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Abstract. The problem of supporting privacy preservation of XML databases 
within very large publish-subscribe systems is rapidly gaining interest for both 
academic and industrial research. It becomes even more challenging when 
XML data are managed and delivered according to the P2P paradigm, since ma-
licious accesses and unpredictable attacks could take advantage from the  
totally-decentralized and untrusted nature of P2P networks. In this paper, we 
propose XℓPPX, a distributed framework for very large publish-subscribe sys-
tems which supports (i) privacy-preserving fragmentation of XML documents 
stored in P2P XML databases, and (ii) the creation of trusted groups of peers by 
means of “self-certifying” XPath links. Furthermore, we present algorithms for 
querying privacy-preserving XML fragments in both schema-aware and 
schema-less mode, which are common scenarios when P2P XML databases op-
erate in very large publish-subscribe systems. Finally, we complete our analyti-
cal contributions with an experimental study showing the effectiveness of our 
proposed framework. 

1   Introduction 

Supporting the privacy preservation of XML databases is a novel and interesting 
research challenge. With similar attractiveness, very large publish-subscribe systems 
are rapidly gaining momentum as long as innovative knowledge processing and deliv-
ery paradigms like Web and Grid Services take place. In such scenarios, due to its 
well-understood features, XML is widely used as basic language for both representing 
and processing semi-structured data located in remote databases within distributed 
and heterogeneous settings. For the sake of simplicity, here and in the following, we 
model an XML database as a (large) collection of XML documents on top of which 
traditional DBMS-like indexing and query functionalities are implemented, thus 
adopting the so-called native XML databases. 

It is widely-recognized that providing solutions to guarantee privacy preservation 
over sensitive XML data plays a critical role in next-generation distributed and perva-
sive applications, and, particularly, in the context of very large publish-subscribe 
systems. This issue is even more challenging when XML data are managed and deliv-
ered according to the popular P2P paradigm, since malicious accesses and unpredict-
able attacks could take advantage from the totally-decentralized and untrusted nature 
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of P2P networks. This scenario gets much worse when these networks admit mobile 
peers, since mobile devices have limited power and resource capabilities thus they 
cannot process huge amounts of data, neither implement complex security counter-
measures. On the contrary, in publish-subscribe systems, the information is often 
carried by data providers that tend to enclose it into very large XML databases. 

Starting from these considerations, in this paper we address the issue of efficiently 
querying P2P XML databases in very large publish-subscribe systems while guaran-
teeing privacy preservation over sensitive XML data. The solutions we propose to this 
challenge are codified inside the core layer of a lightweight distributed framework, 
called XℓPPX, which effectively and efficiently supports the representation and man-
agement of privacy-preserving P2P XML databases in very large publish-subscribe 
systems. In more detail, XℓPPX supports (i) the secure fragmentation of XML docu-
ments in very large publish-subscribe systems by means of lightweight XPath-based 
identifiers, and (ii) trusted groups of peers by means of secure XPath links that exploit 
the benefits deriving from well-known fingerprinting techniques [22]. Due to the 
latter feature, we name as “self-certifying” our innovative XPath links. Also, XℓPPX 
embeds algorithms for querying secure XML fragments in both schema-aware and 
schema-less mode, which is very useful in P2P networks. 

In the rest of the paper, for the sake of simplicity we refer to privacy-preserving XML 
documents in terms of “secure documents”. However, privacy preservation is quite dif-
ferent from both security, which deals with cryptography-driven algorithmic solutions for 
information hiding, and access control, which concerns with the problem of limiting 
information access to particular classes of end-users according to a pre-fixed access 
scheme (e.g., like in multimedia databases). By contrast, privacy preservation is mainly 
related to the problem of guaranteeing the privacy of sensitive data during data manage-
ment tasks (e.g., query evaluation). Note that this problem delineates a double-edged 
sword, since data providers would make available knowledge and intelligent tools for 
efficiently processing knowledge, but, at the same time, they would hide sensitive 
knowledge (e.g., this could be the case of Business Intelligence systems). Conversely, 
data consumers would acquire useful-for-their-goals knowledge, whereas malicious data 
consumers would also access sensitive knowledge (e.g., this could be the case of attack-
ers stealing enterprise’s secrets). 

