic logic we

consider possibility qualified statements of the form ∏(A) ≥ β that express that A is consistent

with the available knowledge to some extent. Note that possibility distributions that satisfy (13)
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are such that π(u) ≥ min( , µA(u)), ∀u. Such a lower bound do not even exist with (12). At

any rate, (12) and (13) must be represented by means of a family of possibility distributions,

and not a single one as for (11).

When possibility distributions do not derive from probabilistic knowledge, the use of the

interval [0,1] to model degrees of possibility and necessity is not compulsory. It looks natural

for fuzzy numbers, i.e. possibility distributions of the real line, where π(u) embodies proximity

notions, since membership grades then evaluates to what extent a value is close to a prototype

value. But as said earlier, only a totally ordered structure is requested strictly speaking. It even

makes sense to consider possibility as a comparative notion, just as De Finetti (1937) did for

probability.

Namely let ≥∏ be a relation defined on a finite Boolean algebra  of subsets of U. A ≥∏ B

intends to mean "A is at least as possible as B". Let >∏ and ∏ denote the strict ordering and

equivalence relations associated to ≥∏. The following set of axioms has been proposed by

Dubois (1986) for characterizing possibility relations

1) U >∏ Ø  (non triviality)

2) A ≥∏ Ø

3) A ≥∏ B and B ≥∏ C imply A ≥∏ C  (transitivity)

4) A ≥∏ B or B ≥∏ A  (completeness)

∏) A ≥∏ B implies A ∪ C ≥∏ B ∪ C, ∀C

The last axiom (∏) is the crucial one. It means that if A is considered as at least as consistent as

B with the available knowledge, then A ∪ C cannot be less consistent than B ∪ C. Note that

letting C = B leads to A ∪ B ≥∏ U so that A ≥∏ B implies A ∪ B ∏ U ; this means that if A

is at least as possible as B, then it is possible that B implies A (since A ∏ U only means that

A is totally possible, and A ∏ Ø that A is totally impossible). It can be proved (Dubois,

1986) that any set-function ∏ :  → [0,1] such that

∏(U) = 1 ; ∏ (Ø) = 0 ;
∏(A) ≥ ∏(B) ⇔ A ≥∏ B

is a possibility measure and conversely. A dual relation ≥C such that A ≥C B means A is at

least as certain as B, is defined as

A ≥C B if and only if B ≥∏ A
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i.e. A is more certain than B as long as A is less possible than B. The comparative certainty

relation satisfies axioms 1)-4) and the following characteristic one :

N) A ≥C B implies A ∩ C ≥C B ∩ C, ∀C

The only numerical counterparts of comparative necessity relations are necessity measures
(Dubois, 1986). Note that if C = A we obtain the claim that A ≥C B implies B ∩ A C Ø, i.e.

if A is at least as certain as B then A cannot be certain whatsoever in the context B. Again,
A C Ø means that A is uncertain, not that it is false. Comparative possibility relations seem to

appear for the first time in the works of D. Lewis (1973) in the framework of a conditional

logic of counterfactuals (see Section 3.7). Comparative certainty relations turn out to be at the

core of belief revision theory (Gärdenfors, 1988) and so-called cumulative non-monotonic

reasoning (Gärdenfors and Makinson, 1992) (see Section 3.10). It explains and comforts the

idea that possibilistic logic, as developed in the following sections is something natural and

potentially useful.

3. Possibilistic logic : the case of necessity-valued formulas

As said in Section 2, uncertain knowledge can be expressed in terms of certainty– and

possibility–qualified statements ; possibilistic logic handles syntactic objects expressing

inequalities resulting from these statements, i.e. constraints whose form is either N(ϕ) ≥ α (for

certainty-qualified statements) or ∏(ϕ) ≥ α (for possibility-qualified statements) where ϕ is a

closed first order logic formula. These objects, called possibilistic formulas, are the basic

objects of possibilistic logic ; an uncertain knowledge base is then a set of certainty– and

possibility–qualified statements, and will be logically represented as a set (i.e. a conjunction) of

possibilistic formulas.

This section is devoted to the study of a fragment of general possibilistic logic, where

knowledge bases consist only in necessity-qualified statements. This fragment will be called

necessity-valued (possibilistic) logic. After the language is presented in Section 3.1, the

semantics will be studied in sections 3.2 to 3.5. Although general possibilistic logic is a richer

framework since it enables the modelling of both necessity- and possibility-qualified

statements, the necessity-valued fragment is significant, since it is sufficient for modeling a

preference order upon formulae and as such, it entertains close links to the non-monotonic

reasoning approach based on preferential models (Section 3.9) and belief revision theory

(Section 3.10) ; moreover, it is simpler to deal with formal and algorithmic aspects by

restricting to this fragment rather than by considering the general formalism. Lastly, many of

the results shown in this section are easily extended to the case when possibility-qualified
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statements of the form ∏(ϕ) ≥ α are allowed. This more general possibilistic logic is

considered in Section 4.

3.1. Language

A necessity-valued formula is a pair (ϕ α) where ϕ is a classical first-order closed

formula and α ∈ (0,1] is a positive number. (ϕ α) expresses that ϕ is certain at least to the

degree α, i.e. N(ϕ) ≥ α, where N is a necessity measure modelling our possibly incomplete

state of knowledge. The right part of a possibilistic formula, i.e. α, is called the valuation of

the formula (or the weight), and is denoted val(ϕ). Note that we do not consider weighted

formulas of the form (ϕ 0) since ∀ϕ, N(ϕ) ≥ 0.

A necessity-valued knowledge base is then defined as a finite set (i.e. a conjunction)

of necessity-valued formulas. PL1 denotes the language consisting in necessity-valued

formulas. From now on * denotes the set of classical formulas obtained from a set of
possibilistic formulas , by ignoring the weights ; thus, if  = {(ϕi αi), i = 1, …, n} then

* = { ϕi, i = 1, …, n}. It will be called the classical projection of .

The language we define as such can be considered as somewhat restrictive at two different

levels : firstly, only conjunctions of necessity-valued formulas are considered, not disjunctions,

negations, universal and existential quantifications of possibilistic formulas, such as

(ϕ α) ∨ (ψ β), or ∃x (ϕ α), etc. ; secondly, our language does not enable valuations to be

embedded, such as ((ϕ α) β).

A necessity-valued knowledge base may also be seen as a collection of nested sets of

(classical) formulas : α being a valuation of (0,1], let us define the α-cut and the strict α-cut  of
, denoted respectively by α and α, by

α = {(ϕ β) ∈  | β ≥ α}

α = {(ϕ β) ∈  | β > α} ;

their classical projections α* and α * are thus

α* = { ϕ | (ϕ β) ∈  andβ ≥ α}

α* = { ϕ | (ϕ β) ∈  andβ > α} ;

thus, knowing  comes down to knowing the sets of classical formulas α* for α varying in

(0,1]. A necessity-valued knowledge base  can thus be viewed as a layered knowledge base,
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where the higher layers (α close to 1) correspond to the most certain pieces of knowledge.

Reasoning from such a knowledge base will aim at deriving conclusions by means of the most

certain parts of . Rescher (1964) seems to be the first to think of such a layered knowledge

base where the different layers reflect various levels of reliability.

Let us point out that the basic idea of possibilistic logic is to handle certainty valuations

explicitly in the language. This departs for instance from Nilsson (1986)'s probabilistic logic

where probability bounds are expressed by semantical constraints. Furthermore, these

valuations do not appear as constants in formulae, but they are treated in a separate way, which

gives the language more homogeneity: indeed they appear as labels associated to formulae;

thus, possibilistic logic can be cast in Gabbay's Labeled Deductive Systems (Gabbay, 1991)

framework, where the set of labels is the totally ordered set [0,1] and the operations defined on

it follow directly from the axioms of possibility theory.

Furthermore, possibilistic logic can also be cast in Ginsberg's (1989) bilattice-based

multivalued logics framework (up to a few technical differences) ; let us recall that a Ginsberg's
bilattice consists in a valuation set equipped with two orderings ≤t and ≤k (based respectively

on certainty and specificity). In possibilistic logic a valuation (in the sense of Ginsberg) will be

a pair (α,β) where α (resp. β) is the best known lower bound of N (ϕ) (resp. N (¬ϕ)) ; note

that in the consistent case, α = 0 or β = 0. Then the two orderings are defined by (α β) ≤t
(α' β') iff α' ≥ α and β' ≤ β, and (α β) ≤k (α' β') iff α' ≥ α and β' ≥ β. See Lang (1991a)

for more technical details.

3.2. A semantics coping with partial inconsistency

Let  be a classical language associated with the set * of classical formulas obtained

from a set  of possibilistic (necessity-valued) formulas, and let Ω be the set of (classical)

interpretations for . Let ' be the set of closed formulas of .

The semantics of a set of classical formulas * is defined by means of the subset of

interpretations of * that satisfy all formulas in *. Each such interpretation is called a model.

In the case of a set of necessity-valued formulas, we shall consider a possibility distribution

over Ω, that will represent the fuzzy set of models of . In other words,  will induce a

preference relation over Ω, encoded by means of a possibility distribution. Let us consider first

the valuations induced by a possibility distribution π on Ω. It is not supposed that π is

necessarily normalized.

The possibility measure ∏, induced (in the sense of Zadeh (1978a)) by the possibility

distribution π is a function from ' to [0,1] defined by
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∀ ϕ ∈ ', ∏(ϕ) = sup{π(ω), ω ϕ} 1

where ω ϕ means "ω is a model of ϕ", or "ω satisfies ϕ".

The dual necessity measure N induced by π is defined by

∀ ϕ ∈ ', N(ϕ) = 1 – ∏(¬ϕ) = inf{1 – π(ω), ω  ¬ϕ}

Then, necessity-valued formulas (ϕ α) express constraints of the form N(ϕ) ≥ α on the set of

possibility distributions over Ω which are compatible with the corresponding possibilistic

formulas (see (11) in Section 2).

Giving up the normalisation condition sup{π(ω), ω ∈ Ω} = 1 slightly modifies the behavior

of necessity measures with respect to the usual possibility theory : if 1 – α π  =

sup{π(ω), ω ∈ Ω} < 1, then we have

∀ϕ, min(N(ϕ),N(¬ϕ)) = απ > 0

which leads to N(⊥) = N(ϕ ∧ ¬ϕ) = min(N(ϕ),N(¬ϕ)) = απ > 0 instead of N(⊥) = 0.

However the following properties still hold :

N(T) = 1 ;

N(ϕ ∧ ψ) = min(N(ϕ),N(ψ)) ;

N(ϕ ∨ ψ) ≥ max(N(ϕ),N(ψ)) ;

if ϕ  ψ then N(ψ) ≥ N(ϕ).

A possibility distribution π on Ω is said to satisfy the necessity-valued formula (ϕ α), iff

N(ϕ) ≥ α, where N is the necessity measure induced by π. Note that a normalized possibility

distribution satisfying (ϕ α) always exists (see the comment on equation (11)). We shall then

use the notation π (ϕ α). Let  = {Φi, i = 1, …, n} be a set of possibilistic formulas Φi =

(ϕi αi) where ϕi ∈ ' and αi ∈ (0,1] ; a possibility distribution π is said to satisfy , i.e.

π  , iff ∀ i = 1, …, n, π satisfies Φ i . Note that if π is required to be normalized, a

normalized π such that π  may not exist. When this condition is not required, the "absurd

possibility distribution" π⊥ such that ∀ ω ∈ Ω, π⊥(ω) = 0, always verifies π⊥ . If ∀π,

π  (ϕ α) is true, this is denoted (ϕ α) and (ϕ α) is said to be valid.

1 sup{} and inf{} denote the least upper bound and greatest lower bound respectively of the subset of real
numbers defined between '{}'.
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Then, a possibilistic formula Φ  is said to be a logical consequence of the set of

possibilistic formulas  iff any possibility distribution satisfying  also satisfies Φ, i.e. ∀π,

(π ) ⇒ (π  Φ). It will be denoted by Φ.

Our semantics is somewhat similar to the semantics of Nilsson's (1986) probabilistic logic.

In this logic probabilities or probability bounds are attached to formulas in propositional logic.

The semantics of these weighted formulas consists of a set of probability distributions on the

set of interpretations Ω, inducing probability measures on the set of closed formulas ',

which are compatible with bounds constraining the probability of formulas in the knowledge

base. The notions of logical consequences are similar in both approaches. This view of

probabilistic logic goes back to De Finetti (1937) and was studied by Adams and Levine (1975)

as well.

The deduction problem will then be stated in the following manner : let  be a set of

possibilistic formulas and ϕ a classical formula we would like to deduce from  ; we have to

compute the best valuation α (i.e. the best lower bound of a necessity degree) such that (ϕ α) is

a logical consequence of , i.e. to compute

Val(ϕ, ) = sup{α ∈ (0,1],  (ϕ α)}

Example

Let  = {(p 0.7), (¬p ∨ q  0.4)}.

π ⇔ N(p) ≥ 0.7 and N(¬p ∨ q) ≥ 0.4

⇔ inf{1 – π(ω), ω  ¬p} ≥ 0.7 and inf{1 – π(ω), ω  p ∧ ¬q} ≥ 0.4.

Let [p,q], [¬p,q], [p,¬q] and [¬p,¬q] be the 4 different interpretations for the

propositional language generated by {p,q} (where [p,q] gives the value True to p

and q, etc.). Then, it comes down to

π 

⇔ π ([¬p,q]) ≤ 0.3, π ([¬p,¬q]) ≤ 0.3, π ([p,¬q]) ≤ 0.6

⇔ π ([¬p,q]) ≤ 0.3, π ([¬p,¬q]) ≤ 0.3, π ([p,¬q]) ≤ 0.6, π ([p,q]) ≤ 1.

If one looks for a normalized possibility distribution satisfying , this forces the

equality π([p,q]) = 1. It is then obvious that  (q 0.4). Indeed, any possibility

distribution π satisfying  is such that π([p,¬q]) ≤ 0.6, and thus verifies N(q) =

min(1 – π([p,¬q]), 1 – π([¬p,¬q])) ≥ 0.4 ; hence π satisfies (q 0.4). Moreover,

there is no α > 0.4, such that (q α); thus Val(q, ) = 0.4.
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The following properties are straightforward :

(i)    (ϕ α) (ϕ β) ∀ α ≥ β
(ii) ∀ α > 0, (ϕ α) if and only if ϕ is a tautology.

Now a fundamental result can be established :

Proposition 1 : 2

Let  = {(ϕ1 α1), …, (ϕn αn)} be a set of necessity-valued formulas and let us define the

possibility distribution π  by

           π (ω) = min{1 – αi | ω ¬ϕi, i = 1, …, n}

= 1 if ω  ϕ1 ∧… ∧ ϕ

then for any possibility distribution π on Ω, π satisfies  if and only if π ≤ π , i.e.

∀ ω ∈ Ω, π(ω) ≤ π (ω).

Corollary 2 :
  (ϕ α) iff π  (ϕ α)

or in other terms Val(ϕ, ) = N (ϕ) where N is the necessity measure induced by π .

It is worth noticing that there is an equivalence between the consistency of the classical

projection * and the existence of a normalized possibility distribution π satisfying . Indeed
if π  is normalized then ∃ ω  ϕ1 ∧ ϕ2 ∧… ∧ ϕn. Hence * is consistent. Conversely, if

* is consistent and ω *, then the possibility distribution πω such that πω(ω) = 1, and

πω(ω') = 0 if ω' ≠ ω does satisfy .

Note that in the degenerate case where only two levels of possibility and certainty are used

(0 and 1), possibilistic logic comes down to a "non-gradual logic of uncertainty" where a

formula ϕ is always in one of the 3 following states3 : TRUE (when N(ϕ) = 1), FALSE (when

N(¬ϕ) = 1) and UNKNOWN (when N(ϕ) = N(¬ϕ) = 0). Thus, possibilistic logic restricted to

degrees in {0,1} is a 3-valued logic, non truth-functional (indeed, as in the gradual case, it can

still be the case that N(ϕ) = N(¬ϕ) = 0 while N(ϕ ∨ ¬ϕ) = 1, which happens every time ϕ is

UNKNOWN) ; it is also a partial logic (Blamey, 1986 ; ϕ being UNKNOWN is then

interpreted as "ϕ is given no truth-value"), whose semantics consists in crisp possibility

2 Proofs of the propositions can be found in the Annex.
3 If we exclude the case of complete inconsistency where ∀ϕ, N(ϕ) = N(¬ϕ) = 1.
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distributions π, which are nothing but subsets of the set of all interpretations Ω : ω is in π iff ω
is a possible interpretation. This is actually a particular case of the possible worlds semantics of

S5 (restricted to the case of only 1 equivalence class). Note that non-gradual possibilistic logic

completely differs from Kleene's 3-valued logic, which is truth-functional and where the third

truth-value must be interpreted as "half-true" and not as "unknown".

3.3. Partial inconsistency

A possibilistic knowledge base  whose associated possibility distribution π  is such that

0 < sup π  < 1 is said to be partially inconsistent. Measuring the consistency of  consists

then in evaluating to what degree there is at least one completely possible interpretation for ,

i.e. to what degree the set of possibility distributions satisfying  contains normalized

possibility distributions ; the quantity

Cons( ) = supπ supω∈Ω π(ω) = supω∈Ω π (ω)

will be called consistency degree of , and its complement to 1, Incons() = 1 – Cons( ) =
1 – supω∈Ω π (ω) is called the inconsistency degree of .

