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ABSTRACT

This paper presents a number of techniques by which
useful interscheme properties can be automatically ex-
tracted from pre-existing database schemes. The pre-
sented approach uses a variant of description logics en-
riched with plausibility factors to represent and reason
about scheme properties. Our method comprises algo-
rithms for terminological normalization of schemes, for
extraction of basic inclusion properties between sii-
ple scheme objects, for selection of relevant subschemes
and, finally, for the derivation of semantic scheme sub-
structures, defined as complex expressions of our de-
scriptive language. It is shown that the availability of
such derived properties can be advantageous in various
application contexts, including federated database in-
tegration, query optimization and view maintenance.

1 Introduction

The problem of understanding the intensional se-
mantics of databases is an essential task for dealing
with data management and utilization in the most ap-
propriate way. Recent papers point out such need by
discussing various aspects of using knowledge about
database schemes in various application contexts, in-
cluding accessing integrated and cooperative data re-
source systems (Ullman (1987), Levy et al. (1996),
Catarci - Lenzerini (1993), Abiteboul (1997)), query
optimization and view maintenance (Chaudhuri et al.
(1995)), structuring of data warehouses and data con-
straints (Gupta et al. (1995)).

Some of these papers put into evidence the need for
the adoption of formal languages to describe and ma-
nipulate intensional knowledge about data. (Catarci
- Lenzerini (1993)) proposes a logic formalism largely
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" properties can be extracted from database schem

based on Description Logics (DL) to express interscheme
properties in cooperative database systems. Ullman
(1997) discusses mediators for obtaining and filtering
information from heterogeneous pre-existing data re-'
sources in integrated information systems. Mediator.
capabilities are obtained using logic-based formalisms:
For instance, the Information Manifold uses an exten
sion of DL with Datalog-like rules (Levy et al. (1996

A difficulty that is encountered while reasoning abot
intensional semantics of pre-existing databases is that
most often, the only available intensional know
consists of properties explicitly encoded in data!:&
schemes whereas many other useful properties ar
plicit, hidden within scheme structures and, as
cannot be iinmediately exploited. '

The aim of this paper is to show how such

plying a process which can be looked at as'a
knowledge discovery process (Fayyad et al.
Contrary to traditiona! knowledge discovery te
our methods work mainly on schemes rathe
extensional datal.

In order to represent and manipulate
knowledge, we use a logic language, called PDLS
is obtained by extending the language in (Cak
Lenzerini (1993)) along two directions: first
pressing structural properties of object class:
tably, class inclusions, our formalism allows
pression of synonymies and homonymies:
names (we will call such properties nom
second, each logic assertion is associa
number between 0 and 1, used to meas
strength, in a way that will be explained.

The adoption of such DL based forr

1Even if in several application contexts, W
heterogeneous data sources are involved, the
traditionally made in databases between sche
much of its importance (Abiteboul (1997))-



{wo reasons. First; Description Logic is well
representing complex semantic properties ©
ted domains, and indeed we focus on complex
" .rties of database schemes. Second, DL
:se formal inference system, which we
dvantage of as the basis for deriving scheme prop-
%;é;é,ppmach we are presenting here consists in two
nain phases:
phase 1, or preprocessing, where database schemes are
alyzed for extracting an initial set*of assertions. In
s phase, database experts are required to provide
ome basic background knowledge about involved data-
which includes (1) a set of (so called, basic) syn-
onymy Of homonymy properties and (2) a set of further
| assertions describing inclusions between classes of ob-
jects. This latter knowledge will typically relate classes
of objects belonging to the same scheme (whereas our

of objects belonging to different schemes).

for the sake of the resentation.
P

maintenance.

tonellis (1997))-

a,lgoril-hrn will typically extract properties relating classes

.. Phase 2. which is devoted to discovering more com-
plex properties and consists in (1) focusing on relevant
database objects and (2) discovery of new properties
. they are involved in. Some of the techniques used in
" Phase 1 have been already presented as part of another
~ paper (La Camera et al. (1997)), and are reported here