2   Application Scenario and Motivating Example 

We assume a very large publish-subscribe system in which peers can freely roam and 
extract knowledge from distributed XML databases located at particular nodes in the 
system (see Figure 1). Precisely, the system consists of a set of data providers holding 
XML documents, and a set of data replicators maintaining views on top of those 
documents. XML data stored by providers are yielded according to popular publish-
subscribe dynamics (e.g., corporate B2C systems). Moreover, data providers notify 
data replicators when new documents of interest become available. On the other hand, 
data replicators build their views on the basis of locality (e.g., frequent queries and 
downloads), and periodically refresh such views. Mobile peers of the network are 
under the scope of a given data replicator, thus letting define several domains of 
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Fig. 1. Application scenario 

peers. Domains of peers are freely built on the basis of (i) the interest of communities 
of peers in accessing views storing particular information (e.g., stock quotations), and 
(ii) locality issues (e.g., neighborhood criteria). Furthermore, without any loss of 
generality peers can also freely roam from one domain to another. It should be noted 
that the described setting covers a large set of modern systems and applications based 
on the novel Web and Grid Services paradigm, and, in particular, those adhering to 
the pioneering pervasive computing initiative. 

Peers of such system are usually not interested to the entire view published by the 
local replicator, but to point some data contained into it, i.e. extracting fragments of 
the view. To avoid excessive computational overheads, peers prefer to access data 
replicators rather than data providers, while still wishing to access data providers 
whenever needed (e.g., due to load balancing issues). While peers fetch their frag-
ments of interest, they also keep links to the related fragments stored on their 
neighbors. A link is represented as an absolute XPath expression within the original 
document, being such expression capable of uniquely determining the related frag-
ment via prefix-matching. Peers linked to each other form an interest group (also 
called acquaintance in [3]), which can be viewed as a group of peers sharing semanti-
cally-related fragments, i.e. fragments related to concepts having a certain relation-
ship with respect to the semantics of a specific application domain. Without any loss 
of generality, the same peer may belong to multiple interest groups. 

In such a scenario, a pertinent problem is how to guarantee privacy preservation 
while accessing sensitive fragments, i.e. to avoid that untrusted peers can access se-
cure fragments. It should be noted that while privacy preservation issues concerning a 
given data provider/replicator can be handled in a centralized manner by adopting 
specialized solutions, devising privacy-conscious P2P XML data processing solutions 
in environments like the one described above is still an open and unsolved problem, 
due the same nature of P2P networks. As a consequence, in this paper we focus on the 
latter research challenge. 
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In our reference application scenario, a peer has basically two options when it is 
looking for further information. In case it needs update its information, it has to ac-
cess again the replicator, although consuming bandwidth and resources. In turn, when 
it needs static data, i.e. data with low variability over time, it is also offered to access 
its neighbor fragments via the above-mentioned links. Consider an example of this 
scenario in which a replicator publishes a view on public services available in a given 
urban area. Among the others, this view contains information about the local market 
stocks and the public transportation timetable. Notice that the former data are subject 
to a great variability over time, whereas the latter remain unchanged for a long time 
(e.g., a season). Imagine that a (mobile) user Bob is seeking for information about 
both kinds of data. For stock trends, Bob will directly access the local replicator, 
whereas for the departure times of trains, he can still access (trusted) neighbor’s data 
(e.g., Alan, who had previously downloaded the same fragment of interest). In our 
framework, such a strategy is feasible thanks to our fragmentation model, which lets 
build links between related fragments. 

A trusted peer can access the others’ secure fragments by both directly browsing 
the links, and, alternatively, formulating an arbitrary XQuery query on (schema-
aware) documents (note that fragments of documents are, in turn, documents). A 
further capability of our framework lets exploit the set of path expressions of an inter-
est group to aid query formulation in the absence of a schema (i.e., against schema-
less documents). It should be noted that schema-less query processing is a common 
situation in highly dynamic P2P networks, since, as shown in [3], a global mediated 
schema is not a reasonable assumption for such networks. For instance, Alan can 
retrieve the sets of path expressions of his interest group and use them in two ways: 
(i) grasp the fragments owned by other peers that may contain data he is interested to 
query later on, or (ii) use these path expressions to formulate his query, whenever the 
schema of the global document is not available. 

As a side remark, note that handling updates in our framework (e.g., linked fragments 
that change in their structure or content), is outside the scope of this paper, and it is also 
an interesting and exciting research challenge we plan to address in the near future. 