Let us now take an example when a possibilistic knowledge base is partially inconsistent.

Example

Let  = {(¬p ∨ r  0.6), (¬q ∨ ¬r  0.9), (p 0.8)), (q 0.3)}. It can be checked that

 π  and π is normalized iff

   π ([p, q, r]) ≤ 0.1 ;  π ([p, q, ¬r]) ≤ 0.4 ;  π ([p, ¬q, r]) ≤ 0.7 ;

   π ([p, ¬q, ¬r]) ≤ 0.4 ;  π ([¬p, q, r]) ≤ 0.1 ;  π ([¬p, q, ¬r]) ≤ 0.2 ;

   π ([¬p, ¬q, r]) ≤ 0.2 ;  π ([¬p, ¬q, ¬r]) ≤ 0.2 ;  sup{ π(ω), ω ∈ Ω} = 1.

This set of constraints being unsatisfiable (because of the normalization constraint),

there is no normalized possibility distribution over Ω satisfying , which comes

down to say that  is partially inconsistent. More specifically, π , obtained by

turning inequalities into equalities is such that sup π  = 0.7.

It would not be fully satisfactory to define a logic which handles degrees of uncertainty

without allowing for degrees of (partial) inconsistency. Indeed, let us consider the above

example where we suppose that p, q and r respectively express "the hostages will be freed" (p);

"Peter is going to be the victim of an affair" (q) ; "Peter will be elected" (r) respectively. Then

the formulas contained in  express that it is moderately certain that if the hostages are freed
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then Peter will be elected, that it is almost certain that if Peter is victim of an affair then he will

not be elected, that it is rather certain that the hostages are going to be freed and that it is weakly

certain that Peter will be the victim of an affair. The inconsistency comes from the beliefs of the

experts who gave the information stored in the knowledge base. However, the expert who gave

the last formula was only weakly certain of what he said, so that the inconsistency should be

relativized. Since the first three formulas of  are strictly more certain than the last one, we

would like our logic to behave as if the set of formulas were only partially inconsistent, its

inconsistency degree being the valuation of the weakest formula involved in the contradiction ;

then, the deduction of a formula with a valuation strictly greater than this inconsistency degree

should still be permitted ; since this deduction involves only a consistent part of the knowledge

base made here of the most certain pieces of information in the example, we might still deduce

non-trivially (r 0.6) but not, for instance, (r 1), as we shall see later. However a conclusion

deduced from a partially inconsistent knowledge base should be regarded as more brittle than

what is derived from a consistent one.

Partial inconsistency extends inconsistency in classical logic in the following sense : let
F = {ϕi  | i = 1, …, n} be a set of classical formulas and let us associate to F the set of

completely certain necessity-valued formulas  = {(ϕi 1), i = 1, …, n} ; then, it can be proved

immediately that if F is consistent then Incons() = 0 and if F is inconsistent then

Incons( ) = 1. Thus, necessity-valued logic enables the gradation of inconsistency : if

Incons( ) = 0 then  is completely consistent, if Incons( ) = 1 then  is completely

inconsistent, and if 0 < Incons( ) < 1 then  is partially inconsistent. The strong link, already

pointed out above, between partial inconsistency and inconsistency in classical logic can be

restated as follows : Incons() = 0 if and only if the classical projection * is consistent in the

classical sense.

A partially inconsistent knowledge base entails the contradiction with a positive necessity

degree, i.e.  (⊥ α) for some α > 0. Indeed the following result is easy to establish :

Proposition 3 :
Incons( ) = inf{N(⊥) | π } = N (⊥) = sup{α, (⊥ α)}

where N is the necessity distribution induced by π.

This equality achieves to justify the terminology "inconsistency degree" since Incons() is the

smallest necessity degree of the contradiction ⊥ for all possibility distributions satisfying .

3.4. Fuzzy sets of interpretations and best models
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As seen above, knowing the possibility distribution π  is sufficient for any deduction

problem in necessity-valued logic (including the computation of the inconsistency degree). It is

important to notice that

– π minimizes the inconsistency among the possibility distributions satisfying , i.e.

N (⊥) = Incons( ) = inf{N(⊥) | π } ;

– among the possibility distributions π satisfying  and minimizing the inconsistency (i.e., the

least subnormalized ones), π is the least specific one (as shown by Proposition 1). Indeed

π is the possibility distribution on Ω obtained by applying the principle of minimum of

specificity on the set of constraints expressed by the necessity-valued formulas of .

The link between our semantics and the semantics of classical logic can be precisely
described as follows. In classical logic, a set of formulas F = {ϕ1, …, ϕn}, induces a partition

of the set of interpretations Ω into two subsets : the subset M(F) of models of F and the subset

M(¬F) of interpretations which do not satisfy F (also equal to the set of models of ¬F). Then

F is said to be consistent if and only if M(F) is not empty, inconsistent otherwise, and valid iff

M(F) = Ω. Noticing that F corresponds to the set of necessity-valued formulas  =
{( ϕ1 1), …, (ϕn 1)}, we may compute the (crisp) possibility distribution π :

          π  (ω) = inf {1 - αi | ω ¬ϕi, i = 1, ..., n} where all αi are 1,

  = 1 if ∀i, ω  ϕi

= 0 otherwise.

Thus the least specific possibility distribution satisfying  is the (crisp) membership function

of the set of models of F.

In necessity-valued logic, when the valuations are allowed to be intermediary, π defines a

fuzzy subset of the interpretation set Ω, denoted M( ) which can be seen as the fuzzy set of

models of , its membership function being µM( )(ω) = π (ω). The quantity π (ω)

represents the compatibility degree of ω with , measuring to what degree ω is a model of .

Lastly it is easy to check that  iff M( ) is included in M( ) (in the fuzzy inclusion

sense : M( ) ⊆ M( ) ⇔ µM( ) ≤ µM( )).

As it turns out, to establish that ϕ is deducible from  with certainty degree α, is to say that

the models of ¬ϕ are compatible with M( ) at most to the degree 1 – α, which reads :

sup{π (ω) | ω ∈ M(¬ϕ)} ≤ 1 – α. It can be checked that it corresponds to the result which

would be obtained by representing each necessity-valued formula by means of the least specific

possibility distribution that satisfies it (on the set of interpretations), combining conjunctively

these representations and projecting the result of this combination on M(ϕ) and on M(¬ϕ). This
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indicates that the deduction process in possibilistic logic can be viewed as a particular case of

Zadeh's theory of approximate reasoning, when the universe of discourse is a set of logical

interpretations.

The following proposition leads to an important definition :

Proposition 4 :

The least upper bound in the computation of Incons() is attained, i.e. there exists (at least) an
interpretation ω* such that π (ω*) = supω∈Ω π (ω).

Then, the interpretations ω* maximizing π  will be called the best models of . They are

the most compatible with  among the set of all interpretations Ω, or equivalently the

interpretations maximizing the membership degree to the fuzzy set of models of . The

previous result shows that the set of best models is never empty.

Interpretations may be ordered according to their compatibility degrees. Thus, ordering the

formulas in the knowledge base leads to ordering the interpretations. Then, selecting the best

(one of the best) model(s) is similar to making a choice among several extensions in the sense

of default logic (Reiter, 1980).

Example

Let  = {(u  α), (¬u ∨ v  β), (¬v  γ)}; then

π ([u,v]) = 1 – γ ;

π ([u,¬v]) = 1 – β ;

π ([¬u,v]) = 1 – max(α, γ);

π ([¬u,¬v]) = 1 – α ;

the subnormalization degree of π being max (1 – α, 1 – β, 1 – γ), we get

 Incons( ) = 1 – sup π  = min(α, β, γ)

and the set of best models of  is

- {[¬u,¬v]} if α < min(β, γ)

- {[u,¬v]} if β < min(α, γ)

- {[u,v]} if γ < min(α, β)

- {[u,¬v], [¬u,¬v]} if α = β < γ
- {[u,v], [¬u,v], [¬u,¬v]} if α = γ < β
- {[u,v], [u,¬v]} if β = γ < α
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- {[u,v], [¬u,v], [u,¬v], [¬u,¬v]} if α = β = γ

This example indicates that the inconsistency degree of an inconsistent possibilistic

knowledge base  is the valuation of the least certain formula involved in the strongest

contradiction in . It is easy to see that ∀ Φ ∈ , Incons(  –{ Φ}) ≤ Incons( ). Let

'⊆  such that Incons( ') = Incons( ) > 0 and ∀ Φ ∈ ', Incons( ' – { Φ}) = 0, i.e.

' – {Φ} is consistent. ' is called a strongly minimal inconsistent subset of . Then the

following result holds :

Proposition 5 :

The inconsistency degree of an inconsistent3 possibilistic knowledge base  is the smallest

weight of possibilistic formulas in any inconsistent subset ' of . More precisely, if

Incons( ) = α > 0 then there exists at least one formula (ϕ α) ∈ ' and ∀(ϕ' β) ∈ ',

β ≥ α.

3.5. Deduction under partial inconsistency

Let  be a partially inconsistent necessity-valued knowledge base, that is,

 (⊥ Incons( )) with Incons( ) > 0 ; thus, since for any formula ϕ we have N(ϕ) ≥
N(⊥), any formula ϕ is deducible from  with a valuation greater or equal to Incons( ). It

means that any deduction such that (ϕ α) with α = Incons( ) may be only due to the

partial inconsistency of  and has perhaps nothing to do with ϕ. These deductions are called

trivial deductions ; on the contrary, deductions of necessity-valued formulae  (ϕ α)

with α > Incons( ) are not caused by the partial inconsistency ; they are called non-trivial

deductions.

Thus, Incons( ) acts as a threshold inhibiting all formulas of  with a valuation equal to or

under this threshold. The following result shows its role as a threshold for the deduction

problem more deeply :

3 If  is consistent, i.e. Incons() = 0, there is of course no minimal inconsistent subsets of  and
Proposition 5 is therefore unapplicable.
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Proposition 6 :

Let  be a set of possibilistic formulas and let Incons() = inc ; then

(i)  is semantically equivalent to inc and to i nc ∪ {(⊥ inc)}

(ii) i nc is consistent

(iii) if (ψ α) non trivially (i.e. with α > inc) then i nc (ψ α).

This result shows that only the consistent part of  consisting of the formulas with a weight

strictly greater than the inconsistency degree is significant for the deduction process. The next

result establishes a link between inconsistency degrees and inconsistency in classical logic.

Proposition 7 (partial inconsistencies and α-cuts) :

(1) (Dubois and Prade, 1987) Let  be a set of necessity-valued formulae ; then

Incons( ) = 0 if and only if * is consistent in the classical sense.

(2) Incons( ) = sup {α | α* inconsistent}

= inf {α | α* consistent}

and these two bounds are reached.

So, necessity-valued logic is close to classical logic in the sense that a necessity-valued

knowledge base is equivalent to a finite family of classical knowledge bases. The impact of this

result on automated deduction is the possibility of computing an inconsistency degree using

only classical first-order logic procedures, which leads to this result about complexity in

propositional necessity-valued logic :

Proposition 8 :

Determining the inconsistency degree of a propositional necessity-valued knowledge base is a

NP-complete problem.

The following results generalize the semantic versions of the classical deduction and refutation

theorems to necessity-valued logic :

Proposition 9 (deduction theorem) :

∪ {(ϕ 1)}  (ψ α)   iff   (ϕ → ψ  α)

Proposition 10 (refutation theorem) :

(ϕ α)   iff    ∪ {(¬ϕ 1)}  (⊥ α)
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or equivalently :

Val(ϕ, ) = Incons(  ∪ {(¬ϕ 1)})

Thus, any deduction problem in possibilistic logic comes down to computing an

inconsistency degree : if we want to know whether (ϕ α) is a logical consequence of  or not,

it is sufficient to compute Incons( ∪ (¬ϕ 1)), which is equal to the largest valuation α* such

that (ϕ α*).

Lastly we give the following result, stating that in order to deduce a possibilistic formula

(ϕ α), only the formulas with a weight greater or equal to α are useful for that purpose :

Proposition 11 :
Let  be a possibilistic knowledge base and (ϕ α) a necessity-valued formula. Then

(ϕ α) if and only if α (ϕ α).

3.6. A formal system for necessity-valued logic

In this section we are interested in giving a formal system for possibilistic logic, equipped

with the inconsistency-tolerant semantics. First of all, it is worth noticing that all tautologies of

PL1 are the possibilistic formulas of the form (τ α) where τ is a classical tautological formula

and α a valuation (see property (ii) stated just before Proposition 1). Hence finding a formal

system producing all possibilistic tautologies is straightforward. From now on we shall focus

on the following problem : is there a formal system, i.e. a set of axioms and inference rules,

such that from any set of possibilistic formulae  and for any possibilistic formula Φ, Φ is a

logical consequence of  if and only if Φ is derivable from  in this formal system ?

We are proposing the following formal system for PL1 (see also Lang (1991a)).

Axioms schemata :

(A1) (ϕ → (ψ → ϕ)  1)

(A2) ((ϕ → (ψ → ξ)) → ((ϕ → ψ) → (ϕ → ξ))  1)

(A3) ((¬ϕ → ¬ψ) → ((¬ϕ → ψ) → ϕ)  1)

(A4) ((∀x (ϕ → ψ)) → (ϕ → (∀x ψ))   1) if x does not appear in ϕ and is not bound in ψ
(A5) ((∀x ϕ) → ϕx|t   1)   if x is free for t in ϕ
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Inference rules :

(GMP) (ϕ α), (ϕ → ψ  β)  (ψ min(α,β))

(G) (ϕ α)  ((∀x ϕ) α) if x is not bound in ϕ
(S) (ϕ α)  (ϕ β) if β ≤ α

The axioms are those of a well-known Hilbert formal system for classical logic weighted by

1. A rule of inference similar to GMP has been first proposed in Rescher (1976). It has been

rediscovered in the fuzzy set setting in (Prade, 1982) see also (Dubois and Prade, 1985b).

GMP is called graded modus ponens ; it has been also used in (Froidevaux and Grossetête,

1990) in the framework of graded default theories.

Proposition 12 :

The proposed formal system is sound and complete with respect to the inconsistency-tolerant

semantics of possibilistic logic, i.e. for any set of possibilistic formulas  we have

 (ϕ α) if and only if  (ϕ α)

where  (ϕ α) means : "(ϕ α) can be derived from  in the above system".

Thus necessity-valued logic is axiomatizable.

3.7. Qualitative possibilistic logic and conditional logic

A qualitative possibilistic knowledge base is a finite set of (strict or non-strict) inequalities of

the form ϕ > ψ or ϕ ≥ ψ where "≥" is a qualitative necessity relation (see end of Section 2).

Thus, ϕ > ψ and ϕ ≥ ψ respectively means N(ϕ) > N(ψ) and N(ϕ) ≥ N(ψ). Satisfaction and

entailment are defined by means of qualitative necessity measures (see end of Section 2). In

(Fariñas del Cerro and Herzig, 1991), an equivalence is shown between qualitative possibilistic

logic and a conditional logic studied by Lewis (1973). Briefly, a model in this conditional logic

consists in a set of classical interpretations Ω and an absolute sphere system , which is a set

of nested subsets of Ω, closed for union and intersection ( corresponds to the set of α-cuts

induced by a qualitative necessity). In the finite propositional case, it has been shown that a

qualitative necessity relation is equivalent to a such a model. Then, satisfiability and validity in

qualitative possibilistic logic are equivalent to satisfiability and validity in the conditional logic.

See Fariñas del Cerro, Herzig and Lang (1992). See Boutilier (1992) for another embedding of

possibilistic logic in a modal framework. An extension of possibilistic logic where qualitative

possibilistic ordering relations between propositions are handled in the language is outlined in

(Benferhat, Dubois and Prade, 1992).
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3.8. Automated deduction

In this section we focus on automating the computation of the inconsistency degree of a

necessity-valued knowledge base. Two well-known automated deduction methods have been

generalized to possibilistic logic : resolution (Dubois and Prade, 1987) and (in the propositional

case) the Davis and Putnam semantic evaluation procedure (Lang, 1990). Here we focus

mainly on resolution for which we give soundness and completeness results.

3.8.1. Clausal form

In order to extend resolution to possibilistic logic, a clausal form is first defined. A

possibilistic clause is a possibilistic formula (c α) where c is a first-order or propositional

clause and α is a valuation of (0,1]. A possibilistic clausal form is a universally quantified

conjunction of possibilistic clauses.

The problem of finding a clausal form of  whose inconsistency degree is the same as 

always has a solution in PL1. Indeed there exists a clausal form  of  such that Incons() =

Incons( ), which gereralizes the result holding in classical logic about the equivalence between

the inconsistency of a set of formulas and the inconsistency of its clausal form. Indeed the

possibilistic clausal form  of  can be obtained by the following method :

Let  = {(ϕi αi), i = 1, …, n}

Put each ϕi into clausal form, i.e. ϕi = (∀) ∧j (cij ) where cij  is a universally-quantified 

classical first-order clause ;

 ← (∀) ∧i,j {(cij αi)}

Proposition 13 : Incons( ) = Incons( ).

3.8.2. Necessity-valued resolution

Once a clausal form is defined for a given necessity-valued knowledge base, the resolution

principle may be easily extended from classical first-order logic to necessity-valued logic, in

order to compute its inconsistency degree.