Summarizing. the main contributions of this paper
are the following: (1) the presentation of a formalism
based on DL for the representation of scheme proper-
ties; (11) the definition of a set of techniques for the semi
automatic discovering of hidden database properties;
(1i1) the illustration of the applicability of extracted
properties in various database contexts including data-
base scheme integration, query optimization and view

Before closing this section, We briefly overview some
literature related to what is presented in this paper.
In the literature other methodologies exist for deriv-
ing inclusion, synonvmy and other properties among
scheme objects (Batini et al., (1996), Castano - De An-
Our methodology derives this type
of properties but, in addition, it derives more complex
properties and associates to each property a coefficient
which expresses its strength. In (Castano- De Antonel-
lis (1997)) a method for the construction of a semantic
dictionary is described; this method retrieves only simi-
larity and dissimilarity information. Our method yields
a far more richer derivation of properties. Finally, in
(Catarci - Lenzerini (1993)) a formalism for represent-
ing interscheme knowledge based on DL is described,
which forms the basis of our PDL formalism. How-
ever, (Catarci - Lenzerini (1993)) aims at represeniing
interscheme knowledge while our aim is to eztract new

knowledge and to use PDL for formally representing

extracted properties.
The rest of this paper is organized as follows. In the

next section we overview some preliminary concepts,
namely, the description language of (Catarci - Lenzerini
(1993)) and knowledge discovery background. Then, in
Section 3 we illustrate the preprocessing phase. Sec-
tion 4 presents main methods for extracting properties.
Some application cases are presented in Section 9.

2 Intentional Knowledge Discovery in Databases

2.1 Knowledge Discovery in Databases

During the last decades there has been an enormous
growth in the amount of data stored in database sys-
tems. To indicate the systematic organization of such
data collections within structured information depos-
itory, the term Data Warehousing Was coined. Be-
cause of their overwhelming size, information stored in
data warehouses cannot be properly queried using tra-
ditional techniques, as very often they are not able to
produce data reporting of reasonably small size. There-
fore, the necessity arises to employ special techniques
an intelligent and semi-automatic

capable to assist, 'in
| information from

way, operators in retrieving usefu
large databases. The cultural area focusing on devising
such data extraction techniques is known as Knowledge
Discovery in Databases (KDD) and is attracting a grow-
ing interest in the database community (Fayyad et al.

(1996))- \

A KDD process consists of several
target data sets, noise elimination and preprocessing,
data reduction, data mining algorithm execution, inter-
pretation of extracted data patterns. strengthening of
discovered knowledge (Fayyad et al. (1996)). KDD sys-
tems usually interact with users, who are requested to
make several choices by which data processing is influ-
enced and supervised. The computational core of KDD
processes consists in data mining algorithms, which per-
form the actual extraction of interesting pattern from
data.

In this paper, We concentrate on such core phase and
present some techniques by which interesting patterns
can be extracted from database schemes rather than
from extensional data. We have coined the term [nten-
tional Data Mining to refer to this process of extracting
new information from database schemes. The associ-
ated Knowledge Discovery process is similarly called
Intentional Knowledge Discovery (IKDD).

steps: creation of
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2.2 PDL: A Description Logic for IKDD

To reason about database intensional properties, we
use a variant of DL, which we call PDL, which extends
the logics presented in (Catarci - Lenzerini (1993)). We
implicitly assume that our input database schemes are
represented in PDL. This is not an actual limitation,
since translations exist from all data models (Catarci
- Lenzerini (1993)). However, for the sake of the pre-
sentation, we shall often refer to Entity Relationship
database schemes.

Description logics is a specialized logics developed to
model complex data domains. As in (Catarci - Lenz-
erini (1993)) we use DL to reason about class properties.
The language is based on an alphabet B of symbols in-
cluding class names and the special symbols T, L, M,
U, 3, V and usual parentheses. A class expression is
either an entity expression or a relationship expression.
An entity expression over the alphabet B is constructed
according to the following rules:

C,F— E| CUF| CnF| -C|
YRIU).T, + Cy oy Tt Cal
ARWVLT :Chvies T 1 O

VA.D| 3A.D
where C, F and E are entity expressions, R is a re-
lationship symbol from B, and T)....,T,,U are role

symbols.