3   The XML Fragmentation Model in a Nutshell 

For what concerns the P2P data layer, our framework relies on an XML fragmentation 
model for P2P networks, which is based on our preliminary work [4]. There, we as-
sume to deal with P2P XML databases storing fragments of XML documents. In the 
present paper, we study the specific issues of hiding  fragments to untrusted peers, 
thus protecting possibly sensitive data. We adopt a distributed, privacy-preserving 
mechanism according to which each (self-certifying) XPath link that points to a frag-
ment is (i) encrypted by using a trusted key founding on the fingerprinting technique, 
and (ii) shared by all the other members of the same (interest) group. This solution 
also makes perfect sense when compared with symbolic links of Self-certifying File 
Systems (SFS) [12], since such links are encrypted by using a Public Key Server 
(PKS). In fact, in a P2P environment like the one we have just described in our appli-
cation scenario (see Figure 1), we cannot rely on a central authority for public keys, 
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due to fault tolerance and scalability reasons. Nevertheless, it is reasonable to make 
groups of peers sharing the responsibility of a key (details are given in Section 4). 

Although popular P2P networks allow the users share entire data files, the P2P para-
digm is flexible enough to be applied to data at any granularity. In particular, in [4] we 
study the issue of sharing XML fragments scattered to multiple peers. In this Section, we 
revise the concepts presented in that paper, which serves as background to the novel 
privacy issues presented here. The key concept behind our model is the fact that, in a P2P 
setting, an XML document does not entirely reside on one peer for either space or rele-
vance reasons. Therefore, we focus on how to represent the fragments of a document 
split on several peers, in order to be able to re-unify those at wish. Hence, a fragment is a 
sub-document of the original document maintaining XPath links to the latter, thus retain-
ing the convenient side-effect of building a decentralized catalog over the P2P network. 
In our model, we do not expect the peers to agree on one schema and keep it updated 
with respect to every neighbor’s changes to local data. On the contrary, every peer has 
one or more fragments and it may execute global queries without necessarily knowing 
the global schema. Thus, as we said above, we can handle both schema-less documents, 
which are very common in P2P networks as well as the Web, and schema-aware docu-
ments, more common in distributed database systems. Our query mechanism only relies 
on links for the first kind of documents, while it also looks at the local version of the 
schema for the second kind. Notice that this local version may disagree with other ver-
sions present in the network, since, as we said previously, we are not assuming a com-
mon mediated schema among peers. 

 

Fig. 2. A snippet of an XMark document 

To enable fragmentation of XML documents, our model exploits a set of lightweight 
path expressions. A fragment f is a valid sub-tree of the original document having the 
following set of paths: (i) the fragment identifier fI, i.e. the unique path expression identi-
fying the root of the current fragment within the global document; (ii) the super-fragment 
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path expression ps, i.e. the unique path expression linking the parent of the current frag-
ment; (iii) one or more child fragment path expressions pc, i.e. the path expressions link-
ing the children of the current fragment. While fI and ps are stored separately from the 
fragment content, pc paths are stored within special tags sub added as fragment leaves. 
Schema-aware documents also store on each peer the XML schema of the documents 
along with the local fragments and the above-described paths. Figure 2 shows a snippet 
of an XMark document [23], shredded according to our fragmentation strategy. Fragment 
f2 = /site/regions/europe has /site as super-fragment and /site/re-
gions/europe/item[1]/description as child fragment. Similarly, fragment f1 
= /site has no super-fragment and has both /site/regions/ europe and 
/site/regions/namerica as child fragments. Henceforth, paths sharing the same 
prefix, i.e. belonging to the same document, are named related paths in our fragmenta-
tion model. 

Path expressions described above play a crucial role in identifying the fragments 
because they represent flat keys over the network. Moreover, they are more light-
weight and scalable than B+-trees used in [9] to answer range queries over relational 
data. In the following, we will describe how the fragments are allocated in a P2P 
network implementing XℓPPX, thus adhering to our XML fragmentation model. 
Here, we want to highlight that our strategy is reminiscent of vertical partitioning in 
distributed database systems, but customized for XML data. This distribution strategy 
uses a limited fragment of XPath, namely light XPath, consisting only of / and [i], 
such that [i] indicates positional axes, which are useful to identify fragments. Note 
that the original document order is preserved in both assigning fragment identifiers 
and in encoding child fragments. 