The following possibilistic resolution rule between two possibilistic clauses (c1 α1) and

(c2 α2) has been established by Dubois and Prade (1987) :

(R) (c1 α1) (c2 α2)  (R(c1, c2) min(α1, α2))
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where R(c1,c2) is any classical resolvent of c1 and c2. The following result establishes the

soundness of this resolution rule :

Proposition 14 (soundness of rule (R)) :
Let  be a set of possibilistic clauses, and C = (c α) a possibilistic clause obtained by a finite

number of successive applications of (R) to  ; then  C.

 The resolution rule for necessity-valued clauses locally performs at the syntactic level what the

combination/projection principle (Section 2) does in approximate reasoning.

Moreover resolution for necessity-valued clauses is complete for refutation and we have

the following results :

Proposition 15   (soundness and completeness of refutation by resolution in PL1) :

Let  be a set of necessity-valued first-order formulas and  the set of necessity-valued clauses

obtained from  ; then the valuation of the optimal refutation by resolution from  is the

inconsistency degree of .

This result was first established in (Dubois, Lang and Prade, 1989).

Corollary :
Let ϕ  be a classical formula and ' the set of possibilistic clauses obtained from

∪ {(¬ϕ 1))}; then the valuation of the optimal refutation by resolution from ' is Val(ϕ, ).

This corollary immediately stems from propositions 14 and 15.

Thus refutation by resolution can be used for computing the inconsistency degree of a

necessity-valued knowledge base. We consider a set  of possibilistic formulas (the

knowledge base) and a formula ϕ ; we want to know the maximal valuation with which 

entails ϕ, i.e. Val(ϕ, ) = sup{α ∈ (0,1], (ϕ α)}. This request can be answered by

using refutation by resolution, which is extended to possibilistic logic as follows :

Refutation by resolution :

1. Put  into clausal form  ;
2. Put ϕ into clausal form ; let c1, …, cm the obtained clauses ;

3. ' ←  ∪ {(c1 1)), …, (cn   1))}

4. Search for a deduction of (⊥ α) by applying repeatedly the resolution rule (R) from

', with α maximal ;

5. Val(ϕ, ) ← α.
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An implementation based on an A*-like ordered search method has been proposed for

finding out the refutation with α maximal first. See (Dubois, Lang and Prade, 1987).

Illustrative example

Let  = {Φ1 , …, Φ6} be the following possibilistic knowledge base,

concerning an election whose only candidates are Mary and Peter :

Φ1 ((Elected(Peter)∨ Elected(Mary)) ∧ (¬Elected(Peter)∨ ¬Elected(Mary)) 1)

Φ2 (∀x ¬Current-president(x) ∨ Elected(x) 0.5)

Φ3 (Current-president(Mary) 1)

Φ4 (∀x ¬Supports(John,x) ∨ Elected(x) 0.6)

Φ5 (Supports(John,Mary) 0.2)

Φ6 (∀x ¬Victim-of-an-affair(x) ∨ ¬Elected(x) 0.7)

 is equivalent to the set of possibilistic clauses  = {C1, …, C7} :

C1 (Elected(Peter) ∨ Elected(Mary)   1)

C2 (¬Elected(Peter) ∨ ¬Elected(Mary)   1)

C3 (¬Current-president(x) ∨ Elected(x)   0.5)

C4 (Current-president(Mary)   1)

C5 (¬Supports(John,x) ∨ Elected(x)   0.6)

C6 (Supports(John,Mary)   0.2)

C7 (¬Victim-of-an-affair(x) ∨ ¬Elected(x)   0.7)

We cannot find any refutation from  ; hence,  is completely consistent, i.e.

Incons( ) = 0. Let us now find the best lower bound of the necessity degree of the

formula "Elected(Mary)". Let ' =  ∪ {(¬Elected(Mary) 1)} ; then there exist two

distinct refutations by resolution from ', which are :

(¬ Current-president (Mary)   0.5)

(¬ Elected (Mary)   1) C3

C4

(⊥   0.5)

(¬ Elected (Mary)    1) C5

(¬ Supports (John, Mary)   0.6) C6

(⊥   0.2)

	OPTIMAL NON -OPTIMAL

Hence we conclude that (Elected(Mary) 0.5), i.e. it is moderately certain that

Mary will be elected ; this degree 0.5 is maximal, i.e. Val(Elected(Mary), ) = 0.5.
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Then we learn that Mary is being the victim of an affair, which leads us to update
the knowledge base by adding to  the possibilistic clause C8 : (Victim-of-an-

affair(Mary) 1)). Let 1 be the new knowledge base, 1 =  ∪ {C8}. Then, we

can find a 0.5-refutation from 1 (which is optimal) :

C8 C7

(¬ Elected (Mary)   0.7)

C3 C4

(Elected (Mary)   0.5)

(⊥   0.5)

Hence 1 is partially inconsistent, with Incons (1) = 0.5.

The refutation which had given N(Elected(Mary)) ≥ 0.5 can still be obtained
from 1 but since its valuation is not greater than Incons(1), it becomes a trivial

deduction. Contrarily, adding to 1 the possibilistic clause (Elected(Mary) 1), we

find this time a 0.7-refutation ; and since 0.7 > Incons(1), the deduction

1 (¬Elected(Mary) 0.7) is non-trivial ; it could be shown that we also have

1 (Elected(Peter) 0.7).

3.8.3. Semantic evaluation (propositional case)

Resolution is a syntactic proof procedure ; as it is the case in classical logic, semantic

procedures for necessity-valued logic are interesting because they are more constructive than

syntactic ones. Indeed, necessity-valued resolution only gives the inconsistency degree of a

necessity-valued knowledge base , but it does not give the best model(s) of  (as defined in

Section 3.4). As said in Section 3.3, computing Incons() comes down to computing the

degree of consistency sup π  of the possibility distribution π .

A naive idea would consist in computing π (ω) for all ω in Ω, for example by building a

semantic tree as in classical propositional logic. The main problem is that complexity is

prohibitive, since it requires to compute 2p values of π (ω) where p is the number of atomic

propositions in . A semantic evaluation algorithm for necessity-valued logic, based on an

possibilistic extension of the Davis and Putnam (1960) procedure, computes also the best

models (or one of the best models, if preferred) of a clausal necessity-valued propositional

knowledge base  by building a (small) part of a semantic tree for , by evaluating literals

successively. Some techniques improve the efficiency of semantic evaluation by transforming it

into the search in a min-max tree, and then pruning branches by two techniques, one being the
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well-known alpha-beta pruning method, the other one being a generalisation of the so-called

"model partition theorem" obtained for (classical) propositional logic by Jeannicot, Oxusoff and

Rauzy (1988). See (Lang, 1990) for further details.

3.9. Non-monotonic aspects

Whether possibilistic logic can be considered as monotonic or not, depends on what kind

of deduction is allowed. The operator  is monotonic : indeed, due to the definitions of

satisfiability, any possibility distribution π satisfying  ∪ ' also satisfies , hence the

result :

if (ϕ α) then  ∪ ' (ϕ α)

where  and ' are any sets of possibilistic formulas and (ϕ α) is any necessity-valued

formula.

However we may wish to take into account only non-trivial deductions (we recall that the

deduction (ϕ α) is non-trivial iff α > Incons( ) ; see Section 3.5). Let us then define the

non-trivial deduction operator |≈ by

|≈ (ϕ α) iff (ϕ α) and α > Incons( ).

Then it can be the case that |≈ (ϕ α) and  ∪ ' |≈ (ϕ α) ; indeed this situation occurs

when Incons( ) < α ≤ Incons(  ∪ '). Hence |≈ is non-monotonic.

We now give a detailed example illustrating this non-monotonic behaviour.

Example

We now consider again the knowledge base of Section 3.8.2. It can be established

that Incons( ) = 0, i.e.  is completely consistent. We are interested in knowing

who will be elected and with the maximal certainty degree. It can be proved that

(Elected(Mary) 0.5) ; (¬Elected(Mary) 0)

(Elected(Peter) 0) ; (¬Elected(Peter) 0.5)

 i.e. it is moderately certain that Mary will be elected (or equivalently that Peter will

not) ; this degree 0.5 is maximal, i.e. Val( ,Elected(Mary)) = 0.5. Since

Incons( ) = 0, we may also write that

|≈ (Elected(Mary)   0.5) ; |≈ (¬Elected(Peter) 0.5)
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Then, we learn that Mary is being the victim of an affair (which is a completely

certain information). This leads us to update the knowledge base by adding to  the

possibilistic formula

Φ7 : (Victim-of-an-affair(Mary) 1)

Let 1 be the new knowledge base, 1 =  ∪ {Φ7}. It can be proved that 1 is

partially inconsistent, with Incons(1) = 0.5. Indeed the new information leads to

prove that Mary will not be elected, whereas the previous knowledge base  leads

to prove that Mary will be elected (each time with a non-total certainty). It can

always be proved that

1  (Elected(Mary) 0.5)

1  (¬Elected(Peter) 0.5)

but these deductions are now invalidated by the inconsistency threshold, hence

trivial. Using the non-trivial deduction operator, it comes down to writing that the

previously non-trivial deductions  |≈ (Elected(Mary) 0.5) and  | ≈
(¬Elected(Peter) 0.5) can no longer be made with 1. In this case we capture a

non-monotonic behaviour.

Besides, we have now

1  (¬Elected(Mary) 0.7)

1  (Elected(Peter) 0.7)

and these deductions are non-trivial since 0.7 > Incons(1), i.e.

1 |≈ (¬Elected(Mary) 0.7)

1 |≈ (Elected(Peter) 0.7)

meaning that it is now almost certain that Mary will not be elected and that Peter will

be. Hence, updating the knowledge base leads us to an opposite conclusion.

The links between nonmonotonic reasoning and possibilistic logic (first pointed out in

Dubois, Lang and Prade, 1989 and Léa Sombé, 1990) are now more deeply investigated. Let

 be a possibilistic knowledge base containing necessity-valued formulas and π  be the

corresponding minimally specific possibility distribution on interpretations, namely if  =
{( ϕi αi), i=1,n}, then π (ω) = min{1 – αi | ω  ¬ϕi, i=1,n}.

Consider the preference relation, denoted , on the set of interpretations Ω, defined by



31

ω  ω' ⇔ π (ω) < π (ω') .

This relation equips Ω with a strict partial order as requested in Shoham (1988). He defines a

preferred model of a formula ϕ as an interpretation ω such that ω  ϕ and  ω' ≠ ω, ω'  ϕ
and ω  ω'. It is a maximal element in {ω' | ω'  ϕ} in the sense of  and this is denoted

ω  ϕ. Moreover ϕ is said to preferentially entail ψ, denoted ϕ  ψ if and only if all

preferred models of ϕ satisfy ψ ; more precisely

ϕ  ψ ⇔ ∀ω, ω  ϕ implies ω  ψ

If  is induced by a possibility distribution π , it is easy to verify that ω  ϕ if and only if

π (ω) = ∏ (ϕ) that is, ω is a best model of  ∪ {(ϕ 1)}. When π (ω) = 0, however, the

concept of preferred model is debatable since π (ω) = 0 means that ω is impossible. In the

following, we shall restrict Shoham's definition to the case when π (ω) > 0, and let

ω  ϕ if and only if π (ω) = ∏ (ϕ) > 0

Preferential entailment is then defined as above. Note that contrary to Shoham's conventions,

we cannot have ⊥  ϕ since  does not apply to an inconsistent set of premises. It may

sound natural that while the contradiction entails anything, it preferentially entails nothing. This

convention is different from the one adopted by Gärdenfors and Makinson (1992) for whom

preferential entailment should subsume the classical notion, a point of view which is not chosen

here.

The following result can then be established :

∃ α > 0,  ∪ (ϕ 1) |≈ (ψ α) if and only if ϕ  ψ

where |≈ denotes  the non-trivial deduction operator. In other words, ψ is a non trivial

deduction of  augmented with ϕ, if ϕ preferentially entails ψ in the sense of the ordering of

models induced by . This result is formally proved in Dubois and Prade (1991a). It can be

explained as follows : the possibility distribution π*  associated to  ∪ {(ϕ 1)} is

         π* (ω) = π (ω) if ω  ϕ
= 0 otherwise .

It is clear that

maxω∈Ω π* (ω) = ∏ (ϕ), and Incons(  ∪ {(ϕ 1)}) = 1 – ∏ (ϕ).
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Now  ∪ {(ϕ 1)} |≈ (ψ α) means that N∪{( ϕ 1)}(ψ) = α > Incons (  ∪ {(ϕ 1)}). Now if ω
is a preferred model of ϕ, we have π (ω) = ∏ (ϕ). Then the interpretation ω should satisfy

ψ, for otherwise

N ∪{( ϕ 1)}(ψ) = minω' ¬ψ 1 – π* (ω') ≤ 1 – π (ω) = Incons(  ∪ {(ϕ 1)}) < α .

Hence ϕ preferentially entails ψ. The converse is as easy to establish. Again, the non-trivial

deduction operation |≈ is not a generalization of the classical semantic entailment  since if F is

an inconsistent classical knowledge base, then F  ϕ for any ϕ while  |≈ ϕ never holds, all

deductions being trivial.

A link between preferential entailment and conditional possibility measures has been

established. Namely let ∏(ψ | ϕ) be the possibility of ψ conditioned on ϕ. It is defined by the

implicit equation (Hisdal, 1978) :

∏(ϕ ∧ ψ) = min(∏(ψ | ϕ), ∏(ϕ))

of which we must select the greatest solution, when ψ ≠ ⊥. The conditional possibility is then

defined as

    ∀ϕ, ∀ψ, ∏(ψ | ϕ) = 1 if ∏(ϕ ∧ ψ) = ∏(ϕ)

= ∏(ϕ ∧ ψ) otherwise .

The corresponding possibility distribution is π(⋅ | ϕ), such that

         π(ω | ϕ) = 1 if π(ω) = ∏(ϕ) > 0 and ω  ϕ
= π(ω) if π(ω) < ∏(ϕ) and ω  ϕ
= 0 if ∏(ϕ) > 0 and ω  ¬ϕ
= 1 if ∏(ϕ) = 0

Hence when ∏(ϕ) > 0, π(ω | ϕ) = 1 if and only if ω is a preferred model of ϕ. The conditional

necessity is defined by N(ψ  | ϕ) = 1 – ∏(¬ψ  | ϕ). Note that ∏(ϕ) = max(∏(ψ ∧ ϕ),

∏(¬ψ ∧ ϕ)) so that the definition of the conditional possibility measure is also expressed by

                   ∏(ψ | ϕ) = 1 if ∏(ϕ ∧ ψ) ≥ ∏(ϕ ∧ ¬ψ)

= ∏(ϕ ∧ ψ) otherwise

and the conditional necessity measure by

        N(ψ | ϕ) = N(¬ϕ ∨ ψ) if N(¬ϕ ∨ ψ) > N(¬ϕ ∨ ¬ψ)

= 0 otherwise.
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∏(ψ | ϕ) and N(ψ | ϕ) are numerical counterparts of Lewis (1973) "might" conditional (if it

were that ϕ it might be that ψ) and "would" conditional (if it were that ϕ it would be that ψ)

respectively.

The modified preferential entailment ϕ  ψ can then be expressed in terms of the

conditional possibility or necessity ∏ (ψ | ϕ) and N (ψ | ϕ) as follows (Dubois and Prade,

1991a) :

ϕ  ψ if and only if ∏ (ψ | ϕ) > ∏ (¬ψ | ϕ)

if and only if N (ψ | ϕ) > 0

if and only if ∏ (ψ ∧ ϕ) > ∏ (¬ψ ∧ ϕ)

if and only if N (¬ϕ ∨ ψ) > N (¬ϕ ∨ ¬ψ)

Indeed if {ω | π (ω) = ∏ (ϕ) > 0} ⊆ {ω | ω  ψ}, it means that

∏ (ϕ ∧ ψ) = maxω ϕ∧ψ π (ω) = ∏ (ϕ)

while
∏ (ϕ ∧ ¬ψ) = maxω ϕ∧¬ψ π (ω) < ∏ (ϕ)

since no preferred model of ϕ satisfies ¬ψ. Again we do not need as Gärdenfors and Makinson

(1992) to add the supplementary condition ϕ  ψ to N (ψ | ϕ) > 0, because we do not allow

for ⊥  ϕ. Hence ψ is a non-trivial consequence of  ∪ {(ϕ 1)} as soon as N(ψ | ϕ) > 0. It

also means that the non-trivial consequence relationship |≈ can be characterized at the semantic

level by means of the conditional possibility distribution π (· | ϕ), since the only useful part of

π  when computing the non-trivial consequences of  ∪ {(ϕ 1)} is its restriction to the set

{ ω  | ω   ϕ and π(ω) < ∏(ϕ)}, as pointed out in (Dubois and Prade, 1991a). Indeed

N (ψ | ϕ) > 0 ⇔  N (ψ | ϕ) = N (¬ϕ ∨ ψ) = 1 – supω ϕ∧¬ψ π (ω) > 1 – ∏ (ϕ) =

Incons(  ∪ {(ϕ 1)}), i.e. we may just normalize the restriction of π  to the models of ϕ by

assigning a possibility degree equal to 1 to its maxima, and work with this normalized

possibility distribution. Note that π (ω | ⊥) = 1, ∀ ω ∈ Ω, i.e. conditioning with the

contradiction leads to total ignorance.