A relationship expression is an expression of the
form R[U;,U,,....U,] where R.is a relationship sym-
bol over the alphabet B and {U4,U>,...,Un} = rol(R)
are the roles associated to R.

Knowledge about schienie properties is expressed in
such a logic in the form of assertions. An assertion is a
statement of the form: L; < L, where L; and L, are
class expressions of the same type.

Language semantics is based on interpretations. An
interpretation / = (A’,.7) consists of: (1) a non empty
set A, called universe of I which comprises all the
objects, (2) a mapping ./, called interpretation function
of I. For each I, the interpretation function of I assigns
to each entity expression a subset of A/, according to
the following rules:

T = A! 17=9 (cnF)Y =c'nF!

(CuF)Y =C'ufF! (=C)'={aead’|agC’}
(VRIULT: : C1,...;Tn : Cn)' = {a | ¥r € RI.(s[U] = 0) =
(r[T1) € C{ A ... AT[Tn] € C))}

(3R[U)T: : C1,....Tn : Ca)' = {a | 3r € R .(r[U] = a) A
(r[l1) € C{ A ...AT[Tn] € CJ))

(VA.D)! = {a | Y(a,b) € A’.b € D'}

(3A.D)! = {a | 3(a,b) € A’.b € D')

The interpretation function of I assigns a set of la-
beled tuples to each relationship expression as:

(R[U, U3, ..., Un))! = R!
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where, if R is a relationship with roles {Uy, Uz, ..., Um},
R is a set of labeled tuples of the form (U : u1, ..., Um :
Um) and uy,..., 4y, € A’. In the following, if r is an
instance of R we shall use r[U;] to denote the object
associated to U; by R. An assertion L; < L is satisfied
by an interpretation / if L] C L. An interpretation I
is called a model of a set of assertions I if each assertion
in X is satisfied by /.

In the following, we shall use the language PDL,
which extends the descriptive language presented above
as follows: (1) each assertion is associated to a coeffi-
cient, which is a real number between 0 and 1 which
measures the plausibility of the assertion. An assertion
Ly < L, with inclusion coefficient Wy, 1, will be repre-
sented as a triplet (Ly, L2, WL, L,)Ine, Where the suffix
Inc tells us the triplet is relative to an inclusion prop-
erty. (2) besides inclusion properties, PDL allows to
represent also what we call nominal properties, which
express synonymy and homonymy characterizations of
class names. Nominal properties are associated with
synonymy/homonymy coefficients. (L1, La, VL,L,)syn,
tells that a synonymy is believed to exist between the
name L; and the name L, with a confidence equal to
VL,L, x 100 percent. Homonymies are represented sim
ilarly, their plausibility coefficient being represented by
the letter Z. Note that both kinds of nominal properties -
make sense only between classes belonging to different
input database schemes.

3 Phase 1: Preprocessing

_ Assume we are given a set of database schem
The preprocessing phase has two steps: Step 1, consi:
ing in the extraction of nominal properties about clz '
belonging to schemes in S, and Step 2, which cons
in deriving stmple inclusion properties, i.e., prope
of the form (A, C, f)in. where both A and C are
symbols. :

3.1 Extracting Basic Nominal Properti

The process of synonymy extraction is base
idea that nominally similar classes are most ofte
in a structurally similar manner into schemes.:
the structural similarity analysis is recursive
ated through nominal similarity. The proc
with a small set of synonymy properties
sic synonymy properties, provided by exper
given a pair of candidate classes for synonyn
traction algorithm analyzes the class neighb
determine the similarity degree of the two ¢
algorithm proceeds incrementally, by storing




"< in the dictionary, and possibly uses this
ledge to derive further synonymies. It termi-
n no further interesting property is derived.
perty is classified as interesting by the al-
if it is either already discovered but with a
't strictly smaller than the new one, or it is
ed and its coefficient is greater than a fixed

value.
'.‘f .

hm for extracting synonymy properties

_ database schemes, basic synonymy properties

derived synonymy properties.

| -fiact_Candidates()
or each pair of candidates do
Extractdirect.identical();

. Extractdirect.basic.synonyms()

peat
 Extract_identical();
Extract basicsynonyms();
_ Extract.simple_synonyms ()
until at least a valid property is extracted