For the network configuration, in our setting we assume the structured P2P paradigm 
[13,15], which uses a Distributed Hash Table (DHT) to bias the search towards particular 
peers. Structured networks are quite different from super-peer networks used in [21]. In 
our model, the DHT leverages the uniqueness of fragment identifiers to identify and 
(al)locate the needed data over the network. For instance, a fragment such as 
/site/regions/namerica has a unique encoding within the DHT employed by 
the network. This path identification mechanism would work with any fragmentation 
technique (e.g., the one proposed in [5]), or even if fragmentation had not happened, such 
as, for instance, in a publish-subscribe system like the one described in [14] where enter-
ing machines publish their data by means of (Web/XML-enabled) path expressions. 
Implementation-wise, we rely on Chord [25] to realize the DHT. In Chord, each node 
keeps a logarithmic routing table to some external nodes, thus allowing a considerable 
network efficiency to be achieved. This is opposite to other systems, in which each node 
is connected to all other nodes, and similar to other DHT-based networks, such as Pastry 
[8] and P-Grid [1]. As in DHash [10], we admit a limited number of replicas of the frag-
ments. Besides being stored on the current peer, the same fragment is replicated on every 
node of the peer routing table. This is done in order to guarantee the reliability of the 
network in the presence of peer failures. 

Each fragment comes with the pc and ps path expressions, and with its fragment 
identifier fI stored within the local peer. The fragment identifier is exposed to the 
outside under the form of a unique key. In such a way, any other peer that looks for a 
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particular path expression will search it through the DHT. We have extended the 
Chord DHT to support this behavior. However, in the original Chord, the hash func-
tion used is SHA-1, which is replaced in our model with the fingerprinting technique. 
Fingerprinting path expressions in a P2P network is similar to fingerprinting URLs 
[6], but different from an application point of view. In [4], we provide an experimen-
tal evaluation demonstrating that hashing and fingerprinting guarantee the same load 
balancing. We prefer fingerprints to any arbitrary hash function because of their soft-
ware efficiency, their well-understood probability of collision (discussed in [4]) and 
their nice algebraic properties. 

Now, we discuss how fingerprinting works. Let A = 〈a1a2 ... am〉 be a binary string. 
We associate to A a polynomial A(t) of degree m − 1 with coefficients in the algebraic 
field Z2, A(t) = a1 ⋅ tm−1 + a2 ⋅ tm−2 + … + am. Let P(t) be an irreducible polynomial of 
degree k, over Z2. Given P(t), the fingerprint of A is the following: f(A) = A(t) mod 
P(t). The irreducible polynomial can be easily found following the method in [22]. 
Therefore, in order for a peer to compute the path expression fingerprint, it suffices to 
store the irreducible polynomial P(t). The latter has a fixed degree equal to NF + 2 ⋅ 
DM + Q, being (i) 2NF the number of fragments in the network, (ii) 2DM the length of 
the longest path expression in the network, and (iii) 2Q a threshold due to the probabil-
ity of collision between two arbitrary distinct tokens [6]. It should be noted that poly-
nomials are quite small structures to be replicated on each participating peer if com-
pared to replicated global indexes used in [5]. Moreover, our set of lightweight path 
expressions and the accompanying polynomial are not directly comparable to prob-
abilistic approaches based on bloom filters as in [14], which can handle XML data of 
relatively small depth. 

4   XℓPPX: Overview and Privacy Preservation Features 

In order to support the privacy preservation of XML fragments  over P2P networks in 
very large publish-subscribe systems (and, as a consequence, that of database storing 
such fragments), in XℓPPX, XPath links pointing to fragments are encrypted using a 
trusted key encoded by means of a fingerprinting technique, and shared by peers of 
the same (interest) group. As we said above, such links are thus identified as “self-
certifying” links, i.e. able to guarantee privacy preservation features. 