The non-trivial consequence relationship satisfies the rules of a well-behaved consequence

relationship as first introduced by Gabbay (1985) :

ϕ  ϕ   when ϕ ≠ ⊥ (reflexivity, up to the contradiction)

ϕ  ψ, ϕ ∧ ψ  ξ ⇒ ϕ  ξ (cut)

ϕ  ψ, ϕ  ξ ⇒ ϕ ∧ ψ  ξ (restricted monotonicity)
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ϕ  ξ, ψ  ξ ⇒ ϕ ∨ ψ  ξ (OR)

In terms of conditional necessity measures, these properties read (Dubois and Prade, 1991b)

N(ϕ | ϕ) = 1  for ϕ ≠ ⊥
N(ψ | ϕ) > 0, N(ξ | ϕ ∧ ψ) > 0 ⇒ N(ξ | ϕ) ≥ min(N(ψ | ϕ), N(ξ | ϕ ∧ ψ))

N(ψ | ϕ) > 0, N(ξ | ϕ) > 0 ⇒ N(ξ | ϕ ∧ ψ) ≥ min(N(ψ | ϕ), N(ξ | ϕ))

N(ξ | ϕ) > 0, N(ξ | ψ) > 0 ⇒ N(ξ | ϕ ∨ ψ) ≥ min(N(ξ | ϕ), N(ξ | ψ)).

Rational monotony

ϕ /  ¬ψ and ϕ  ξ ⇒ ϕ ∧ ψ  ξ

is also satisfied in possibilistic logic (Benferhat, Dubois and Prade, 1992) under the form

N(¬ψ | ϕ) = 0 and N(ξ | ϕ) > 0 ⇒ N(ξ | ϕ ∧ ψ) > 0.

Consequently possibilistic logic belongs to the family of non-monotonic logics based on

preferential models.

3.10. Belief revision and possibilistic logic

Gärdenfors (1990) has suggested that non-monotonic reasoning and belief revision were

two sides of the same coin ; see (Makinson and Gärdenfors, 1991) for a complete exposition.

This is true for non-monotonic logic based on preferential models since Gärdenfors has shown

how to translate the postulates of belief revision (Gärdenfors, 1988) into the axioms of

preferential model-based non-monotonic logics, and that the latter have been given a semantics

in accordance with Shoham's preference logic (Kraus et al., 1990). Thus, no wonder if there is

a connection between possibilistic logic and belief revision.

More specifically Gärdenfors (1988) considers a belief set as a set K of propositions closed
by the consequence relation. The expansion of K by a formula ϕ is simply K+ϕ = closure(K ∪

{ ϕ}) which may contain all formulas (absurd belief set) if ϕ is inconsistent with K. The

revision of K by a formula ϕ results in a consistent belief set K*ϕ even if K and ϕ are

inconsistent together. The axioms which a rational revision procedure should satisfy are as

follows

K* 1) K* ϕ is a belief set

K* 2) ϕ ∈ K* ϕ
K* 3) K* ϕ ⊆ K+ϕ



35

K* 4) if ¬ϕ ∉ K then K+ϕ ⊆ K* ϕ
K* 5) K* ϕ is the absurd belief state if and only if ϕ = ⊥
K* 6) ϕ ↔ ψ implies K*ϕ = K*ψ
K* 7) K* ϕ∧ψ ⊆ (K* ϕ)+ψ
K*8) if ¬ψ ∉ K* ϕ then (K*ϕ)+ψ ⊆ K* ϕ∧ψ

While these postulates leave the choice of the revision procedure quite open, Gärdenfors (1988)
proves that any such revision procedure underlies an ordering ≥E on the formulas of a belief

set, that guides the revision procedure. Gärdenfors names this ordering "epistemic
entrenchment". More specifically denoting >E the strict part of ≥E

ψ ∈ K* ϕ  if and only if  ¬ϕ ∨ ψ >E ¬ϕ ∨ ¬ψ

In Dubois and Prade (1991c) we have pointed out that the relation ≥E has exactly the same

properties as a comparative necessity relation, with the additional constraint T >E ϕ if ϕ is not a

tautology. Hence the only numerical counterpart to epistemic entrenchment relations are

necessity measures.

Gärdenfors' methodology goes from postulates of belief revision to the characterization of

epistemic entrenchment relations. Since a possibilistic knowledge base, containing necessity-

valued formulas, obeys the laws of epistemic entrenchment, one may expect that by deleting the

least certain formulas in order to cope with inconsistency, one gets a rational revision

procedure.

First, a necessity-valued knowledge base  is not explicitly closed under the consequence

relation, however it is implicitely : as shown in Section 3.2 it is equivalent to a possibility

distribution π  over its interpretations, through the principle of minimum specificity, and this

possibility distribution enables the degree of necessity of any formula to be evaluated. This is

achieved at the syntactic level by means of the extended resolution principle. Hence a partially

defined epistemic entrenchment relation on a belief set K, expressed by assigning weights to

some of the formulas, can be canonically extended to the whole belief set. We call it an ordered

belief set.

The expansion of an ordered belief set K consists in adding a formula (ϕ 1) and to compute

the closure of K ∪ {(ϕ 1)} by means of the extended resolution principle.

The revision of an ordered belief set K consists in computing the non-trivial consequences
of K ∪ {(ϕ 1)}, that is, K*ϕ is made by all (ψ α) such that K ∪ {(ϕ 1)}  (ψ α) with
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α > Incons(K ∪ {(ϕ 1)}). The obtained ordered belief set K*ϕ contains none of the formulas

(ξ β) ∈ K such that β ≤ Incons ( ∪ {(ϕ  1)}). In fact K*ϕ violates axiom K*5 in the sense

that K*ϕ = Ø in particular if ϕ = ⊥. This is again due to the fact that ⊥ |≈ ψ is not accepted in

our approach. But it is really a matter of detail. Note that K*⊥ = Ø is consistent with

πK(ω | ⊥) = 1, ∀ω, as defined above, while if K*⊥ contain all formulas, it would require the

convention πK(ω | ⊥) = 0, ∀ω ∈ Ω. See Dubois and Prade (1992b) for a detailed discussion.

At the semantic level, the expansion K+ϕ of K consists in turning the corresponding

possibility distribution π into π+ϕ such that

         π+ϕ(ω) = π(ω) if ω  ϕ

= 0 otherwise

Revision consists in turning π into π*ϕ = π(⋅ | ϕ). It is proved in Dubois and Prade (1992b)

that π+ϕ and π*ϕ satisfy all rationality postulates of well-behaved expansions and revisions

respectively (up to the question of defining K*⊥). And both are at work in the inconsistency-

tolerant deduction machinery of possibilistic logic.

4. Generalizations of possibilistic logic

The "basic" version of possibilistic logic that we have discussed so far may be not sufficient

to model some kinds of incomplete information we may wish to handle, such as :

– possibility-qualified sentences, for instance

"it is possible that John comes"

– conditional sentences, whose condition depends on a fuzzy predicate

"the later John arrives, the more certain the meeting will not be quiet"

– sentences involving vague predicates, for instance

"if the temperature is high then there will be only a few participants"

In order to enable the handling of such knowledge, we present in this section some

formalisms which are either extensions of possibilistic logic (where the basic language and

semantics of possibilistic logic are enriched) or generalizations (where possibilistic logic is

considered as a particular case of more general logical models).
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4.1. Possibilistic logic with possibility- and necessity-qualified formulas

In Section 3 we have studied in detail the semantics, axiomatics and some automated

deduction procedures of necessity-valued logic where necessity-qualified statements are

represented by necessity-valued formulas. However this fragment of possibilistic logic cannot

handle possibility-qualified statements. As seen in Section 2, if the statement "(at least one

value in A) is (at least) α-possible for x" is given, then finding an underlying possibility

distribution restricting the values of x comes down to solve the equation ∏(A) ≥ α. In order to

handle both possibility- and necessity- qualified statements, the (extended) language should be

able to syntactically model constraints in terms of lower bounds of a necessity or of a

possibility measure. It comes down to allow for two kinds of weighted formulas : necessity-

valued formulas expressing that N(ϕ) ≥ α as already seen and possibility-valued formulas

expressing that ∏(ϕ) ≥ α. The valuations will be denoted w and stand for (∏ α) or (N α)

according to whether α is a lower bound of a possibility or a necessity measure.

Thus, a possibilistic formula is either a pair (ϕ (N α)) where ϕ is a classical first-order

closed formula and α ∈ (0,1], (α should be strictly positive) or a pair (ϕ (∏ β)) where

β ∈ [0,1]. (ϕ (N α)) expresses that ϕ is certain at least to the degree α, i.e. N(ϕ) ≥ α, and

(ϕ (∏ β)) expresses that ϕ is possible in some world at least to the degree β, i.e. ∏(ϕ) ≥ β,

where ∏ and N are dual measures (∏(ϕ) = 1 – N(¬ϕ)) of possibility and necessity modelling

our incomplete state of knowledge. ∏(ϕ) ≥ β expresses to what extent we consider that ϕ
cannot be refuted (or equivalently ¬ϕ cannot be proved). More specifically, ∏(ϕ) ≥ β
expresses that ϕ is consistent with the remainder of the knowledge base to which ϕ belongs, at

least at level β. Particularly, if both (ϕ (∏ 1)) and (¬ϕ (∏ 1)) are stated, it means that neither ϕ
nor ¬ϕ is allowed to be a consequence of the remainder of the knowledge base. Hence the use

of possibility-qualified statements allows us for claiming that some propositions cannot be

established nor refuted. We can express knowledge about ignorance.

The right part of a possibilistic formula, i.e. (N α) or (∏ β), is called the valuation of the

formula, and is denoted val(ϕ).  will denote the set of all possible valuations w, i.e.

 = {(N α) | 0 < α ≤ 1} ∪ {(∏ α) | 0 ≤ α ≤ 1}

Since N(ϕ) > 0 entails ∏(ϕ) = 1, (ϕ (N α)) is stronger than (ϕ (∏ β)) for any α > 0, β ≥ 0 ;

this leads us to define the following ordering among valuations :

(N α) ≤ (N β) iff α ≤ β ; (∏ α) ≤ (∏ β) iff α ≤ β ; (∏ α) ≤ (N β) ∀α, ∀ β > 0.
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Hence the maximal and minimal elements of  are respectively (N 1) (expressing that a

formula is completely certain) and (∏ 0) (expressing that we do not know anything about the

truth, the falsity nor the consistency of a formula). Again, we never explicitly handle formulas

of the form (ϕ (∏ 0)) since ∀ϕ, ∏(ϕ) ≥ 0. The difference between (ϕ (∏ 1)) and (ϕ (∏ 0)) is

that by stating (ϕ (∏ 1)) it is claimed that for sure ¬ϕ cannot be proved, while (ϕ (∏ 0))

expresses our ignorance about whether ¬ϕ can be proved or not.

A possibilistic knowledge base is then defined as a finite set (i.e. a conjunction) of

possibilistic formulas. A possibilistic formula whose valuation is of the form (N α)

(respectively (∏ α )) will be called a necessity-valued (resp. possibility-valued)

formula. Let PL2 denote the language consisting in possibilistic formulas (both necessity-

valued as well as possibility-valued ones). We recall that the language consisting only in

necessity-valued formulas was denoted PL1. The classical projection * of  still denotes the

set of classical formulas obtained from a set of possibilistic formulae , by ignoring the
weights ; thus, if  = {(ϕi wi) , i = 1, …, n} then * = { ϕi , i = 1, …, n}. As for necessity-

valued knowledge bases, a possibilistic knowledge base may also be seen as a collection of

nested sets of (classical) formulas (since  is ordered) : w being a valuation of , the w-cut
and the strict w-cut of , denoted respectively by w and w, are defined by

w = {(ϕ v) ∈  | v ≥ w} ;

w = {(ϕ v) ∈  | v > w}.

4.1.1. Semantics

In this subsection we extend the necessity-valued semantics to PL2 in a natural way . A lot

of results being very similar to those of necessity-valued logic, we are often just stating them

with very few comments or examples ; we are mainly focusing on the differences induced by

the extension of the language, i.e. properties which do not hold anymore in full possibilistic

logic. A more detailed treatment of PL2 can be found in (Lang et al., 1991).

We first associate to a set of possibilistic formulas the set of normalized possibility

distributions on Ω satisfying it. For the possibility distribution π inducing the possibility

measure ∏ and the necessity measure N, satisfaction is defined as :

π  (ϕ (N α)) if and only if N(ϕ) ≥ α ;

π  (ϕ (∏ α)) if and only if ∏(ϕ) ≥ α ;

π   = {(ϕi wi), i = 1, …, n} if and only if ∀ i = 1, …, n, π  (ϕi wi).

and logical consequence as :
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 Φ if and only if for all π (π ) ⇒ (π Φ).

The function Val is naturally extended by

Val(ϕ, ) = Sup {w |  (ϕ w)}.

Example

Let  = {(p (N 0.7)), (¬p ∨ q (∏ 0.8))}.

π ⇔ N(p) ≥ 0.7 and ∏(¬p ∨ q) ≥ 0.8

⇔ Inf{1 - π(ω), ω  ¬p} ≥ 0.7 and sup{π(ω), ω  ¬p ∨ q} ≥ 0.8.

Let Ω = {[p,q], [¬p,q], [p,¬q], [¬p,¬q]} be the 4 different interpretations for the

propositional language generated by {p,q} (where [p,q] gives the value True to p

and q, etc.). Then, π  is equivalent to ∏(¬p) ≤ 0.3 and ∏(¬p ∨ q) ≥ 0.8,

which leads to

max(π([¬p,q]), π([¬p,¬q])) ≤ 0.3
max(π([p,q]), π([¬p,q]), π([¬p,¬q])) ≥ 0.8
max(π([p,q]), π([¬p,q]), π([p,¬q]), π([¬p,¬q])) = 1

⇔

π([¬p,q]) ≤ 0.3
π([¬p,¬q]) ≤ 0.3
π([p,q]) ≥ 0.8
max(π([p,q]), π([p,¬q])) = 1

It is then obvious that  (q (∏ 0.8)). Indeed, any possibility distribution π
satisfying  is such that π([p,q]) ≥ 0.8, and thus verifies ∏(q) = max(π([p,q]),

π([¬p,q])) ≥ 0.8 ; hence π satisfies (q (∏ 0.8)).

Moreover, ∀ w > (∏ 0.8), we do not have (q w); thus Val(q, ) = (∏ 0.8).

The following properties are straightforward :

(i) (ϕ w) (ϕ w') ∀w' ≤ w

(ii) ∀w > (∏ 0), (ϕ w) if and only if ϕ is a tautology.

There is a strong analogy between the definitions of satisfiability in possibilistic logic and in
multi-modal logics. Satisfiability of αϕ, i.e. M, w  αϕ iff ∃w', Rα(w,w') and w'  ϕ
(where M is a Kripke model, w a world and {Rα, 0 < α ≤ 1} a family of accessibility

relations) corresponds to π  (ϕ (∏ α)) iff ∃ω, π(ω) ≥ α and ω  ϕ,which leads us to

interpret possibilistic logic in terms of a multi-modal system. See Dubois, Prade and Testemale
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(1988) for a first study and Fariñas del Cerro and Herzig (1991) for a recent multi-modal

axiomatics of qualitative possibilistic logic.

There are two kinds of inconsistencies in a possibilistic knowledge base  :

– inconsistencies generated by (only) contradictory necessity-valued formulae ; they can be

solved (as already seen) by allowing non-zero value for N(⊥).

– inconsistencies involving both possibility- and necessity-valued formulas.

In order to equip inconsistent possibilistic knowledge bases with semantics, one approach is

to add to the set of interpretations Ω an extra-element, noted ω⊥ in which any formula is "true",

i.e. ∀ ϕ ∈ ', ω⊥  ϕ which corresponds to the idea of an "absurd interpretation" discussed

by Stalnaker (1968). Let Ω⊥ = Ω ∪ {ω⊥}. A possibility distribution on Ω⊥ is a mapping π
from Ω⊥ to [0,1] such that ∃ ω ∈ Ω⊥, π(ω) = 1 (normalization over Ω⊥). Then we define two

functions from ' to [0,1] induced by π : ∏(ϕ) = sup{π(ω), ω ∈ Ω⊥, ω  ϕ} ; N(ϕ) =

inf{1 – π(ω), ω ∈ Ω⊥, ω  ϕ} . Note that N(ϕ) does not take π(ω⊥) into account, while ∏(ϕ)

does ; note also that ω   ϕ  is no longer equivalent to ω  ¬ϕ , since ω⊥  ϕ  and

ω⊥ ¬ϕ . The idea of adding an extra-element to the referential of a possibility distribution

has been already used for dealing with the case of an attribute which does not apply to an item

of a data base. However the extensions of the possibility and necessity measures which are

used for the evaluations of queries in incomplete information data bases differ from ∏ and N

defined here ; see Chapter 6 of Dubois and Prade (1985b).

