
1 23

The VLDB Journal
The International Journal on Very Large
Data Bases

ISSN 1066-8888

The VLDB Journal
DOI 10.1007/s00778-019-00558-9

An analytical study of large SPARQL query
logs

Angela Bonifati, Wim Martens &
Thomas Timm

1 23

Your article is protected by copyright and

all rights are held exclusively by Springer-

Verlag GmbH Germany, part of Springer

Nature. This e-offprint is for personal use only

and shall not be self-archived in electronic

repositories. If you wish to self-archive your

article, please use the accepted manuscript

version for posting on your own website. You

may further deposit the accepted manuscript

version in any repository, provided it is only

made publicly available 12 months after

official publication or later and provided

acknowledgement is given to the original

source of publication and a link is inserted

to the published article on Springer's

website. The link must be accompanied by

the following text: "The final publication is

available at link.springer.com”.

The VLDB Journal
https://doi.org/10.1007/s00778-019-00558-9

SPEC IAL ISSUE PAPER

An analytical study of large SPARQL query logs

Angela Bonifati1 ·Wim Martens2 · Thomas Timm2

Received: 12 December 2018 / Revised: 3 May 2019 / Accepted: 16 July 2019
© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Abstract
With the adoption of RDF as the data model for Linked Data and the Semantic Web, query specification from end users has
become more and more common in SPARQL endpoints. In this paper, we conduct an in-depth analytical study of the queries
formulated by end users and harvested from large and up-to-date structured query logs from a wide variety of RDF data
sources. As opposed to previous studies, ours is the first assessment on a voluminous query corpus, spanning over several
years and covering many representative SPARQL endpoints. Apart from the syntactical structure of the queries that exhibits
already interesting results on this generalized corpus, we drill deeper in the structural characteristics related to the graph and
hypergraph representation of queries. We outline the most common shapes of queries when visually displayed as undirected
graphs and characterize their treewidth, length of their cycles, maximal degree of nodes, and more. For queries that cannot be
adequately represented as graphs, we investigate their hypergraphs and hypertreewidth. Moreover, we analyze the evolution
of queries over time, by introducing the novel concept of a streak, i.e., a sequence of queries that appear as subsequent
modifications of a seed query. Our study offers several fresh insights on the already rich query features of real SPARQL
queries formulated by real users and brings us to draw a number of conclusions and pinpoint future directions for SPARQL
query evaluation, query optimization, tuning, and benchmarking.

Keywords Query log analysis · Structural analysis · Query shapes · Streak analysis · SPARQL endpoint · Knowledge graph

1 Introduction

As more and more data are exposed in RDF format, we
are witnessing a compelling need from end users to formu-
late more or less sophisticated queries on top of these data.
SPARQL endpoints are increasingly used to harvest query
results from available RDF data repositories. But how do
these end user queries look like? As opposed to RDF data,
which can be easily obtained under the form of dumps (DB-
pedia and Wikidata dumps [26,27,51]), query logs are often
inaccessible, yet hidden treasures to understand the actual
usage of these data. In this paper,we investigate a large corpus
of query logs fromdifferent SPARQLendpoints,which spans
over several years (2009–2017). In comparisonwith previous
studies on real SPARQL queries [3,21,43,48,49], which typi-

B Angela Bonifati
Angela.Bonifati@univ-lyon1.fr

1 Lyon 1 University, Lyon, France

2 University of Bayreuth, Bayreuth, Germany

cally1 investigated query logs of a single source, we consider
a multi-source query corpus that is two orders of magnitude
larger. Furthermore, our analysis goes significantly deeper.
In particular, we are the first to do a large-scale analysis on
the topology of queries, which has seen significant theo-
retical interest in the last decades (e.g., [14,18,20]) and is
now being used for state-of-the-art structural decomposition
methods for query optimization [1,2,33]. As a consequence,
ours is the first analytical study on real (and most recent)
SPARQL queries from a variety of domains reflecting the
recent advances in theoretical and system-oriented studies of
query evaluation.

Our paper makes the following contributions. Apart from
classical measures of syntactic properties of the investigated
queries, such as their keywords, their number of triples,
and operator distributions, which we apply to our new cor-
pus, we also mine the usage of projection in queries and
subqueries in the various datasets. Projection indeed is the
cause of increased complexity (from Ptime toNP-Complete)

1 The exception is [21], where logs from the Linked SPARQL Queries
(LSQ) dataset were studied, combining data from four sources (from
2010 and 2014) that we also consider.

123

Author's personal copy

http://crossmark.crossref.org/dialog/?doi=10.1007/s00778-019-00558-9&domain=pdf
http://orcid.org/0000-0002-9582-869X

A. Bonifati et al.

of the following central decision problem in query evalua-
tion [8,13,37]: Given a conjunctive query Q, a database D,
and a candidate answer a, is a an answer of Q on D?