To this end, besides fingerprinting path expressions, we also fingerprint the actual 
XML content of the fragments. This is novel with respect to previous initiatives, and 
not discussed at all in [6], where fingerprinting is not used for authentication pur-
poses. Indeed, since fingerprinting, like hashing, reduces any arbitrary string to a 
fixed-length token, we can safely apply fingerprinting to the serialized content of an 
XML fragment. Since all we need to decode a fingerprinted item is the irreducible 
polynomial P(t) (see Section 3), it is straightforward to create interest groups that 
share the same polynomial. Every peer within such groups can verify the authenticity 
of fragments in the community, and contribute to any issued query, which would be 
blind to the others. Thus, we enable privacy-preserving query processing with such 
verified peers. Of course, there will be as many groups of peers as the number of 



28 A. Bonifati and A. Cuzzocrea 

polynomials we wish to allow in the network, ranging from the scenario with one 
distinct polynomial per-peer or per-group-of-peers to the scenario with one unique 
polynomial for all peers. Notice that this approach also guarantees that peers that 
answer queries are trustworthy (we describe our query algorithms in Section 5). 

Figure 3 shows an overview of XℓPPX, where four peers and two interest groups 
are depicted. In more detail, the peers P0 and P3 form an interest group via sharing the 
polynomial PolyX, whereas the peers P1 and P2 form another interest group via sharing 
the polynomial PolyY. The Figure also shows the logical architecture of the compo-
nents that need to be implemented on each peer within XℓPPX. Consider a peer Pi 
among those depicted in Figure 3. Components implemented on Pi are the following: 
(i) P2P Middleware: it is the basic P2P middleware implementing traditional P2P 
communication protocols among peers of the network; (ii) Privacy-Preserving Mod-
ule: it is the component of our framework implementing our fingerprint-based pri-
vacy-preserving scheme; (iii) Fragment Manager: it deals with the management of 
fragments according to our P2P XML fragmentation model; (iv) Data Access Module: 
it provides data access functionalities on the underlying P2P XML fragment database; 
(v) Data Query Module: it provides data query functionalities on the underlying P2P 
XML fragment database; (vi) External Data Access API: a collection of APIs used to 
access and query the local data replicator when up-to-date information is required (see 
Section 2). 

Our proposal resembles the use of cryptography [17] (e.g., algorithms RSA and 
AES), and self-certifying path names [12], which are used in SFS directories to en-
crypt the host symbolic names. However, these cryptographic functions yielding large 
pieces of data introduce excessive spatio-temporal overheads in an overlay P2P net-
work. Therefore, as claimed in Section 1, even if security issues obviously influence 
our work, our effort is in the privacy preservation of P2P data management. 

Along with the basic idea of fingerprinting paths and fragments to support privacy 
preservation features, we also provide two extensions useful to handle privacy preser-
vation among peers, which overcome more traditional schemes, and can be used to 
develop more specific privacy-preserving protocols for large and highly dynamic P2P 
networks. First, in traditional schemes (e.g., SFS), public key is decided by a central-
ized server, which would be not applicable in a P2P network. Contrarily to this ap-
proach, in order to decide the public key, we actually use an authority group policy as 
in [19]. More precisely, we require that a public key is jointly decided by all the group 
members. Secondly, traditional schemes focus on secure handling host names, 
whereas in our solution we need a broader level of security, i.e. extended to any 
(XPath) links either embedded in a fragment or lying out of it. 

Handling new peers joining the network and wishing to be admitted in an interest 
group is another interesting issue, which becomes relevant with respect to the problem 
of avoiding that malicious peers attack the network. According to the authority group 
policy implemented in XℓPPX, the admission procedure requires that a new peer 
entering the network can be admitted in a group if and only if all the members agree 
on its admission. In more detail, in our model, this only applies if the new peer holds 
fragments related to those stored by other members. If this is not the case, then the 
peer can only be assigned to a new public key and create its own group. 
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Fig. 3. XℓPPX Overview 

There may be other kinds of attacks on a DHT-based P2P network, which go be-
yond the authenticity of data, such as threatens to the liveness of the system, and pre-
vention of participants to find data (see [24] for a complete survey). These issues are 
orthogonal to the problem we investigate in this paper. 