The classical possibility and necessity measures ∏(ϕ) = sup{π(ω), ω ∈ Ω, ω  ϕ} and

N(ϕ) = inf{1 – π(ω), ω ∈ Ω, ω  ¬ϕ} deriving from the (possibly un-normalized) restriction

of π to Ω are related to ∏ and N as follows

∏(ϕ) = max(∏(ϕ),π(ω⊥))

N(ϕ) = N(ϕ) = 1 – ∏(¬ϕ)

∏ = ∏ if and only if π(ω⊥) = 0 ; in this case π is normalized on Ω. Note that ∏ is not a

possibility measure with respect to Ω, but only with respect to Ω⊥. We shall call ∏ and N

inconsistency-tolerant possibility (resp. necessity) measures.

Each possibilistic formula (ϕ (∏ α)) or (ϕ (N α)), is now interpreted as ∏(ϕ) ≥ α
respectively N(ϕ) ≥ α ), i.e. we take into account the absurd interpretation in our

understanding of uncertainty-qualified statements. For instance, (ϕ (∏ α)) expresses that "it is

possible at least to the degree α that either ϕ is true or that we are in an absurd situation". This



41

leads us to the following definitions paralleling the definitions of Section 3.2 replacing Ω
(respectively π, ∏, N) by Ω⊥ (respectively π, ∏, N).

– satisfaction : π  (ϕ (∏ α)) iff ∏(ϕ) ≥ α ; π  (ϕ (N α)) iff N(ϕ) ≥ α, where ∏ and N

are the inconsistency-tolerant possibility and necessity measures induced by π ; π   iff π
satisfies all formulae of  ;

– logical consequence :   Φ iff ∀π , π   implies π  Φ.

The results about the characterization of the set of possibility distributions satisfying a

necessity-valued knowledge base via a single possibility distribution π  cannot be generalized

to possibilistic logic with possibility-qualified formulas, since this set has generally no longer

an upper bound on Ω⊥.

The inconsistency-tolerant semantics for full possibilistic logic subsumes the (inconsistency-

tolerant) semantics for necessity-valued logic (as it is intended to be). Indeed, the previously

subnormalized possibility distributions on Ω are now artificially renormalized on Ω⊥ by adding

the constraint π(ω⊥) = 1.

As pointed out above we can distinguish between two different types of inconsistencies. Let

 be a set of possibilistic formulas ; considering the possibility distributions on Ω⊥ satisfying

, three situations may occur :

(i) ∃π, π  such that π(ω⊥) = 0 : in this case,  is consistent in both semantics ;  is

then said to be completely consistent.

(ii) ∀ π, π , π(ω⊥) > 0 but ∃π, π  such that sup{π(ω), ω ≠ ω⊥} = 1 : then, for

any π satisfying , we have ∏(⊥) = π(ω⊥) > 0 and N(⊥) = 1 – sup{π(ω), ω ≠ ω⊥} =

0. Thus  induces only a "possible inconsistency" (contradiction being possible to a

strictly positive degree). The minimal value of π(ω⊥) among the possibility distributions

π on Ω⊥ satisfying  gives the inconsistency degree of . Let α = inf{ π(ω⊥), π };

then Incons( ) = (∏ α).

(iii) ∀π, π , sup{π (ω), ω ≠ ω⊥} < 1 (which entails that ∀π, π , π(ω⊥) = 1). In

this   case, for any π satisfying , we have π(ω⊥) = 1 and N(⊥) = 1 – sup{π(ω),

ω ≠ ω⊥} > 0. We thus recover the notion of partial inconsistency introduced in LP1.

The inconsistency degree of  is now a valuation of the form (∏ α) or (N α), defined

as

Incons( ) = sup{w ∈  |  (⊥ w)}
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 is completely consistent iff Incons( ) = (∏ 0). If ∀π, π , sup{π(ω), ω ≠ ω⊥} = 0,

then Incons( ) = (N 1) and  is completely inconsistent. If Incons( ) = (∏ α) with α > 0

then  is said to be weakly inconsistent. If Incons( ) = (N β) with β < 1 then  is partially

inconsistent. The following scale (Figure 1) shows the hierarchy of inconsistencies :

(N 1)

(N α)

(∏ 1)

(∏ α)

(∏ 0) complete consistency

complete inconsistency

partial inconsistency

weak inconsistencyIncons(   )

Figure 1

It should be clear that when  is consistent, or partially inconsistent, then the two semantic

entailments  and  are equivalent.

Examples

The knowledge base  of Section 3.3 gives an example of a degree of

inconsistency equal to (N0.3).

An example of a knowledge base with a degree of inconsistency of the form (∏ α)

is given by     = {(p (∏ 0.7)), (¬p (N 0.6))}. Clearly

  π satisfies  

⇔ ∏(p) ≥ 0.7 and N(¬p) ≥ 0.6

⇔ ∏(p) ≥ 0.7 and ∏(p) ≤ 0.4

⇔ ∃ ω  p such that π(ω) ≥ 0.7 and ∀ ω  p, ω ≠ ω⊥, π(ω) ≤ 0.4.

⇔ π(ω⊥) = 0.7 and ∀ω  p, ω ≠ ω⊥, π(ω) ≤ 0.4.

Hence Incons ( ) ≥ (∏ 0.7); let π0 be such that π0(ω⊥) = 0.7 ; ∀ ω ≠ ω⊥ such

that ω  p, then π0(ω) = 0.4 and ∀ ω ≠ ω⊥ such that ω  ¬p, then π0(ω) = 1 ;

π0 satisfies . Hence Incons( ) = (∏ 0.7).

In the second example (p (∏ 0.7)) states that ¬p cannot be proved while (¬p (N 0.6)) states

that ¬p is true with some certainty. Hence weak consistency comes from a clash between the

claim that some propositions are true and the claim that these propositions cannot be proved.

Partial inconsistency corresponds to the simultaneous statement that a proposition should be

true and false.

Both examples indicate that the inconsistency degree of a possibilistic knowledge base  is

the valuation of the weakest formula (in the sense of the ordering in ) involved in the
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strongest contradiction in . Let w ∈  such that Incons( ) = w. It is easy to see that

∀ Φ ∈ , Incons(  – {Φ}) ≤ w. Let ' ⊆  such that Incons( ') = Incons( ) and

∀ Φ ∈ ', Incons( ' – {Φ}) < Incons( '). ' is called a strongly minimal inconsistent

subset of . Proposition 5 is then completed by

Proposition 5' (Lang et al., 1991) :

The inconsistency degree of an inconsistent possibilistic knowledge base  is the smallest

weight of possibilistic formulas in any strongly minimal inconsistent subset ' of .

Especially, if Incons( ) = (∏ α) then there is a unique possibility-valued formula in ' of the

form (ϕ (∏ α)).

The unicity of (ϕ (∏ α)) is due to the fact that any two ∏-valued formulas (ϕ (∏ α)) and

(¬ϕ (∏ β)) never contradict each other. Hence the equivalence of the consistency of  and the

consistency of its classical projection * does not hold anymore when handling possibility-

valued formulas : indeed  = {(ϕ (∏ 1)), (¬ϕ (∏ 1))} is completely consistent whereas * =

{ ϕ, ¬ϕ} is inconsistent. However we have the weaker result (Lang, 1991a): if Incons() >

(∏ 0) then * is inconsistent.

Proposition 6 for necessity-valued knowledge bases remains true for the possibility-valued

case, i.e. the degree of inconsistency inc ∈  inhibits all formulas (ϕ w) with w ≤ inc and it is

equivalent to work with inc. A consequence of the above Proposition 5' is that in order to

calculate the inconsistency degree of , it is enough to consider possibility-valued formulas

separately. Namely if  = N ∪ ∏ where N contains only the necessity-valued formulas

of  and ∏ the possibility-valued formulas, then we have the following counterpart of

Proposition 7 for weak inconsistency :

Proposition 7' :
Incons( ) = (∏ α) if and only if N* is consistent and α = max{β, ∃ (ϕ (∏ β)) ∈ ∏,

N* ∪ {ϕ} inconsistent}.

As a consequence, computing Incons() remains NP-complete as in the necessity-valued case

since it comes down to check either the partial inconsistency of N (then Proposition 8 applies)

or to check the inconsistency of N* ∪ {ϕ}, ∀ ϕ ∈ ∏*. The counterpart of Propositions 9

and 10 hold as well. Lastly, the non-monotonic behaviour we pointed out in the necessity-

valued case remains the same in full possibilistic logic.
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4.1.2. Axiomatization of possibilistic logic involving possibility- and necessity-qualified

formulas

The formal system for necessity-valued logic can be extended in order to handle possibility-

valued formulas. Basically, it consists in extending the graded modus ponens over to w ∈ U so

as to enable the derivation of a possibility-valued formula from a necessity-valued formula and

a possibility-valued formula. The extended formal system for full possibilistic logic PL2 uses

the same axioms schemata as for PL1, where each axiom is necessity-valued by (N 1), (see

Section 3.6), and the following inference rules :

(GMP) (ϕ w1) (ϕ → ψ  w2) (ψ w1 ∗ w2)

(G) (ϕ w) ((∀x ϕ) w) (if x is not bound in ϕ)

(S) (ϕ w) (ϕ w')   ∀ w' ≤ w

where the operation ∗ is defined by

(N α) ∗ (N β) = (N min(α,β)) ;

(N α) ∗ (∏ β) = {
(∏ 0) if α + β ≤ 1.

(∏ β) if α + β > 1 ;

(∏ α) ∗ (∏ β) = (∏ 0).

Proposition 12' :

The proposed formal system is sound and complete with respect to the inconsistency-tolerant

semantics of possibilistic logic, i.e. for any set of possibilistic formulas  we have

 (ψ w) if and only if  (ψ w)

where  (ψ w) means : "(ψ w) can be derived from  in the above formal system" (the

proof is in the annex). Thus possibilistic logic PL2 is axiomatisable.

4.1.3. Automated deduction

In this section we briefly extend, to possibilistic logic PL2, the results established in

Section 3.8. about automated deduction procedures devoted to the computation of the

inconsistency degree. We may define clausal forms as in the necessity-valued case : a

possibilistic clause is a possibilistic formula (c w) where c is a first-order or propositional

clause and w is a valuation of . A possibilistic clausal form is a universally quantified

conjunction of possibilistic clauses. We denote by CPL2 the language consisting in possibilistic

clauses (necessity- or possibility-valued).
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We have seen (Proposition 13) that the problem of finding a clausal form of  whose

inconsistency degree is the same as  always has a solution in PL1, i.e. if  contains only

necessity-valued classical formulas. If  contains also possibility-valued formulas, then

generally we cannot compute from  a clausal form having the same inconsistency degree as

, even in propositional possibilistic logic. For instance, the intuitive clausal form we can

compute from  = {(p ∧ q (∏ α)), (¬p ∨ ¬q (N 1))} (α > 0) is  = {(p (∏ α)), (q (∏ α)),

(¬p ∨ ¬q (N 1))}, but it can be checked that Incons() = (∏ α) whereas Incons() = (∏ 0).

This negative result comes from the non-compositionnality of possibility measures for

conjunction. Indeed (p ∧ q (∏ α)) is much stronger than (p (∏ α)) ∧ (q (∏ α)), since

(p ∧ q (∏ α)) means ∏(p ∧ q) ≥ α, i.e. ∃ ω ∈ Ω⊥ such that ω  p ∧ q and π(ω) ≥ α,

whereas (p (∏ α)) ∧ (q (∏ α)), means ∃ω, ω' ∈ Ω⊥ such that ω  p, ω'  q and π(ω) ≥ α,

π(ω') ≥ α. This problem also appears in modal logics (Fariñas del Cerro and Herzig, 1988)

and could be solved in our framework by similarly "colouring" the "∏" valuations.

The following possibilistic resolution rule between two possibilistic clauses (c1 w1) and

(c2 w2) established by Dubois and Prade (1990) extends the rule (R) of Section 3.8.2 :

(c1 w1), (c2 w2)  (R(c1, c2) w1 *  w2) (R')

where R(c1,c2) is a classical resolvent of c1 and c2, and ∗ is the operation defined at the end of

the preceding Section 4.1.2. The similarity between (R) and resolution patterns existing in

modal logics has been pointed  out ; see (Dubois and Prade, 1990). The soundness result is

easily extended (see Lang et al., 1991) :

Proposition 14' (soundness of rule (R')) :

Let  be a set of possibilistic clauses, and C a possibilistic clause obtained by a finite number of

successive applications of (R') to  ; then  C.

Refutation by resolution is very similar to the necessity-valued case, changing valuations

(N α) into w ∈ , and we look for an optimal refutation, i.e. one leading to (⊥ w) with w

maximal. However when the knowledge base consists in both necessity-valued and possibility-

valued formulas, then, because the transformation into clausal form is not complete (it does not

preserve the inconsistency degree), we must suppose that  is a set of possibilistic clauses

right away ; in this case,  =  and step 1 of the refutation procedure given in Section 3.8.2 is

omitted. Soundness and completeness results then hold for possibilistic resolution when the

knowledge is propositional (Lang et al., 1991) :

Proposition 15' (soundness and completeness of refutation by resolution in propositional

clausal possibilistic logic CPL2) :
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If  is a set of propositional necessity- or possibility-valued clauses, then the valuation of the

optimal refutation by resolution from  is equal to the inconsistency degree of .

Corollary :
Let ϕ  be a classical formula and ' the set of possibilistic clauses obtained from

 ∪ {(¬ϕ (N 1))} ; then the valuation of the optimal refutation by resolution from ' is

Val(ϕ, ).

Soundness and completeness of refutation by resolution in first-order PL1 were a consequence

of Propositions 10 and 13 together with the expression of the resolution rule ; it does not hold

for first-order possibility-valued clauses : for instance, if  = {(p(x) (∏ α))}, x being a

(universally quantified) variable and α > 0, and ϕ = p(a) ∧ p(b), then there is no (∏ α)-

refutation by resolution from  ∪  {(¬p(a) ∨ ¬p(b) (N 1))}, whereas (p(a) ∧
p(b) (∏ α)). It does not hold either for possibility-valued formulas, since the tranlation into

clausal form does not preserve the inconsistency degree if a knowledge base contains

possibility-valued formulas. As already mentioned, completeness can be recovered by indexing

the "∏" symbols in the (∏ α)-valuations, in the same spirit as in modal logics (Fariñas del

Cerro and Herzig, 1988). Lastly, as the existence of a possibility distribution π such as

π iff π ≤ π  is generally not satisfied in PL2, semantic evaluation cannot be easily

extended to full possibilistic logic.

4.2. Variable valuations

In "standard" possibilistic logic we considered only weighted formulas of the form (ϕ w)

where ϕ is a closed formula of first-order logic, i.e. it is only allowed to quantify "inside" the

scope of a valuation.

In quantified possibilistic logic, we allow formulas of the form (Qx1Qx2...Qxn)

(ϕ w) where Q is a quantifier (either ∀ or ∃) and ϕ a formula of first-order logic where

variables x1, …, xn are free. The further step is then to allow the valuations w to depend on the

free variables xi of ϕ : this is quantified possibilistic logic with variable valuations.

Thus, the possibilistic formula (∀x) (ϕ w(x)) expresses that for any x, ϕ is true for x with a

possibility or necessity degree (at least) w(x).

The following example illustrates some potentials of universally quantified possibilistic
formulas with variable valuations4 . Let µP be the membership function of a fuzzy predicate P ;

4 The meaning of existentially-quantified valuations is less intuitive.
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then the possibilistic formula (ϕ(x) (N µP(x))) enables us to express that "the more x satisfies

P, the more certain ϕ(x) is satisfied". For instance, we wish to translate the statement "the later

John will arrive to the meeting, the more certain the meeting will be quiet ; and if John does not

come at all then it is certain that the meeting will be quiet". First define the vague predicate

"late" on the universe of time U = [0, 24] by its membership function "late" (see Figure 2) :

8 9 10 11 12

µ      (t)late

t

1

Figure 2 : Membership function of the vague predicate "late"

and then we translate the statement by the possibilistic formulas

∀t (Arrives(John, meeting, t) → Quiet(meeting) (N µlate(t)))

((∀t ¬Arrives(John, meeting, t)) → Quiet(meeting) (N 1))

In the first possibilistic formula above, the quantifier ∀ is outside the scope of the valuation

(which entails that the later depends on t), while in the second formula (which is a "standard"

possibilistic formula) the quantifier is inside the scope of the valuation. Generalizing the

semantics of possibilistic logic in order to take into account variable valuations is not

straightforward (see Lang (1991a) for further details).

Another kind of variable valuations is encountered in hypothetical reasoning. As pointed out

in (Dubois et al., 1989), the weighted clause (¬ϕ ∨ ψ  α) is semantically equivalent to the

weighted clause (ψ  min(α,v(ϕ))) where v(ϕ) is the truth value of ϕ, i.e. v(ϕ) = 1 if ϕ is True

and v(ϕ) = 0 if ϕ is False. Indeed, for any necessity-valued proposition (ϕ α) we can write the

membership function of the fuzzy set of models of (ϕ α), µM(ϕ α)(ω) under the form

max(vω(ϕ), 1 – α), where vω(ϕ) is the truth-value assigned to ϕ by interpretation ω. Then we

have :
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∀ω, µM(¬ϕ∨ψ α)(ω) = max(vω(¬ϕ ∨ ψ), 1 – α) = max(1 – vω(ϕ), vω(ψ), 1 – α)

= max(vω(ψ), 1 – min(vω(ϕ), α)) = µM(ψ min(vω(ϕ),α))(ω).