& The synonymy coefficient associated to derived prop-
Brties, 1, is defined as follows:
T ngn ’
V = Round (nr:g:h"": E?-.I-:'IE::::‘;:)M
=1 =1
(Z:‘l ny, X v‘,.)-;-ud xthg
. I DHENT DI +)
vhere th, and thy are thresholds identifving conditions
of equality and distinctness, respectively; ny and ng
" are the number of equal and distinct synonymy prop-
' erties between classes in the considered neighborhood,
. whereas n,; is the number of synonymy properties whose
coefficient is V,; and, finally, n,; is the number of basic
" synonymy properties whose coefficient is Vy;.
More details about the synonymy algorithm and the
corresponding one for discovering homonymies can be

found in (La Camera et al. (1997)).

Example 3.1 Consider the following schemes represent-
ing the Production (denoted SP) and Administration (de-
noted SO) Departments of an organization, respectively:
Suppose that experts provided in input the following
synonymy properties:
(Chief(sp), Managersg), 0-8) ¢, ,
(Departmentsp), Division|sg); O.Q}Sy"
Our synonymy algorithm will discover the following syn-
onymy properties and associated factors:
(Towngsy), BirthPlaceysg), 1).5'yn
(Subordinate(ss), Employee(soj; 0.67)g,n
(Operatesisp), Worksiso), 0.79}5y“
(Bornyss], Bornysg), 1)_‘_‘.1'"l

Department Town

__’_ Respenibe

Fig. 1 Scheme SP: the Production Department data-

<~

>
[

G

|

Fig. 2 Scheme SO: the Administration Department
database

3.2 Deriving further interscheme knowledge
Step 2 of the preprocessing phase consists in deriving
further interscheme knowledge. In this phase, an algo-
rithm is applied which enriches the content of three dic-
tionaries: synonymy and hornonymy dictionaries, which
have been populated using the algorithms discussed
above, and the so called Inclusion Dictionary, which
stores PDL assertions stating inclusion properties be-
tween database classes.

This latter dictionary is initially filled using a (possi-
bly empty) set of basic inclusion properties provided by
database experts. This initial set of inclusion properties
can be also derived by running appropriate aggregate
queries over input databases. New inclusion and new
synonymy properties can be derived. Derived proper-
ties are either classified into exact or conditional. Ezact
properties are those which are always valid while con-
ditional properties are those whose validity depends on
the values of the involved coefficients. We will explain



the extraction of exact properties and of conditional
ones using two examples.

Suppose that (C,A,WCA}!M and (A, B, WaB) .

are stored in the inclusion dictionary. Then we de-
duce (C, B, r(Wg,, WaB));,. where 7(a,B) is a t_norm
(Fankhauser et al. (1991)) which is instantiated de-
pending on the specific application: t_norms are two
place functions from [0,1] x [0,1] to [0,1]; they are
monotonic, commutative and associative and have been
used to define fuzzy set intersection.

As for the second case Suppose that there are two
schemes S; and S, and suppose that, in the scheme
S1, B is a subset of A with inclusion coefficient Wg ,
while, in the scheme S2, D is a subset of C with co-
efficient Wpe. Suppose that the inclusion dictionary
stores that A is a subset of C with inclusion coefficient
Wae and synonymy coefficient V¢, then, if Wpe >
T(Wga, W4c) then it is possible to deduce that almost
all the instances of C are also instances of D; so we can
deduce that B is a subset of D with inclusion coefficient
Wgp = T(7(Wg4, Wac), Wpe) and synonymy coeffi-
cient Vgp = Vic. This Property is conditional because
it is true only if Wpe > r1(Wg,, Wac).