5   Schema-Less and Schema-Aware Evaluation of XPath Queries  
     in XℓPPX 

An arbitrary user can pose a query against the view of a replicator or, alternatively, 
against the fragments of the neighbor peers. We focus on the latter kinds of queries, as 
querying the replicator is quite straightforward and based on well-known solutions 
(e.g., query answering using views). To query linked fragments, our fragmentation 
model provides an effective strategy that inspects the information encoded into self-
certifying path expressions. The latter represent a distributed catalog that can be fruit-
fully exploited during query evaluation. We base our description on examples that 
refer fragments shown in Figure 2. We discuss the evaluation of descendant XPath 
queries, since more complex XQuery queries use this module as a building block. 
While we use light XPath for fragment identifiers, the XML language we use for 
queries is complete XPath 1.0. Given an arbitrary XPath query, we divide it into sev-
eral segments, either containing only / or containing // only. Note that, among  
all filters, only positional ones are kept in the path expression, as the others were not 
admitted as fragments identifiers. Thus, filters other than positional are initially  
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disregarded in the DHT lookup, and their evaluation postponed to the very-end, when 
the DHT-accessible results have been found. 

When a schema of the split document is not available, the query is evaluated by look-
ing at the local data of each peer, and by guessing the external data based on the related 
path expressions. Indeed, if we are evaluating //description and we originate the 
query on the peer storing the fragment f2, then we already learn from f2 child path expres-
sion that there is a tag description on the peer storing the fragment f4. This gives us 
a priority in the order links are followed: this “promising” path expression is followed as 
first. When instead the tags contained in the child path expressions do not give this in-
formation, we follow all the links without giving priority to any. 

Consider now the query /site/regions//item//description, which is 
divided into /site/regions and //item//description. Hence, the two 
segments are evaluated according to two different algorithms. Single-slash path ex-
pressions can be directly fingerprinted and matched with the DHT content. In case no 
match is found, we know that no fragment is rooted in /site/regions (and this is 
indeed the case in Figure 2). Thus, we prune the path expression one step at a time 
and repeat the search in the DHT. Conversely, the path expression /site, which 
corresponds to the fragment f1 is in the DHT. Starting from this fragment, our algo-
rithm attempts to build the entire path expression /site/regions, with regions 
being a local element of f1. Once the regions elements have been found, these be-
come the context nodes of the double-slash path //item//description. Dou-
ble-slash paths are evaluated one step at a time. To improve performances, the pc 
paths of f1 are followed in parallel to search item elements. The reader should note 
that here pc paths do not let guess the presence of items on external fragments. The 
element item under namerica, as well as the rhs item under europe, is dis-
carded as it has not neither local child nor external pc paths to explore. Conversely, 
the lhs item under europe shows an external path which is promising in that it has 
description as final step. The latter path is then followed, and the element de-
scription is returned as result1. 

When a schema of the document is available, simple optimizations can be enabled. 
We emphasize here the use of the schema as a sort of data summary, similar to what 
provided by data guides and indexes for XML data [18]. In fact, the evaluation of 
both single-slash and double-slash queries can be improved by quickly determining 
and discarding ill-formed queries, i.e. queries that do not respect the available 
schema. For instance, a query like /site//teacher can be promptly declared as 
empty. The schema may also help in evaluation of queries containing wildcards, such 
as /site//∗/person. In such a case, we avoid inspecting fragments f2 and f3 (and, 
as a consequence, f4) if we can infer from the schema that person elements cannot 
lie underneath regions elements. The reader should notice that the two optimiza-
tions described above can be achieved by simply handling schemas of documents, 
thus without introducing excessive computational overheads. In any case, as high-
lighted above, schemas are not mandatory in our query strategy. Also, we expect that 
a peer modifies at will its local data by introducing new elements. We assume the 
modifications would not be communicated to other peers. 
                                                           
1 We assume here the network only has these fragments, otherwise the search would exhaus-

tively explore the other fragments till coverage of all the nodes. 
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6   Experimental Study 

In order to test the effectiveness of our proposed framework, we conducted various 
experiments by using as input the popular XML benchmark data set XMark. As high-
lighted previously, we focus our attention on testing the capabilities of the P2P layer 
of XℓPPX, having the latter a more critical role than data-provider and replicator 
layers. In particular, we performed two sets of experiments. In the first one, we 
stressed the query capabilities of XℓPPX, i.e. the capability of XℓPPX in answering 
XPath queries over fragmented XML data, whereas in the second one we stressed the 
privacy preservation capabilities of XℓPPX, i.e. the capability of XℓPPX in support-
ing privacy preservation functionalities over fragmented XML data. 