This remark is very useful for hypothetical reasoning, since by "transferring" an atom ϕ
from a clause to the weight part of the formula we are introducing an explicit assumption.

Indeed changing (¬ϕ ∨ ψ  α) into (ψ  min(v(ϕ), α)) leads to state the piece of knowledge

under the form "ψ is certain at the degree α, provided that ϕ is true". Then the weight is no

more just a degree but in fact a label which expresses the context in which the piece of

knowledge is more or less certain.

4.3. L-possibilistic logics

The choice of the unit interval for the necessity and possibility degrees is not compulsory.

Basically what is needed is a partially ordered set such that any pair of elements possesses a

least upper bound (sup) and a greatest lower bound (inf), and that possesses as well a top and a

bottom element (denoted  and  respectively) so as to valuate T and ⊥. In other words L must

be a complete lattice (being furthermore distributive)5 . Then a lattice-valued necessity measure

(L-necessity for short) is such that :

N(ϕ ∧ ψ) = inf(N(ϕ),N(ψ))

The sup-operation is needed in case more than one proof path concludes on ϕ ; indeed, from

N(ϕ) ≥ α, N(ϕ) ≥ β, we would like to conclude on N(ϕ) ≥ sup(α,β). The use of a (non-

necessarily totally ordered) lattice as the set of certainty degrees attached to logical formulas has

already be studied especially in the scope of non-monotonic logics and logic programming ; see

Sandewall (1985), Ginsberg (1988), Fitting (1991), Subrahmanian (1989), Froidevaux and

Grossetête (1990). In this section we extend possibilistic logic in this direction.

Clearly the resolution-based refutation machinery works with such a structure, in the case of

necessity-valued possibilistic logic. Introducing possibility-qualified statements is not easy

because no inversion may exist on L. One simple way out of this problem is to introduce this

kind of propositions using upper bound on necessity-measures, i.e. the following syntax could

be used

(ϕ α+)  means  N(ϕ) ≥ α
(ϕ α–)  means  N(¬ϕ) ≤ α

In that case the resolution rule R' works as follows in the hybrid case

5 See Goguen (1969) for argument in favour of completeness and distributiveness for lattice-valued fuzzy sets.
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(ϕ α+) ; (ψ β–)  (Res(ϕ,ψ) α+ ∗ β–)

such that         α+ ∗ β– = β– if α > β
= – otherwise

It is easy to check that when L = [0,1], the above resolution rule is equivalent to the one of

possibilistic logic letting ∏(ϕ) = 1 – N(¬ϕ) ; especially, it highlights the fact that the operation

(N α) ∗ (∏ β) = β if α + β > 1 and 0 otherwise owes nothing to additivity in [0,1]. Interesting

examples of such lattices L are :

– a finite chain of symbolic certainty levels ;

– a Boolean lattice ; for instance generated by a partition of a time scale, N(ϕ) being a time

period when ϕ is certainly true : we get a reified temporal logic called timed possibilistic

logic. This can be generalized to a lattice of fuzzy sets, if N(ϕ) is a fuzzy time period when ϕ
is more or less certainly true (Dubois, Lang, Prade 1991d) ;

– a lattice of fuzzy sets of sources, where N(ϕ) is the fuzzy set of sources according to which

ϕ is more or less certainly true (Dubois, Lang and Prade, 1992).

– the set of convex fuzzy sets on [0,1] (that may model linguistic values pertaining to certainty

qualification) ;

4.4. Weighted logics based on decomposable set-functions

Keeping the [0,1] interval, one may wish to relax the axiom

∏(ϕ ∨ ψ) = max(∏(ϕ),∏(ψ)).

Then we can work with a very general class of [0,1]-valued set-functions (including possibility

measures) introduced by Dubois and Prade (1982) and also studied by Weber (1984). Let g

denote such a set-function. Possible candidates should obey the axioms : (i) g (⊥) = 0 ; (ii)

g(T) = 1 ; (iii) if ϕ ∧ ψ = ⊥ then g(ϕ ∨ ψ) = g(ϕ) ∗ g(ψ), where ∗ is a mapping from [0,1]2 to

[0,1] which is a semi-group with unit 0 and absorbing element 1 on the unit interval, also called

a triangular co-norm (Schweizer and Sklar, 1983). The property (iii) is called decomposability.

A dual mapping g is defined from g by

g(ϕ) = 1 – g(¬ϕ)

and verifies (i), (ii) and (iii'):  if ϕ ∨ ψ = T then g(ϕ ∧ ψ) = g(ϕ) ∗ g(ψ), where ∗ is defined

from ∗ by : ∀α, β ∈ [0,1], α ∗ β = 1 – (1 – α) ∗ (1 – β). We obtain thus a second class of

decomposable measures, which includes necessity measures. This setting is more general than
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both probability and possibility theories, and can be characterized by suitable comparative

relations on a set of propositions (Dubois, 1986).

In the particular case where α ∗ β = min (1,α + β) and α ∗ β = max(0, α + β – 1), then g

can be chosen as a probability measure (provided that g = g) and we recover thus probabilistic

logic, in the sense of (Nilsson, 1986). Apart from ∗ = max, the choice of α ∗ β = α + β – αβ
corresponds to still another family of set-functions. The setting of decomposable measures thus

encompasses both probabilistic and possibilistic logics.

Instead of [0,1], the lattice L = [0, +∞], equipped with the opposite ordering (such that

 = +∞ and  = 0) and a ∗ b = a + b (which corresponds to∗ = product by the one-to-one

mapping a = - ln (α) from [0,1] to [0,+∞]) leads to toll logic (see Dubois and Prade, 1991e)

where g(ϕ) is the cost for the realization of ϕ, the simultaneous realization of two formulas ϕ
and ψ such that ϕ ∨ ψ = T being the sum of the costs for the realizations of ϕ and ψ, i.e.

g(ϕ ∧ ψ) = g (ϕ) ∗  g (ψ) = g (ϕ) + g (ψ) when ϕ ∨ ψ = T .

4.5. Possibilistic logic with vague predicates

Preliminary work aiming at extending the resolution rule over to the case when possibility

and necessity-valued formulas involve fuzzy predicates, that is predicates whose extensions are

fuzzy sets is proposed in Dubois and Prade (1990). When fuzzy predicates are involved the

basic problems are the lack of a Boolean structure for the language quotiented by the logical

equivalence relation, and the question of a proper definition of the certainty and possibility of

fuzzy statements. The approach proposed in the above-mentioned reference consists in keeping

the same syntax as possibilistic logic, but modifying the resolution rule in order to account for

the possible overlap of models of ϕ and ¬ϕ in the fuzzy case. It seems difficult to define right

away what an interpretation is for a fuzzy proposition. We assume that we can start with a set

Ω of possible worlds, and that each world ω is compatible with a vague proposition ϕ to a

degree, say α ; let us denote it ω α ϕ, where α ∈ [0,1] ; fuzzy set complementation leads to

consider ω α ¬ϕ as equivalent to ω 1–α ϕ. Fuzzy set union and intersection suggest that

ω α ϕ and ω β ψ ⇒ ω min(α,β) ϕ ∧ ψ ; ω max(α,β) ϕ ∨ ψ

The degree of consistency of ϕ and ψ is evaluated as

Cons(ϕ,ψ) = supω{min(α,β) | ω α ϕ ; ω β ψ}

As a consequence, Cons(ϕ,¬ϕ) ≤ supα min(α, 1 – α) = 0.5 only, i.e. ϕ and ¬ϕ are no longer

always totally contradictory.
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Let π be a possibility distribution on Ω and ϕ be a fuzzy formula. The degree of certainty

C(ϕ) of ϕ in the face of π should verify the following properties :

i) C(ϕ) = 1 if and only if ∀ω, ω α ϕ ⇒ π(ω) ≤ α, i.e. the fuzzy set of worlds satisfying ϕ

contains the fuzzy set of possible worlds described by π,
ii) C(ϕ) ≥ β if and only if ∀ω such that π(ω) > 1 – β, ω α ϕ implies π(ω) ≤ α. In other

words the inclusion relationship between π and the fuzzy extension of ϕ may fail to hold

for π(ω) small enough ; and the higher β the lower the level below which this inclusion

may fail to hold.

Letting µϕ(ω) = α be equivalent to ω α ϕ, a certainty index that satisfies these two

requirements is (Dubois and Prade, 1991d) :

C(ϕ) = infω∈Ω π(ω) → µϕ(ω)

where →  is the reciprocal of Gödel's implication, i.e. α →  β = 1 if α ≤ β, and 1 – α
otherwise. Then we have the following equivalence

C(ϕ) ≥ β ⇔ ∀ω, ω α ϕ ⇒ π(ω) ≤ max(α, 1 – β)

which by the principle of minimal specificity forces π(ω) = max(µϕ(ω), 1 – β). It is an

extension of the necessity qualification, as introduced in the crisp case in Section 2, and used

for interpreting necessity-valued clauses.

This leads to the property, ∀ β ∈ [0,1], ω α ϕ implies ω max(α,1–β) (ϕ (N β)),

viewing (ϕ  (N β)) as equivalent to ϕ' with µϕ' = max (µϕ, 1 – β). Moreover the satisfaction

relation for a possibility distribution π writes π  (ϕ (N β)) if and only if C(ϕ) ≥ β, when ϕ is

a fuzzy proposition. Note that when ϕ is non-fuzzy, C (ϕ) and N (ϕ) coincide which justifies

the notation (ϕ (N β)).

The resolution principle is then extended in the proposition case to a cut operation between

two fuzzy clauses ϕ ∨ ψ and ϕ' ∨ ξ as follows :

(ϕ ∨ ψ  (N α)) ∧ (ϕ' ∨ ξ  (N β))  (ψ ∨ ξ  (Ν min(α, β, 1 – Cons(ϕ,ϕ')))).

Clearly, the less contradictory ϕ and ϕ', the less informative is the result provided by the cut

rule. Especially, if ϕ' = ¬ϕ, the certainty degree associated with ψ ∨ ξ will generally be upper
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bounded by 0.5. When Cons(ϕ,ϕ') = 1 which happens for instance under ϕ' = ϕ, then the

resolution rule leads to a completely uninformative result, which is satisfactory since ϕ' and ϕ
are not contradictory at all in that case. The notion of possibility-valued fuzzy propositions and

the corresponding resolution rule can be extended likewise (Dubois and Prade, 1990).

However further research is needed to fully justify resolution rules for fuzzy formulas at a

semantic level.

5. Some applications

5.1. Possibilistic management of assumptions

The principle of assumption-based truth-maintenance systems (ATMS) is to distinguish

between two types of literals in a knowledge base, one being called assumptions. A knowledge

base is viewed as a set of propositional formulas (usually clauses) called justifications. The

problem solved by an ATMS, is to calculate, given a literal p the configuration of assumptions

which enable p to be derived.

Classical ATMS (De Kleer, 1986a,b) require that the clauses contained inside the

knowledge base (justifications and possibly disjunctions of assumptions) be certain ; but we

may wish to handle more or less uncertain information without losing the capacities of the

ATMS. The basic principle of the  possibilistic ATMS is to associate to each clause a weight α
which is a lower bound of its necessity degree. Assumptions may also be weighted, i.e. the

user or the inference engine may decide at any time to believe an assumption with a certainty

degree that he/she will give. The capabilities of possibilistic logic for dealing with assumptions

are to be related to the way contexts can be handled in the weight part of a possibilistic formula,

as mentioned in Section 4.2. A possibilistic ATMS (Dubois, Lang and Prade, 1990a, b) is

capable of answering the following questions :

(i) Under what configuration of assumptions is the proposition p certain to the degree α ?

(i.e., what assumptions shall we consider as true, and with what certainty degrees, in

order to have p certain to the degree α ?) 

(ii) What is the inconsistency degree of a given configuration of assumptions ?

(iii) In a given configuration of assumptions, to what degree is each proposition certain ?

We are now giving a few technical details. The basic notions attached to the classical ATMS

are generalized in the following way. Let ∑ be a set of necessity-valued clauses and E a set of

assumptions ; the following definitions are useful :
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–) let E be an environment, i.e. a set of assumptions considered as certainly true (i.e. weighted

by 1). E is said to be an α-environment of the literal p if and only if ∑ ∪ E  (p α) with α
maximal, i.e. ∀ α' > α, E ∪ ∑ /  (p α ').

–) E is an α–contradictory environment, or α–nogood if and only if Incons (E ∪ Σ) = α. It is

said to be minimal if there is no β–nogood E' such that E  E' and α ≤ β (at least one of the

two relations being strict).

In order to define the label of a proposition p, we consider only non-weighted assumptions

(i.e. they will have the implicit weight 1). It can be shown that it is useless to weight the

assumptions inside the labels (this remark also holds for the base of nogoods). The label of the
proposition p, L(p) = {(Ei, αi), i ∈ I} is the unique fuzzy subset of environments for which

the four following properties hold (see (Dubois, Lang and Prade, 1990a, b) for more details) :

– (weak) consistency : ∀ (Ei, αi) ∈ L(p), Incons (Ei ∪ ∑) < αi .

– soundness : L(p) is sound if and only if ∀ (Ei, αi) ∈ L(p) we have Ei ∪ ∑ (p αi).

– completeness : L(p) is complete if and only if for every environment E' such that
E'∪ ∑  (p α') non trivially, then ∃ i ∈ I such that Ei ⊂ E' and αi ≥ α'.

– minimality : L(p) is minimal if and only if it does not contain two different weighted
environments (E1, α1) and (E2, α2) such that E1 ⊂ E2 and α1 ≥ α2.

Ranking environments according to their weight in the label of each proposition provides a

way of limiting the consequences of combinatorial explosion : indeed when a label contains too

many environments, the possibilistic ATMS can help the user by giving the environments with

the greatest weight(s) only.

A possibilistic ATMS extends Cayrol and Tayrac (1989)'s generalized ATMS, where each

piece of information is represented by a (general) propositional clause, which enables

– a uniform representation for all pieces of knowledge (no differenciated storage and treatment

between justifications and disjunctions of assumptions) ;

– the capability of handling negated assumptions as assumptions, i.e. environments and

nogoods may contain negations of assumptions ;

– a simple and uniform algorithm for the computation of labels and nogoods, based on

resolution.

An application of possibilistic ATMS to diagnosing faults under uncertainty is developed in

(Dubois, Lang and Prade, 1990a). See (Benferhat et al., 1991) for implementation issues.

A possibilistic ATMS offers a simple way of managing inconsistency in a possibilistic

knowledge base that is more refined than the inconsistency-tolerant deduction in possibilistic
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logic. More specifically, it enables to compute the strongly maximal consistent sub-bases of a

possibilistic knowledge base , i.e. deleting from  only the minimally weighted formulas

involved in the inconsistency. The obtained revised knowledge base ' may contain formulas

(ϕ α) with α < Incons ( ) that would have been inhibited by the inconsistency-tolerant

deduction from . The revision procedure consists in finding all the minimal inconsistent

subsets of  ; this can be done by means of the possibilistic ATMS as follows : attach a
specific assumption Hϕ to each formula (ϕ α) in  (changing (ϕ α) into (Hϕ → ϕ  α)) and let

H be the obtained knowledge base. Find all the nogoods in H using the possibilistic

ATMS; each nogood in H corresponds to a minimally inconsistent subset of . Then

roughly speaking the strategy consists in deleting the least weighted formula from each nogood

(see Dubois, Lang and Prade (1991b) for details).

The handling of inconsistency in a knowlege-based by means of an ordering of formulas is

more generally considered in Cayrol (1992), and Cayrol, Royer and Saurel (1992), following

ideas initiated by Brewka (1989) and Poole (1988).

5.2. Discrete optimisation

So far, possibility and necessity measures have been considered as degrees of uncertainty

linked to the partial absence of information. It makes sense to interpret them in a different way

in the scope of constraint-based reasoning. (ϕ (N α)) can be viewed as declaring a constraint ϕ
with a degree of imperativeness equal to N(ϕ) = α. When α = 1, ϕ cannot be violated ; when

α = 0, ϕ can be dropped. In that case ∏(¬ϕ) = 1 – α evaluates to what extent ϕ is allowed to

be violated. N and ∏ are thus given a deontic interpretation ; N stands for evaluating more or

less compulsory constraints, while ∏ describes whether something is allowed or not. More

specifically, let us interpret the properties of N and ∏ in this framework :

• N(T) (= ∏(T)) = 1 indicates that tautologies are imperative ;

• Since (ϕ (N α)) ∧ (¬ϕ (N 1))  (⊥ (N α)), contradictions are tolerated, i.e. partially feasible

solutions where (ϕ (N α)) is violated. 1 – α thus denotes the degree of feasibility of such

solutions ;

• N(ϕ ∧ ψ) = min(N(ϕ),N(ψ)) is equivalent to ∏(¬ϕ ∨ ¬ψ) = max(∏(¬ϕ),∏(¬ψ)). It

expresses that if N(ϕ) = α and N(ψ) = β, violating one of the two constraints can be allowed

while preserving a level of feasibility at most equal to 1 – min(α,β) ;

• The possibility distribution π  induced by a set of N-valued constraints represents the fuzzy

feasibility domain, subnormalization indicating that some constraints which are not fully

imperative must be violated.
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The use of min and max operators suggests that the precise values of the necessity (or

possibility) degrees is less important than the ordering on the formulas induced by them : thus,

necessity degrees may be seen as priority degrees, where N(ϕ) > N(ψ) expresses that the

satisfaction of ϕ is more important than the satisfaction of ψ.