We then proceed by considering queries under their graph
and hypergraph structures. Such structural aspects of queries
have been investigated in the database theory community for
over two decades [18] since they can indicate when queries
can be evaluated efficiently. Recently, several studies on new
join algorithms leverage the hypergraph structure of queries
in the contexts of relational andRDFquery processing [1,33].
Theoretical research in this area traditionally focused on con-
junctive queries (CQs). For CQs, we know that tree-likeness
of their structure leads to polynomial-time query evaluation
[18]. For larger classes of queries, the topology of the graph
of a query is much less informative. For instance, if we addi-
tionally allow SPARQL’s Opt operator, evaluation can be
NP-complete even if the structure is a tree [8]. For this rea-
son, we focus our structural study on CQ-like queries.2 We
develop a shape classifier for such queries and identify their
most occurring shapes. Interestingly enough, these queries
have quite regular shapes. The overwhelming majority of the
queries is acyclic (i.e., tree- or forest-shaped).We discovered
that the cyclic queries mostly consist of a central node with
simple, small attachments (which we call flower). In terms of
treewidth and hypertreewidth, we discovered that the cyclic
queries have width two, up to a few exceptions with width
three.

At this point we should make a note about interpreta-
tion of our results. Even though almost all CQ-like queries
have (hyper-)treewidth one, we do not want to claim that
queries of larger treewidth are not important in practice. The
overwhelming majority of the queries we see in the logs are
very small and simple, which we believe may be typical for
SPARQL endpoint logs. For instance, the majority of the
queries in our logs only use one triple. More precisely, this
holds for over 52% of the valid queries and for over 58% of
the unique valid queries. One of our datasets,Wikidata17,
is not a SPARQL endpoint log, and we see throughout the
paper that it has completely different characteristics.

In order to gauge the performances of cyclic and acyclic
queries from a practical viewpoint, we have run a com-
parative analysis of chain and cycle queries synthetically
generated with an available graph and query workload gen-
erator [4]. This experiment showed different behaviors of
SPARQLquery engines, such asBlazegraph andPostgreSQL
with query workloads of CQs of increasing sizes (intended as
number of conjuncts). It also lets us grasp a tangible differ-
ence between chain and cycle queries in either query engine,
this difference being more pronounced for PostgreSQL. We

2 We consider extensions with Filter, Opt, and Values, but only in a
way for which we know that tree-likeness of the query graph ensures
the existence of efficient evaluation algorithms.

may interpret this result as a lack of maturity of practical
query engines for cyclic queries, thus motivating the need
of specific query optimization techniques for such queries as
in [1,33].

Finally, we dealwith the problemof identifying sequences
of similar queries in the query logs. These queries are then
classified as gradual modifications of a seed query, possibly
by the same user. We measure the length of such streaks
in three log files from DBpedia. We conclude our study
with insights on the impact of our analytical study of large
SPARQL query logs on query evaluation, query optimiza-
tion, tuning, and benchmarking.

This paper extends its conference version [11] as follows:

(1) We augment our corpus with 169M queries from the
DBpedia17 dataset, which was not considered before
and lets us almost double the size of our total valid
queries.

(2) We perform all our analyses twice: once on the set of
all valid and once on the set of all unique valid queries.
The conference version only considered the unique valid
queries.Wenote that the valid andunique valid logs give
different insights about the data, which are complemen-
tary. The valid set gives an idea about the different types
of queries in the logs, and the unique valid set gives a
better view on the queries and the workload that the
SPARQL endpoint actually receives.3

(3) We extend our study to the Construct clause apart from
Select and Ask queries considered in [11]. This means
that the present study includes all types of SPARQL
queries with a well-defined semantics. We also consider
theValues keyword in the queries, because it ismore fre-
quent in our new corpus. The addition of Values leads
to additional insights, such as a significant increase in
cyclic queries in Table 7.

(4) On top of investigating well-designedness of queries
(introduced by Perez et al. [47]), we also investigate
weakwell-designedness, a notion introduced byKamin-
ski andKostylev [34], which is important because it also
identifies a fragment of queries using And,Opt, and Fil-
ter that can be evaluated more efficiently than in the
general case.

(5) We perform our shape analysis once for the graphs of
queries with constants and once for the graphs with-
out constants (i.e., only the variables). We believe that
the shapes of queries with constants can be interesting
for practitioners working on query evaluation and opti-
mization. The shapes of queries without constants are
usually considered in theoretical research on query eval-

3 For instance, as can be seen immediately in Fig. 1, the DBpedia end-
point receives many more large queries than the unique valid logs lead
us to suspect.