Example 3.1[c0n{-inued...] Suppose that the following

inclusion properties are provided by the experts (or ex-

tracted from the databases using suitable aggregate queries):
(Responsible[;p;, S!.:bardinateisp;. 0'3};..=
{DperativeDivision!s.,], Subordinatersn], O.T)J,M
(Employeelsn}_. Dependentfsp]_. 0.7),...
(Engineer[sq, Employeels.,], 0.5), o
(Manager{su], Chiefysy, O.SS)IHC
{NonStrategicCompeisq, Compet ence(sq, 0.6)
(BirthPlacelsu], Towng), 0.95),
{HanagementDivision{sg], Divis ionsg, 0.3)1,“c

(StrategicComp_e[sa], Compe tences), 0.4)

(Divisionm], Department;sp], 0.95)‘,“(

(I talianEngineerlso], Engineerisn], 0.9)““

(ForeignEngineer[So], Engineer(s, 0. 1) e _

By using the set of already derived nominal properties,
the algorithm discovers the following new synonymy and
inclusion properties:

{Engineer[s,,l, Subordinate[spl, 0'67)5‘yn

(Responsible{”], Employeels.,], 0.6?)55”‘

{Engineerfsu], Subordinate{s,}, 0A35)‘,"c

(Hesponsiblels,], Employee{su], 0.21)

Ine

Inc

Inferred properties must be checked for possible con-
flicts, so a validation phase takes place. This is con-
ducted in part automatically but may also require the
intervention of experts,

In particular, some derived Properties may result in
contradiction with some beljef of some expert, in which
case a negotiation phase takes place between the system
and the expert. During this phase the system provides
inference tracing Justifying the deduction of the con-
tradictory piece of information and the expert supplies
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further information either validating or modifying or

rejecting the assertions included in the inference trac-
il’lg. +

4 Phase 2: Discovering Complex Structural
Properties

The second phase extracts pProperties involving, in
general, complex class expressions. The extraction of
such complex properties consists of two steps: Step 1,
where most interesting classes are singled out on the ba-
sis of a weight assigned by an algorithm which uses dic-
tionaries constructed in the preprocessing phase; Step
2, in which new properties involving interesting classes
identified in Step 1 are derived.

4.1 Singling out most interesting classes

This step uses the information stored in the syn-
onymy and inclusion dictionaries. The’ process con-
sists in associating an interest weight, denoted by the
function ¢(.), to entities and relationships. The inter-
est coefficient associated to relationships is defined as
oR, = ) i, Val(E;), where the E}’s represent entities
directly connected to R;. The function Val(E;) returns
a value encoding the “local” interest of the class E; and
is defined as Val(E;) = )i Maz(Wg,g,, Ve, ,).
where ! is the number of objects related in the dictiona
ies to entity E; by a synonymy property, an indusiﬁ i
property or both. The underlying assumption here js
that the more a class is involved in properties appea
ing in dictionaries with high factors, the more prob
is it will be used to exfract new interesting pro
from schemes. _
In order to single out interesting relationships ;
terest threshold value relative to relationships
This is defined as Th,, = Alinton)tMlustorh
Min(og) and Maz(og) denote the minimum an
maximum interest coefficient we have computed.
Dpg is a normalization factor used to tune up
old: the smaller its value is the more selective th
old will be. All relationships with interes
greater then Th,, are considered interest

S'R.,IT;]TQ = C-_;, ...,T;, 5 Cn. <
YR(T\).T2 : Cy, ..., T 58



it S O
.--‘Tﬂ—l :Cn—I _<_ Cﬂ

are assertions involving objects belong-
heme. In order to associate them with

oefficients, we proceed by first asking
to state which of these assertions
then by submitting a suitable ag-
et the coefficient associated to mean-
(note that both the left-hand and the
es of the assertions above correspond to
esulting PDL -assertions are stored in

ictionary. An example follows.
fcontinued...] From entities and relation-
ous example the algorithm singles out as in-
jects Worksiso), Born(sp), Bornyse); Operates(s,
Managesisp] and entities ForeignEngineer(sq),

er(sa]; Engineerisg), OperativeDivisionsg)

. interesting.
assertions tentatively selected to populate the

=5 Are:

rn[NL].IN : Employeeso) < BirthPlace(sq)
Born[IN).NL : BirthPlaceisy < Employee(sg]

“while the former is semantically meaningful, the
' t. As a consequence, the latter is discarded.