As we have seen in Section 3, the inconsistency degree of a set of necessity-valued formulas
 = {(ϕ1 α1), …, (ϕn αn)}, verifies the equality

Incons( ) = 1 – maxω∈Ω π (ω)

and computing the best model(s) of  comes down to find the interpretations ω maximizing

π (ω), where π  (ω) = min{1 – αi | ω ¬ϕi, i = 1, ..., n}. The best models correspond to

the optimal (most feasible) solutions to a given problem. In a more compact way, it reduces to

the discrete optimisation problem

maxω∈Ω min{1 – αi | ω ¬ϕi, i = 1, …, n}

or equivalently to this other one

minω∈Ω max{αi | ω ¬ϕi, i = 1,…, n}

So, computing Incons() and the best model(s) of  is a min-max discrete optimisation

problem ; hence, problems of the same nature, which have the general form

minx∈X maxy∈Y f(x,y)

where X and Y are finite, can be translated into necessity-valued logic and solved by resolution

or semantic evaluation ; moreover, if semantic evaluation is used, the set of best models of 

will give the set of optimal solutions for the min-max discrete optimisation problem.

Of course, the problem of computing the inconsistency degree of  is NP-complete (see

Proposition 8) ; thus, resolution and semantic evaluation are (in the case where we use non-

Horn clauses) exponential6 and it is clear that for a given problem, there generally exists a

specific algorithm whose complexity is at least as good as (often better than) the complexity of

necessity-valued semantic evaluation. Thus, we do not claim to give, for the problems we shall

deal with, a more efficient algorithm than already existing ones ; however, we think that

translation into necessity-valued logic is useful, for several reasons :

6 However, their average complexity may be polynomial in some particular cases.
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– the search method is independent from the problem ;

– the pruning properties (in the search tree) of the semantic evaluation procedure can confer to

the algorithm a good average complexity (even polynomial, in some cases) (see Lang,

1990) ;

– necessity-valued logic enables a richer representation capability in the formulation of a

problem (one can specify complex constraints not easy to express in the language requested

by a specific algorithm).

Thus, necessity-valued logic appears to be a logical framework for expressing in a

declarative way some min-max discrete optimisation problems. An typical example of such a

problem is the min-max assignment problem (also called "bottleneck assignment problem")

formulated as follows : n tasks must be assigned to n machines (one and only one task per
machine) ; if machine i is assigned to task j, the resulting cost is aij . Then the total cost of the

global assignment is not the sum, but the maximum of the costs of the elementary assignments.

More generally, min-max discrete optimisation problems may come from constraint

satisfaction problems, where the constraints are weighted by necessity degrees measuring their

priority, and where the constraint set is "partially" inconsistent, in the sense of Section 3.

Solving such a "prioritized" constraint satisfaction problem consists in finding the solution

minimizing the degree of the most important constraint among those which are violated. Again,

necessity-valued logic offers a general logical framework for representing and solving these

problems. See (Lang, 1991b) for a detailed example.

5.3. Logic programming

The basic idea of logic programming (e.g. Lloyd, 1984) is to use logic as a programming

language : in that sense, it is much more than automated theorem proving. In an algorithm,

there are two disjoint components : the logical description of the problem and of what is to be

proved (or solved), and the control part, i.e. how the problem has to be solved. In an idealistic

programming language, the user has only to take care of the logical part. Since a problem may

contain uncertain knowledge, possibilistic logic seems to be a nice tool for designing a logic

programming language well-adapted for dealing with uncertainty. Moreover, possibilistic logic

programming can be used for solving problems with min-max criteria, as said in section 5.2. It

is clear that such problems can be solved using an ordinary logic programming language, but

the user then must handle himself the numerical part of the program : computing the weight of a

proof path, and then combining the weights of all proof paths to a goal, which leads to a more

complex formulation, and also to a less efficient solving of the problem, except if the user also

takes care of the central part of the program (which is long and tedious). In the following we
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make use of Kowalski's notation A ← B1… Bn for ¬B1 ∨… ∨ ¬Bn ∨ A, and for necessity-

valued Horn clauses we use the syntax c [α] instead of (c  α).

Example  : least unsure path(s) in a graph

Let us consider a fuzzy graph G viewed as a pair ( ,E) where  is a set of

vertices and E a fuzzy relation on x  ; given two vertices v and v', we are

interested in finding the weight of the least unsure path between v and v', i.e. the

path with maximal weight, the weight of a path being the minimum of the weights

of the edges composing it ; for instance, in the fuzzy graph

A B

C D

E

0.5

0.7

0.8

0.6 0.6

0.9

0.2

the least unsure path between A and B is (ACDBE) ; it has the weight 0.6. This

weight can be found by a possibilistic logic program ; for the above example, it is

the following :

1. path($x,$y)← edge($x,$y)    [1] ;

2. path($x,$y)← path($x,$z) edge($z,$y)    [1]  ;

3. edge(A,B) ← [0.5]  ;

4. edge(A,C)  ← [0.7] ;

5. edge(B,D)  ← [0.6] ;

6. edge(D,B)  ← [0.6] ;

7. edge(C,D)  ← [0.8] ;

8. edge(B,E)  ← [0.9] ;

9. edge(D,E)  ← [0.2] .

If we add the goal   ← path (A,E)  [1], the only optimal answer substitution is {} [0.6], i.e.

the weight of the least unsure path between A and E is 0.6. If we add the goal  ← path ($x,$y)

[1], then we shall find all weights of the least unsure paths between two vertices of the graph,

i.e. we shall have the max-min transitive closure of the graph. It is easy to modify the program

in order to obtain the complete optimal paths and not only the weights (it is sufficient to

introduce a third variable in the predicate ‘path’ in order to collect the list of the edges of the

current path). This example exhibits the ability of a "possibilistic Prolog" to handle max-min



58

optimisation problems ; indeed with a classical Prolog interpreter, the programmer would have

to take care of the numerical aspects of the example.

More formal details and results about declarative and procedural semantics of possibilistic

logic programs can be found in (Dubois, Lang and Prade, 1991c). They are connected to

results obtained by Subrahmanian (1990) who generalizes Van Emden's (1986) quantitative

logic programming.

6. Conclusion

Possibilistic logic appears to be a natural extension of classical logic where the notion of

total ordering on formulas is embedded in the logic. It embodies the basic structure of

preferential-model-based non-monotonic logics because a possibility distribution is an easy

way of encoding a preference ordering on interpretations. A comparison on a tutorial example

of possibilistic logic with other formalisms for reasoning under incomplete knowledge can be

found in Lea Sombé (1990). Possibilistic logic thus contrasts with Ruspini (1991)'s view of

fuzzy logic, based on a similarity relation between interpretations (or possible worlds) rather

than on an ordering relation. In Ruspini's view, instead of focusing on the preferred models of

ϕ in the preferential entailment ϕ |≈ ψ, we rather enlarge the set of models of ψ by considering

other models which are close to a model of ψ. Moreover possibilistic logic possesses an

inference machinery which is a direct extension of refutation by resolution. This fact suggests

that cumulative-like non-monotonic logics studied by Kraus et al. (1990) and by Gärdenfors

and Makinson (1991) can be efficiently implemented. Moreover it might turn out that

possibilistic logic appears as a special case of "labelled deductive systems" studied by Gabbay

(1991), since a possibilistic logic formula is a pair made of a classical formula and a weight

where weights can encode uncertainties and/or contexts.

However, these results tend to make us forget that the origins of possibility theory belong to

the field of fuzzy sets introduced by Zadeh (1965). This latter fact suggests that possibilistic

logic might have a basic role to play in the development of fuzzy information systems where

fuzzy predicates must be explicitly handled. The so-called "fuzzy logic-based controllers"

introduced by Mamdani (1977) and now widely applied in Japan (e.g. Sugeno, 1985) are but

very simple examples of such fuzzy information systems containing only some fuzzy rules

working in parallel, and performing interpolation. Interestingly the "logic" of fuzzy controllers

can be completely interpreted in the framework of possibility theory (Dubois and Prade,

1991d). A future task is to define a genuine logic handling fuzzy predicates, i.e. define its

syntax and its inference rules. Viewed in the light of non-monotonic reasoning, a fuzzy

proposition can be semantically interpreted as inducing itself a preference ordering on possible
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worlds in which this proposition is true. Hence the link established, via possibility theory,

between "fuzzy logic" and non-monotonic reasoning might be worth studying further. Another

line of interest for further research is the handling of weights attached to subformulas in order

to express in the language pieces of knowledge such that "if p is certain and if q is at least

somewhat possible, then r is almost certain". It might lead to a logical formalization, of the

approach suggested by Yager (1987) for default reasoning. Besides, it has been recently shown

that a set of defaults rank-ordered by system Z (Pearl, 1990) can be encoded in possibilistic

logic (Benferhat, Dubois and Prade, 1992).

Lastly, possibilistic logic bears obvious analogies with probabilistic logic. However they do

not seem to be tailored for the same purposes. Probabilistic logic seems to be well adapted to

the structuration and processing of statistical knowledge (as in Bayesian networks, Pearl

(1988)), including when this statistical knowledge is incomplete (Kyburg, 1974  ; Bacchus,

1990). Probabilistic logic has also been construed as a theory of induction (Carnap, 1950), or a

logic of subjective belief (Halpern, 1989). However in both cases, the same mathematical tools

as in statistics are adopted, so that computations are based on counting rather than comparing.

As a consequence, probabilistic logic is much more complex than possibilistic logic, especially

if conditional probabilities must be accounted for in the language. Possibilistic logic aims at

reasoning with the most reliable part of a knowledge base, i.e. by means of the most

"entrenched" formulas (to borrow from Gärdenfors (1988)). It strongly departs from the type

of inference made in probabilistic logic where a high number of very unreliable proof paths

producing a conclusion may lead to the complete certainty of this conclusion (as it is the case

with the lottery paradox). Hence it might be misleading to consider possibilistic logic as a

surrogate of probabilistic logic. It is neither a generalisation nor a special case of probabilistic

logic. Nevertheless it turns out that possibility measures can be viewed as a very special family

of upper and lower probabilities (Dubois and Prade, 1988). And Spohn (1988)'s theory of

ordinal conditional functions has moreover given birth to an interpretation of possibility

measures in terms of infinitesimal probabilities (e.g. Dubois and Prade, 1991b). The state of

fact suggests that despite their distinct and contrasted specificities, it may be of interest to

search for formal connections between probabilistic and possibilistic logics.
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Annex

In this annex we give the proofs of most of the results given in Sections 3 and 4 of the

paper. Most of them can be found in (Lang, Dubois and Prade, 1991) and (Lang, 1991a).

Proofs of results from Section 3 (possibilistic logic PL1)

Proposition 1 :
Let  = {(ϕ1 α1), ..., (ϕn αn)}  be a set of necessity-valued formulas and let us define the

possibility distribution π  by

           π (ω) = inf{ 1 - αi | ω ¬ϕi, i = 1, ..., n}

= 1 if ω  ϕ1 ∧ ϕ2 ∧… ∧ ϕn

then for any possibility distribution π on Ω, π   if and only if π ≤ π , i.e.

∀ ω ∈ Ω, π(ω) ≤ π (ω).

Proof : π  iff ( ∀ i = 1, ..., n) π  (ϕi αi)

iff ( ∀ i = 1, ..., n) N(ϕi) ≥ αi (where N is the necessity measure induced by π)

iff ( ∀ i = 1, ..., n)  inf{1 – π(ω) | ω ¬ϕi}  ≥ αi
iff ( ∀ i = 1, ..., n)  (∀ ω ¬ϕi) π(ω) ≤ 1 – αi
iff  π(ω) ≤ inf{1 – αi | ω ¬ϕi, i = 1, ..., n}

iff  π(ω) ≤ π (ω). 

Proposition 3 :
Incons( ) = inf{N (⊥) | π } = sup{α, (⊥ α)} where N denotes the necessity

distribution induced by π.

Proof :
(i) Incons( ) = infω∈Ω (1 – π (ω)) = infπ≤π  infω∈Ω 1 – π(ω) = infπ≤π  N(⊥) =

inf{N( ⊥), π }.

ii) sup{α,  (⊥ α)} = sup{α, (∀π, π , N(⊥) ≥ α)} = inf{N( ⊥), π }.

Proposition 4 :

The least upper bound in the computation of Incons() is reached, i.e. there exists (at least)
one interpretation ω* such that π (ω*) = supω∈Ω π (ω).

Proof : In the propositional case, this result is trivial, since Ω is finite. In the general case, since

there are a finite number of necessity-valued formulas (and hence a finite number of valuations



68

αi), the definition of π implies that π (ω) takes only a finite number of values when ω
ranges along the (infinite in the first-order case) set of interpretations Ω. Hence the result.  

Proposition 5 :

The inconsistency degree of an inconsistent possibilistic knowledge base  is the smallest

weight of possibilistic formulas in any strongly minimal inconsistent subset ' of . More

precisely, if Incons ( ) = α > 0 then there exists at least one formula (ϕ  α) ∈ ' and

∀ (ϕ' β) ∈ ', β ≥ α.

Proof : Assume ' = {(ϕi  αi), i = 1,m} is a strongly minimal inconsistent subset of . By

definition of ' we have

Incons( ') = Incons( ) = α = 1 – supω∈Ω π (ω)

Assume α1 = mini=1,m α i . Let us prove that α1 = α. π satisfies ' if and only if ∀ i,

∀ ω ¬ϕi, π(ω) ≤ 1 – αi ; in other words, ∀π, π  ' implies ∀ ω ¬ϕ1 ∨ ¬ϕ2 ∨ …∨
¬ϕm, π(ω) ≤ maxi (1 – αi) = 1 – α1. Hence, since ¬ϕ1 ∨ ¬ϕ2 ∨ …∨ ¬ϕm is a tautology

(otherwise ' would not be inconsistent), ∀ ω ∈ Ω, π(ω) ≤ 1 – α1 is a consequence of

π  '. Hence α ≥ α1. Now let π be defined by π(ω) = 1 – α1 if ω  ϕ2 ∧ ϕ3 ∧ …∧ ϕm,

π(ω) ≤ 1 – αi if ω ¬ϕi. Now ϕ2 ∧ ϕ3 ∧… ∧ ϕm ≠ ⊥ due to the minimality of ', so that

∃ω, π(ω) = 1 – α1, and π . Hence α = α1. 

Proposition 6 :

Let  be a set of possibilistic formulas and let Incons() = inc ; then

(i)  is semantically equivalent to inc and to i nc ∪ {(⊥ inc)}

(ii) i nc  is consistent

(iii) if (ψ α) non trivially (i.e. with α > inc) then i nc (ψ α).

Proof of (i) : Let us show that  inc, that inc i nc ∪ {(⊥ inc)} and that i nc ∪
{( ⊥ inc)} .

(1)   inc is obvious since  contains inc .

(2) inc i nc  is obvious since inc contains inc  ;

inc {( ⊥ inc)} is an immediate consequence of Proposition 5.

Hence inc i nc ∪ {(⊥ inc)}

(3) i nc ∪ {(⊥ inc)}  is less obvious :
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Let π be a possibility distribution satisfying (⊥ inc) ∧ i nc ; let us prove that π satisfies .

For any necessity-valued formula (ϕi αi) of : if αi > inc then π  (ϕi αi), since π satisfies

i nc  ; and if αi  ≤ inc then N(ϕi ) ≥ N(⊥) ≥ inc (since π satisfies  (⊥ inc)) ≥ αi , hence

π  (ϕi  αi). Thus we have proved that π satisfies . Hence the result. 

Proof of (ii) : Let us suppose that i nc is inconsistent; then, from Proposition 5 it comes

immediately that Incons ( i nc) is equal to the valuation of a formula of i nc, i.e.

Incons( i nc) > inc. Then, since  contains i nc, we have inc = Incons( ) ≥
Incons( i nc) > inc, which is contradictory. Hence, i nc is consistent.

Proof of (iii) : (ψ α) non trivially means (ψ α) with α > inc. Let = {(ϕi  αi),

i = 1, …, n} ; using the definition of a necessity measure induced by a possibility distribution,

(ψ  α) non-trivially, is equivalent to

∀ ω  ¬ψ, ∃i, ω  ¬ϕi and 1 – αi ≤ 1 – α (< 1 – inc)

This implies ∀ ω  ¬ψ, ∃i, ω  ¬ϕi and αi > inc. Hence

∀ ω  ¬ψ, min{1 – αi | ω  ¬ϕi, αi > inc} ≤ 1 – α, i.e. i nc  (ψ α).

Proposition 7 :

(1) (Dubois and Prade, 1987) Let  be a set of necessity-valued formulas; then Incons ()

= 0 if and only * is consistent in the classical sense.
(2)   Incons( ) = sup {α | α* inconsistent}

= inf {α | α* consistent}

and these two bounds are reached.

Proof :
(1) (⇒) Let  = {(ϕi  αi), i = 1, ..., n}. According to its definition, Incons () = 0 if and

only if π  is normalized, i.e. iff ∃ ω* ∈ Ω such that π (ω*) = 1. This implies ω*  ϕi, ∀i.

Hence * is consistent.
(⇐) if * is consistent then it has a model ω; then π  (ω) = Inf {1-αi | ω  ¬ϕi} = 1

since ∀i, ω  ϕi. So, π  is normalized and Incons () = 0.