  

(a) (b) 

Fig. 4. Query performance on the XMark benchmark Xm30 

In our experimental setting, we use polynomials with degree equal to 64, which 
leads to an acceptable probability of 2−10, and allows us to exploit a maximum length 
for path expressions of 50 steps (averaged on a length of 10 symbols per step), and a 
maximum number of fragments equal to 230, which is huge enough for arbitrary net-
works. Figure 4 and Figure 5 show the experimental results of our analysis, which has 
been conducted over an XMark document that was 30 MB is size, denoted by Xm30. 

For what concerns the query capabilities of XℓPPX, Figure 4 (a) shows the aver-
age hop number with respect to the number of peers in the two different settings in 
which (i) Xm30 is split into 1000 fragments, and (ii) Xm30 is kept entire. Figure 4 (b) 
shows the same metrics with respect to the number of fragments (the number of peers 
is set to 500). For what concerns the privacy preservation capabilities of XℓPPX, 
Figure 5 (a) shows the average collision number in percentage among fingerprints 
with respect to the number of fragments, when varying the number of bits used to 
encode fingerprints. Finally, Figure 5 (b) shows the same metrics with respect to the 
number of bits used to represent fingerprints, when varying the number of fragments 
in the network. In both latter cases, the number of peers is set to 500, and the number 
of interest groups is set to 5. From the analysis of the experimental results, it clearly 
follows that the proposed framework allows us to efficiently query P2P XML data-
bases while guaranteeing privacy preservation over sensitive XML documents. 
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(a) (b) 

Fig. 5. Privacy preservation performance on the XMark benchmark Xm30 

7   Related Work 

In this Section, we briefly outline some state-of-the-art solutions for supporting pri-
vacy preservation functionalities over P2P networks, which are close to our work. On 
the other hand, the literature on XML-based publish-subscribe systems is well estab-
lished, and we omit it here, due to space reasons. A comprehensive tutorial can be 
found in [11]. 

Threshold distributed cryptography is used in [19] for the sake of membership control. 
[19] casts doubt on the viability of these approaches in unstructured P2P networks if they 
do not guarantee verifiability of group members compromised by adversaries. We ac-
knowledge this issue, and focus on a simple yet effective solution for trusted P2P XML 
fragments. Security issues in an agent-based P2P network are examined in BestPeer [21]. 
However, security has a different meaning there, i.e. to protect the data carried by agents 
when they inspect fixed or unknown network paths. For this purpose, signencryption [17] 
is used. However, no experimental evidence is given to justify the scalability of cryptog-
raphy in P2P networks. Our approach is different as it is customized for XML fragments 
over P2P networks. 128-bit encryption to protect peer communication is also used in 
agent-based PeerDB [20]. PeerDB differs from our framework in that it performs IR-
based queries on non-distributed relational data. However, like ours, it realizes a P2P 
full-fledged database. Access-control on each peer is used in [2] to protect active XML 
documents containing service calls. Goals of [2] are different from ours, as [2] aims at 
providing a sort of “application-level” degree of security which could indeed used on top 
of our framework to exploit the available functionalities in the context of (secure) P2P 
Web Services. Security on semantic views of Web information are realized by means of 
information mediators in [16]. This architecture, although very interesting for a Web 
context, is not applicable to a P2P network. Handling uncooperative or selfish nodes in a 
large-scale P2P network is done in [7]. Both problems are very interesting but orthogonal 
to ours. 
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8   Conclusions and Future Work 

In this paper, we have presented XℓPPX, a framework for supporting privacy preser-
vation of XML fragments among peers embedded in very large publish-subscribe 
systems, where XML views are published by both data providers and replicators. 
Efficiently supporting query processing on secure P2P XML fragments is another 
goal of XℓPPX. In XℓPPX, privacy preservation features across peers are provided by 
means of well-established fingerprinting techniques, whose reliability and efficiency 
have been proved via a comprehensive experimental study over XMark documents. 
Schema-less and schema-aware query algorithms for the evaluation of descendant 
XPath queries over secure XML fragments have also been presented and discussed. 
The experimental evaluation of XℓPPX has further confirmed the advantages deriving 
from our fragmentation technique, and the effectiveness of the proposed privacy-
preserving scheme. Future work is mainly focused on extending the query functional-
ities implemented in XℓPPX, in order to include more advanced IR capabilities. 
Moreover, we plan to test the scalability of privacy preservation features of XℓPPX in 
real-life systems. 
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