~traction of complex interscheme proper-
ties
his section, Step 2 of the intensional knowledge
very process is illustrated. As already stated, the
general form of PDL assertions extracted by our method
respond to formulae L, < L (see Section 2), to
ich an inclusion factor f is associated to form a
 triplet (Ly,La, f)inc. Here, both Ly and L, are class
_ g;kpressions. The preprocessing phase extracts prop-
erties where both L; and L, are simple entity sym-
bols. The method we are presenting next derives prop-
erties involving more complex expressions. The method
works by case analysis: each of the following subsec-
tions will be devoted to the illustration of one of such
inference cases.

4.2.1 Expressions containing M and U Here, we
consider the case in which L; is an intersection or a
union between two entities. In order to illustrate the
foregoing, assume the following properties were extracted
in the preprocessing phase:

(A‘ C! H’AC)Inc (B, Cu WBC)Inc

To establish the inclusion coefficient of the assertions:
(ANB)<C (AUB)<C

; Divisionso), Responsiblesy), Subordinatesp),

we reason as follows; first of all, note that there are two
extreme situations to be considered:

e A and B are included either ways into one an-
other, in which case the derived coefficients are:

Wians,c) = min(Wac, Wgc)
Waus,c) = maz(Wac, Wac)

e A and B have minimal intersection, i.e. their
symmetric difference has the greatest value, In
which case we derive the following coefficients:

Wians,c) = maz(0, Wac + Wee = 1)
Wiaus.c) = min(1, Wac + Wac)

To derive the general coefficient form, we choose to com-
pute the mean value between those extremal ones; thus,

derived coefficients will be:
min(WAc,WBC}+mar|’DI‘V,‘c+|V3c-l]

W(AI"'IB,C) = 9
W, A ma:(WAcJVBC'}-}-mfn(l.W..\c+WBc}
(AUB,C) = :

Example 3.1[colltinued...] As shown above, the pre-
processing phase has yvielded the following properties:
(Engineers,, Subordinatesy 0.35) Inc
(Responsiblegse), Subordinate(sp), 0.3)rne
By applying tlie rule described above, the following proper-
ties are derived:
(Engineer|sq) M Respon.(se): Subordinatess),
(Engineer(so) U Respon.(sp), Subordinate(sp),

UJS)I,.;
O-S)Inc

4.2.2 Expressions containing ¥ and 3 Let R be
an interesting relationship. Assume R is connected to
entity C through role T; and to the entity E through
role [7. Assume that the assertion VYR[U).T) : Gy S E
is meaningful. Assume, moreover, the inclusion dictio-
nary stores the assertion (VR[U).T: : C\. E. We,vE) Inc-
The algorithm considers several cases, which are illus-

trated next:

o There exists a subset property between an
expression E’ and the entity C; (Case A)

Suppose that the property (E',Cy,WErC,)Inc 18
stored in the inclusion dictionary, where E’ is any
expression denoting a subset of C;. From this,
we infer that (VR[U).T\ : E', E, WEgwE)Inc Where
Wgewe = We,ve X (Wgic, ) and p is the average
number of fillers of the role T} in R.

As usual the difficult part of the derivation process
is associating an appropriate coefficient to the as-
sertion. Such computation is based on the follow-
ing observations:
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(i) (YR[U].Ty : €\, E,Wc,vE)In. corresponds to
the set of instances of £ connected to R and as-
sociated, through role T}, only to instances of Cy;
(1) (YR[U].T\ : E', E,WgwE)1n. denotes all in-
stances of E' connected to the relation R and asso-
ciated, through role T}, only to instances of E'2;
(112) say p is the average number of instances rel-
ative to the role 7} in R. Then, all these y in-
stances must belong to E’. The probability for
this to happen is (Wgie, )~

The derived coefficient is then Wewe = We,ve x
(WErc,)*. We note that the factor # can be easily
provided by experts.

* The entity F includes the entity £ (Case
B)

Assume that the inclusion dictionary stores the
assertion (E, F, Wgr)ne.. Then, the algorithm
infers (VR[U).T: : Cy, F,We,ve x Wer)in. .