(2) Straightforward from (1) and points (i) and (ii) of Proposition 6.

Proposition 8 :

Determining the inconsistency degree of a propositional necessity-valued knowledge base is a

NP-complete problem.
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Proof : Let us denote as (I) the problem of the computation of Incons() where  is a

propositional necessity-valued knowledge base, and (S) the satisfiability problem in classical

propositional logic. It is immediate that (I) must be at least as complex as (S). We are going to

prove that the complexity of these two problems are of the same nature, by showing that (I) can
be reduced into at most [1+log2n] problems (S), where n stands for the number of formulas in

.
Following Proposition 7 we have Incons() = Sup {α | α* inconsistent}. Let A be an

algorithm for (S) ; using (A) we define an algorithm (A') for (I) computing Incons() by

dichotomy :

Begin
Let  = {(ϕi αi), 1 ≤ i ≤ n} and let α'1, … α'm be the distinct valuations appearing in 

(so m ≤ n and {α '1, …, α 'm} is included in {α1, …, αn}), ranked increasingly, i.e.

0 < α'1 < α'2 < ... < α'm ≤ 1.

lower ← 1

upper ← m
while lower < upper  do  { αlower*  is inconsistent and αupper*  is consistent}

r ← [(lower + upper) / 2] ;
Apply A to αr* ;

if  αr* is consistent

then upper ← r – 1

else lower ← r

end {while} {Incons( ) = αr}

End

Clearly, this algorithm computes effectively Incons() (following Proposition 7) and its
complexity order is Comp(A') = [1 + log2m] Comp(A) ≤ [1 + log2n] Comp(A),  i.e. (I) comes

down to solve at most [1 + log2n] satisfiability problems in propositional classical logic. Hence

(I) is a NP-complete problem, like (S). 

Proposition 9 (deduction theorem) :
∪ {(ϕ  1)}  (ψ  α)   iff   (ϕ→ψ  α)

Proof :

(⇒) ∪ {(ϕ  1)}  (ψ  α)

⇒ N ∪{(ϕ  1)} (ψ) ≥ α   (by Corollary 2)

⇒ inf{1 – π ∪{(ϕ  1)} (ω), ω  ¬ψ} ≥ α
⇒ ∀ ω ϕ ∧ ¬ψ, π (ω) ≤ 1 – α, since π ∪{(ϕ  1)} (ω) = π  (ω) for any ω ϕ
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⇒ N (ϕ → ψ) ≥ α since ϕ → ψ is equivalent to ¬(ϕ ∧ ¬ψ)

⇒  (ϕ → ψ  α)  (again Corollary 2).

(⇐)  (ϕ → ψ  α)

⇒ ∀ π , N(ϕ → ψ) ≥ α
⇒ ∀ π , N(ϕ) = 1 implies N(ψ) ≥ α since N(ψ) ≥ min [N(ϕ), N(ϕ → ψ)]

⇒ ∀ π ∪ {(ϕ  1)},  N(ψ) ≥ α
⇒ ∪ {(ϕ  1)}  (ψ  α). 

Proposition 10 (refutation theorem) :

(ϕ  α)   iff    ∪ {(¬ϕ  1)}  (⊥  α)

or equivalently :

Val(ϕ, ) = Incons(  ∪ {(¬ϕ  1)})

Proof : let us just apply Proposition 9, replacing ϕ by ¬ϕ and ψ by ⊥ :

∪ (¬ϕ  1)  (⊥  α) iff (¬ϕ→⊥  α), i.e.  ∪ {(¬ϕ  1)}  (⊥  α) iff (ϕ  α).  

Proposition 11 :
Let  be a possibilistic knowledge base and (ϕ  α) a necessity-valued formula. Then

(ϕ α) if and only if α (ϕ α)

Proof : According to Proposition 10, (ϕ α) is equivalent to Incons( ∪ {(¬ϕ  1)}) ≥ α ;

then, from Proposition 6 we get that Incons (α ∪ {(¬ ϕ  1)}) ≥ α , i.e. α (ϕ α) by

applying again Proposition 10. The converse is obvious because α ⊆ .

Proposition 12 :

The proposed formal system is sound and complete with respect to the inconsistency-tolerant

semantics of possibilistic logic, i.e. for any set of possibilistic formulas  we have

 (ϕ  α)  if and only if   (ϕ  α)

where  (ϕ  α) means : "(ϕ  α) can be derived from  in the system given in Section 6".

Proof : We need the following lemma :
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Lemma 12.1 :
Let  be a set of necessity-valued formulas and (ϕ  α) a necessity-valued formula. Then

(ϕ  α) if and only if α*  ϕ in the classical sense

Proof :
 (ϕ  α) ⇔ α  (ϕ  α)   (Proposition 11)

⇔ Incons[ α ∪ {(¬ϕ  1)}] ≥  α    (Proposition 10)

⇔ α ∪ {¬ϕ} is inconsistent in the classical sense (Proposition 7 (i))

⇔ α*  ϕ    (classical entailment property).   

Proof of Proposition 12 : 

(⇐) (soundness)

By induction on the derivation steps, the proof is straightforward.

(⇒) (completeness)

Using lemma 12.1,  (ψ α) is equivalent to α*  ψ. Then, since the formal system

formed by the non-weighted part of the axioms schemata and of the inference rules (except (S)

whose non-valued part is trivial) is well-known to be a sound and complete Hilbert formal
system for classical first-order logic, then there exists a proof of ψ from α* by this classical

formal system. Then, considering again the valuations, the proof obtained by the previous one
is a proof of (ψ  γ) from α by the given formal system, with γ ≥ α. Lastly, using (S) we

obtain a proof of  (ψ  α) from α , and a fortiori from .  

Proposition 13 :  Incons( ) = Incons( )

Proof :

Incons( ) =  α
⇔ α*  is inconsistent and α*  is consistent (from Proposition 7)

⇔ ( α*)  is inconsistent and ( α* ) is consistent, where ( α)*  and ( α* )

are respectively clausal forms of α*  et α*  (from the equivalence of the

inconsistencies of a formula and that of its clausal forms in classical logic)
⇔ ( α)*  is inconsistent and ( α)*  is consistent

⇔ α*  is inconsistent and α*  is consistent

⇔ Incons( ) = α = Incons( )  (again from Proposition 7). 

Proposition 14  (soundness of rule (R)) :

Let  be a set of possibilistic clauses, and C a possibilistic clause obtained by a finite number of

successive applications of (R) to  ; then  C.
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Proof : Let  C1 = (c1 α 1), C2 = (c2 α 2), the  application of rule R yields C' =

(R(c1,c2) min(α1,α2)). Then ∀π satisfying C1 ∧ C2 we have N(c1) ≥ α1 and N(c2) ≥ α2,

and then N(c1∧c2) = min(N(c1),N(c2)) ≥ min(α1,α2) and finally N(R(c1,c2)) ≥ N(c1∧c2) ≥
min(α1,α2) (since c1 ∧ c2  R(c1,c2)). Thus rule R is sound. Then by induction, any

possibilistic clause obtained by a finite number of successive applications of (R) to  is a

logical consequence of .  

Proposition 15   (soundness and completeness of refutation by resolution in PL1) :

Let  be a set of necessity-valued first-order formulas and  the set of necessity-valued clauses

obtained from ; then the valuation of the optimal refutation by resolution from  is the

inconsistency degree of .

Proof : It is very similar to the proof of Proposition 12. Using lemma 12.1 applied with ψ
being the contradiction ⊥,  (⊥  α) if and only if α* is inconsistent in the classical sense.

Then, the resolution principle being complete for refutation in first-order classical logic, the
inconsistency of α* implies that there exists a refutation by resolution from the clauses of

α*. Considering again the valuations in this refutation, we obtain a refutation from α (and a

fortiori from ) whose valuation is ≥ α (since only clauses of α, i.e. with a valuation ≥ α,

are used).

Thus, we have proved that the valuation of the optimal refutation by resolution from  is

greater or equal to Incons (); the soundness of the possibilistic resolution rule (Proposition

14) forbids this valuation to be strictly greater than Incons(); thus it is equal to Incons(), and

also to Incons( ), according to Proposition 13.       

Proofs of the main results from Section 4.1 (possibilistic logic PL2)

Proposition 5' (Lang et al., 1991) :

The inconsistency degree of an inconsistent possibilistic knowledge base  is the smallest

weight of possibilistic formulas in any strongly minimal inconsistent subset ' of .

Especially, if Incons( ) = (∏ β) (β > 0) then there is a unique possibility-valued formula in

' of the form (ϕ (∏ β)).

Proof : Let us consider the case where Incons() = (∏ β). It is obvious that any strongly

minimal inconsistent subset ' contains at least one possibility-valued formula. Let us show
that it is unique. Let ' = {(ϕ i  (N α i )), i = 1,m} ∪  {(ϕ j  (∏ β j )), j = m + 1, n}. The

inconsistency degree is now of the form :
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β = inf π(ω⊥)

under the constraints
N(ϕi) ≥ αi, i = 1,m

max(π(ω⊥), ∏(ϕj)) ≥ βj, j = m + 1,…, n

Since β > 0, ∀ π  ', ∃k such that ∏(ϕk) < βk (otherwise  would not be inconsistent),

and Incons( ') = βk for some βk. In order to minimize this value, let us maximize π over Ω,

so as to make the set {j | ∏(ϕj) < βj} as small as possible. Let π0 be defined by π0(ω) =

min{1 – αi, ω  ¬ϕi, ω ≠ ω⊥}. Clearly, π0  {(ϕi (N αi)), i = 1,m}, and ∃ ω ∈ Ω, π0(ω)

= 1 (since there is no inconsistency among the N-valued formulas), and ∀π', π'  {(ϕi (N

αi)), i = 1,m} ⇒ ∀ ω ∈ Ω, π'(ω) ≤ π0(ω). The only parameter left is π0(ω⊥). Let βk =

max{βj | ∏0(ϕj) < βj} where ∏0 is based on π0. Note that the maximality of π0 over Ω
minimizes the number of (ϕj (∏0 βj)) with ∏0(ϕj) < βj.

For simplicity assume βk = βm+1. Let us put π0(ω⊥) = βm+1. Then clearly, π0  ', since

∀j, max(βm+1, ∏0(ϕj)) ≥ βj by construction. Thus Incons(') ≤ βm+1. Now, ∀ϕj such that

∏0(ϕj) ≥ βj, Incons( ' – {(ϕ (∏ βj)}) = Incons( ') ; the same thing is true for all ϕj such

that ∏0(ϕj ) < βj  < βm+1. If there is another formula (ϕi  (∏ βi )) such that βi  = βm+1,

dropping one of these formulas still requires π0(ω⊥) = βm+1 for ensuring π0  '. Hence, if

' is really minimal it contains only one possibility-valued formula, i.e. (ϕm+1 (∏ βm+1))

and Incons( ') = (∏ βm+1).                     

Proof of Proposition 7' is done after the proof of Proposition 12'.

Proof of Proposition 12' :

The proposed formal system for possibilistic logic involving possibility- and necessity-qualified

formulas is sound and complete with respect to the inconsistency-tolerant semantics of

possibilistic logic, i.e. for any set of possibilistic formulas  we have

  (ψ w) if and only if (ψ w)

where (ψ w) means : "(ψ w) can be derived from  in the above system".

The restriction of this proposition to PL1 has already been proved (Proposition 12). In order to

extend the result to PL2, we first prove the following lemma :
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Lemma 12'.2
Let  be a set of possibilistic formulas and (ψ (∏ α)) with α > 0 a possibility-valued formula

such that   (ψ (∏ α)) with α maximal (i.e. ∀ w > (∏ α), we do not have   (ψ w)).

Then there exists a possibility-valued formula (ϕk (∏ α)) in  such that

(i) N ∪ {(ϕk (∏ α))}  (ψ (∏ α))

(ii) N  (¬ϕk ∨ ψ (N β)) with β > 1 – α.

Proof : Let  =  ∪ {(¬ψ (N 1))}. Then, according to the generalisation of Proposition 10 to

PL2 (its proof being in (Lang, Dubois, Prade 1991)) and to the maximality of α, we get

Incons( ) = (∏ α ). Then, using Proposition 5' ; ' being with a subset of N  ∪
{(¬ ψ (N 1))} ∪ {(ϕk (∏ α))}, we have (∏ α) = Incons( ') ≤ Incons( N ∪ {(¬ψ (N 1))} ∪
{( ϕk (∏ α)))} ≤ Incons(  ∪ {(ψ (N 1)))} = (∏ α), i.e. Incons( N ∪ {(¬ψ (N 1))} ∪
{( ϕk (∏ α)))} = (∏ α). Using again Proposition 5', we get N  ∪  {(ϕk (∏ α))} 

(ψ (∏ α)), which proves (i).

Let us prove (ii). (i) is equivalent to Incons(N ∪ {(¬ψ (N 1))} ∪ {(ϕk (∏ α)))} = (∏ α).

Let us prove first that for any possibility distribution π on Ω satisfying N ∪ {(¬ψ (N 1))}

we have ∏(ϕk) < α; indeed, let us suppose that there is a possibility distribution π0 satisfying

N ∪ {(¬ψ (N 1))} such that ∏0(ϕk) ≥ α. If N ∪ {(¬ψ (N 1))} were inconsistent, then

according to Proposition 5, it would be the case that N  (ψ (N )) with  > 0, which would

contradict the assumption   (ψ (∏ α)) with α being maximal. So N ∪ {(¬ψ (N 1))} is

consistent, i.e. the least specific possibility distribution π* on Ω associated to N ∪
{(¬ψ (N 1))} according to the corollory of lemma 1, is normalized. According to lemma 1, π0
satisfies N ∪ {(¬ψ (N 1))} is equivalent to π0 ≤ π* (where π0 is the restriction of π0 to Ω).

Thus, ∏*( ϕk) ≥ ∏0(ϕk) ≥ α, i.e. if we extend π0 to Ω⊥ by π0(ω⊥) = 0, then we have

π0  N ∪  {(¬ψ  (N 1))} ∪  {(ϕk (∏ α))}, and then Incons( N ∪  {(¬ψ  (N 1))} ∪
{( ϕk (∏ α)))} < (∏ α), which contradicts Incons(N ∪ {(¬ψ (N 1))} ∪ {(ϕk (∏ α)))} =

(∏ α). So, every possibility distribution π on Ω⊥ satisfying N ∪ {(¬ψ (N 1))} verifies

∏(ϕk) < α, i.e. N(¬ϕk) > 1 – α, which means that N ∪ {(¬ψ (N 1))}  (¬ϕk (N β)) with

β > 1 – α. Using Proposition 10, this is equivalent to Incons(N ∪  {(¬ψ  (N 1))} ∪
{( ϕk (N 1)))} ≥ (N β), i.e. to Incons( N ∪  {(¬ψ ∧ ϕk (N 1)))} ≥ (N β) ; using again

Proposition 10, it gives N  (ψ ∨ ¬ϕk (N β)) with β > 1 – α, which proves (ii).

Proof of Proposition 12' :
According to the above lemma, N  (¬ϕk ∨ ψ (N β)) with β > 1 – α ; then, using

Proposition 12, there is a deduction of (¬ϕk ∨ ψ (N β)) from N (a fortiori from ), using

the necessity-valued part of the given formal system. Lastly, using (GMP) from (¬ϕk ∨
ψ (N β)) and (ϕk (∏ α)) we infer (ψ (∏ α)). Hence we have found a deduction of (ψ (∏ α))
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from  using the given formal system. The completeness follows. The soundness is again an

obvious matter.

Proposition 7' :
Incons( ) = (∏ α) if and only if N* is consistent and α = max{β, ∃ (ϕ (∏ β)) ∈ ∏,

N* ∪ {ϕ} inconsistent}.

Proof : Firstly, Incons( ) = (∏ α) means that there is no ε > 0 such that  (⊥ (N ε)) and

thus that the necessity-valued part N of  is consistent, which entails (by Proposition 7) the

consistency of N*. Secondly, according to Proposition 12', Incons( ) = (∏ α) entails that

there is a formal deduction of (⊥ (∏ α)) in the formal system given previously. As seen in the

proof of Proposition 12', only one deduction step uses a possibility-valued clause (otherwise

the weight of the deduced formula would be (∏ 0)), whose weight is equal to the weight

attached to ⊥ (i.e., (∏ α)) ) at the last step of the deduction. Then, this is also a deduction of

(⊥ (∏ α)) from N ∪ {(ϕ (∏ α))}, where (ϕ (∏ α)) is that possibility-valued formula. Then,

considering the (classical) deduction obtained from this one by ignoring the valuations, we get a

deduction of ⊥ from N* ∪ {ϕ} ; hence, N* ∪ {ϕ} is inconsistent. Now, suppose that there

exists a formula (ψ (∏ γ)) with γ > α such that N* ∪ {ψ} be inconsistent:then it would be the

case that N  ∪  {( ψ  (∏ γ))}  (⊥ (∏ γ)), i.e. N  ∪  {( ψ  (∏ γ))}  (⊥ (∏ γ)) by

Proposition 12', which would contradict the assumption Incons() = (∏ α). Hence α =

max{β, ∃ (ϕ (∏ β)) ∈ ∏, N* ∪ {ϕ} inconsistent}.