* R has more than one role (case C)

Assume we have already derived the following as-
sertions:

(VR[U]?T} i C1 : E, I’VC,VE)!nc
(VR[UITQ . C-_J, E, ['V(,',vs)hxc

where T} and T3 are roles of the same relation
R. Suppose we want to determine the inclusion
coefficient associated to the assertion (YR[U].T, :
C1,72: C2, E,Wezpr) ine. Note that PDL expres-
sions such as the one above, where two roles occur
in the selection part, are equivalent to intersection
expressions, as those treated is subsection 4.2.1
and, therefore, we can use the reasoning shown

. in(W, W,
there to derive that: Weepr = min(Wc, % c,as)+

ma:’.’(ﬂ,wcl ag-f-wcagg— ])
]

e E is a complex expression (Case D)

Suppose E is a complex expression (i.e., not an
entity symbol) and 4 and C are simple or com-
plex expressions. Suppose the following proper-
ties have been already derived:

{A, Cs WAC)IHC (Ea C: WEC)J’H:

If Wac < Wgc, the plausibility coefficient cor-
responding to the expression (A, E,W4E) can be
evaluated. For determining Wag, we again ana-
lyze two extreme situations:

2Differently from case (7) above, here we do not consider in-
stances of E connected to R associated, through role T3, to an
instance of C; which is not an instance of E’.
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= the subsets A and E have minimal intersec-
tion, in which case WyEg is:

Wae = maz(0,Wact+Wec-1)
AE == m“I(WAf.‘.wEC}

— the subsets A and E are inclifded into one
another in either way, in which case we infer:

W s min w,‘c WEC
AE = mnxiwac.wsc)
We proceed as we have done before and take the

average between the two values above as the value
for WuE:

maz(0,Wac+Wec—1)+min(W, e, Wee)
2xmaz(Wac Wge)

Wag =

Example 3.1[continued...] Suppose we have the follow-
ihg properties:
(VWorks(DL].IL: Engineer,Division,0.4)s,
(VWorks[DL].IL: Subordinate,Division,0.5) .
(YWorks[DL].IL: (Engineer M Employee),
Division,0.4)rs,
(VWorks[DL).LC : (StratCompe M Competence),
Division,0.7)1,
(3Chief[DC].CD: Subordinate,Subordinate,
0-4}In:
then, we can infer:
(¥Works([DL].IL: (Engineer M ItalianEngineer),
Division,0.2916)s,
(VWorks[DL].IL : (Engineer M ItalianEngineer),
Department,0.277)n.
(YWorks[DL].LC : (StratCompe M Competence), IL :
(Engineern Employee),Division,0.25) .
(VWorks[DL].IL: (Engineer MEmployee),
VWorks([DL].LC : (StratCompe M Competence),
0.357)1nc -

The corresponding expressions containing 3 in
place of ¥ lead to analogous result.

4.2.3 Negation In DL, negation of a class
sents all the instances of the domain which'._—
instances of that class. In order to preserv
ation safety, we shall avoid computing comp:
w.r.t. the entire domain and, therefore, we sh:
uate negation by intersection with one of the
set classes. Thus, it is possible to derive pr
negation of a class only if there exists an incl
erty relative to that class. Assume, then,
clusion dictionary includes the triplet (B;
Then, our algorithm infers (=B, A, (1-Wpg,
derived, the coefficient for =B < A, =B ca
as any other subset of A for the purpose
other complex properties. Sk
This closes the illustration of our intens
discovery approach.




% derivation of such assertions, as the ones we
sented in this paper. Applications include (1)
of information integration layers on top of
database systems, such as mediators (Ullman
- vy et al. (1996)), and more in general the
yment of tools for supporting integrated access
ative information §ystems (Papazoglou et al.
atarci - Lenzerini (1993)), (2) query optimiza-
d view maintenance (Chaudhuri et al. (1995)),
uring and maintenance of warehouses and con-
(Gupta et al. (1995)).
Xt, we describe simple examples in the area of
isting database systems integration, query opti-
n and constraints.
“le 3.1[continued...] PDL assertions, deduced so
an be used by a specific integration algorithm. In
Camera et al. (1997)) is shown how the integration
emes SP and SO of the example can be performed to
n a global scheme.

mple 5.1 Suppose we have a generic scheme S. Sup-
e the process of IKDD extracted the following assertions:
(BR[U} T] C} A I‘V,E:pr!)!nc

(3R[U]T2 B Cz, B, WE.tprQ).'nc

(A; C, I’V.»-\C')fnc

(B, _'C, H/A“C)Inc

Now, assume that we want to evaluate the query Q =
AR[ULTh : C,, T3 : C; (i.e., we want all the fillers of role
U'in R such that roles T; and T3 are instantiated with in-
stances of C) and C; only, resp.). In this case, the empty
answer can be returned without actually executing Q@ over
the underlying database. Using similar ideas we can also
reduce some queries to simpler and equivalent forms.

A second application domain for Intentional Knowl-
edge Discovery in Databases processes is materialized
view structuring, i.e., given a database, we want to
decide which views to materialize for the purpose of
optimized query answermg We propose an algorithm
that decide which views to materialize. This algorithm
is based on the following observations. PDL formulae
naturally correspond to queries, and then to views, as
already pointed out. Consider the assertions stored in
the inclusion dictionary. Note that the greater the num-
ber of inclusion properties in which a given expression
E appears as a superset is, the higher the probability of
answering queries exploiting the view corresponding to
E is. For a fixed given number of inclusion properties
in which E appears, the greater inclusion coefficients
associated to E are, the more convenient to material-
ize the view corresponding to E is. Therefore, we can
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define a view coefficient M for each formula that ap-
pears as superset in the mclusmns dictionary, as follows:
M(E) = Nina x B+ Zl__","" WEzpr, where Nin is the
number of inclusions where E appears as the superset,
WEgzpr, represent the associated inclusion coefficients
and f is a factor used for tuning up the coefficient.
After determining the view coefficient of each ex-
pression, we set a view threshold: ThM = ﬁm%{;—”ﬂﬂi
where Mps4x is the greatest view coefficient we have
computed, whereas Mys;n is the smallest one and, as
usual, Dps is a tuning-up factor. Then, views corre-
sponding to the expressions whose view coefficient is
greater than the threshold will be materialized.

REFERENCES

S. Abiteboul, Querying Semi-Structured Data, Proc.
ICDT, 1997, 1-18.

C. Batini, S. Castano, V. De Antonellis, M.G.Fugini,
B. Pernici, Analysis of an Inventory of Information Sys-
tems in the Public Administration, Requirement Engineer-
ing Journal, 1(1), 47-62, 1996.

S. Castano, V. De Antonellis, Semantic Dictionary De-
sign for Database Interoperability, Proceedings of ICDE97,
Birmingham, 1997.

T. Catarci, M. Lenzerini, Representing and using in-
terschema knowledge in cooperative information systems,
Journal oflntelllgenl and Cooperative Information Systems,
2(4), 375-398, 1993.

S. Chaudhuri, R. Krishnamurthy, S. Potamianos, K.
Shim, Optimizing queries with materialized views, Proc.
ICDE, 1995.

U. Fayyad, G. Piatetsky-Shapiro. P. Smvth, R. Uthu-
rusamy, Advances in Knowledge Discovery and Data Min-
ing, The AAAI - The MIT press 1996

P. Fankhauser, M. Kracker, E.J.Neuhold, Semantic vs.
Structural Resemblance of Classes, SIGMOD RECORD,
20(4), 1991, 59-63

A. Gupta, I.S. Mumick, K.A. Ross, Adapting mate-
rialized views after redefinitions. Proc. ACM SIGMOD,
1995

M. La Camera, L. Palopoli, S. Rotundo, D. Sacci and
D. Ursino, Discovering properties for database schemes to
synthesize an integrated, abstract dictionary, 1997. Manu-
script. Submitted for publication.

A. Levy, A. Rajaraman, J. Ordille, Querying heteroge-
neous information sources using source descriptions, Proc.
VLDB, 1996.

M.P. Papazoglou, S.C. Laufmann, T.K. Sellis, An orga-
nizational framework for cooperative information systems,
Journal of Intelligent and Cooperative Information Systems,
1(1), 1992.

J.D. Ullman, Information integration using logical views,

Proc. ICDT, 1997, 19-40.