123

Author's personal copy

An analytical study of large SPARQL query logs

uation, i.e., the treewidth and hypertreewidth of queries
are usually only considered for the graph of the queries
containing only the variables.

(6) We add more tests to the shape analysis, which give
researchers a much more precise idea of the shape of
queries. For instance, we investigate specific measures
on the characteristics of the most common shapes, such
as the longest path, the size of the maximal degree ver-
tex, the number of high-degree vertices and for cyclic
queries the cycle lengths.

(7) We extend the hypergraph analysis with an analysis of
free-connex acyclicity. This measure is very important
in theory and practice, since it characterizes the con-
junctive queries for which efficient algorithms exist for
enumerating their output [6,31] (under standard com-
plexity theory assumptions).

(8) We analyze the number of tree pattern queries in the
query logs. Tree pattern queries or twig queries were
heavily researched in the context of XML query lan-
guages and, due to their modal nature, can also be used
for querying graphs [15,38]. We discover that they are
quite prominent in the logs.

(9) Due to the additional queries, we obtain 404,721 prop-
erty paths from unique queries (compared to 247,404 in
[11]). Still, we manage to completely classify all these
property paths in 35 types of expressions. (We only
needed 21 types of expressions in [11].) Since property
paths are a challenging issue in SPARQL queries and
graph database queries in general [10], we believe these
data to be very useful for developers of graph database
engines.

We conclude the paper with observations and insights about
further analyses on query logs.

Related work Whereas several previous studies have
focused on the analysis of real SPARQL queries, they have
mainly investigated statistical features of the queries, such as
occurrences of triple patterns, types of queries, or query frag-
ments [3,21,43,49]. The only early study that investigated the
relationship between structural features of practical queries
and query evaluation complexity has been presented in [48].
However, they focus on a limited corpus (3M queries from
DBpedia 2010) and in that sense their findings cannot be gen-
eralized.Ourworkmoves onward byprecisely characterizing
the occurrences of conjunctive and non-conjunctive patterns
under the latest complexity results, by performing an accurate
shape analysis of the queries under their (hyper)graph repre-
sentation and introducing the evolution of queries over time.
USEWOD and DBpedia datasets have also been considered
in [3]. It takes into account the log files from DBpedia and
SWDF reaching a total size of 3M. The work mainly inves-
tigates the number of triples and joins in the queries. Based

on the observation of [46] that SPARQL graph patterns are
typically chain- or star-shaped, they also look at their occur-
rences. They found very scarce chains and high coverage of
almost-star-shaped graph patterns, but they do not character-
ize the latter. To the best of our knowledge, we are the first
to carry out a comprehensive shape analysis on such a large
and diverse corpus of SPARQL queries.

A query analysis and clustering of DBpedia SPARQL
queries has been performed in [44] in order to build a set
of prototypical benchmarking queries. Query logs have been
inspected in a user study in [23] to understand whether facts
that are queried together provide intra-fact relatedness in the
Linked Open Data graph. The objectives of both papers are
different from the one pursued in our work.

Large collections of Wikidata queries have been analyzed
recently in [9,39], which focused on basic characteristics of
queries related to their usage in the Wikidata query service
and spanning from SPARQL feature prevalence and corre-
lation to annotations and language distributions. They also
do a classification of the queries in their corpus into robotic
and organic, which would not be possible in our case since
our logs lack the information about browser- and machine-
generated traffic. However, our analysis significantly differs
from theirs since they do not study in-depth characteris-
tics of the queries reflecting complexity classes, involving
query shapes and property paths, along with the evolution of
streaks, as we do in this paper.

2 Datasets

Our dataset has a total of 350,089,005 queries, which were
obtained as follows: We obtained the 2013–2016 USEWOD
query logs, some additional DBpedia query logs for 2013,
2014, 2015, 2016, and 2017 directly from Openlink,4 the
2014BritishMuseumquery logs fromLSQ,5 andwe crawled
the user-submitted example queries fromWikidata6 in Febru-
ary 2017. These log files are associated with 7 different data
sources from various domains: DBpedia, SemanticWeb Dog
Food (SWDF), LinkedGeoData (LGD), BioPortal (BioP),
OpenBioMed (BioMed), BritishMuseum (BritM), andWiki-
data.

Table 1 gives an overview of the analyzed query logs,
along with their main characteristics. Since we obtained
logs for DBpedia from different sources, we proceeded as
follows: DBpedia9-12 contains the DBpedia logs from
USEWOD’13, which are query logs from 2009–2012. All

4 http://www.openlinksw.com.
5 http://aksw.github.io/LSQ/.
6 https://www.wikidata.org/wiki/Wikidata:SPARQL_query_service/
queries/examples.

123

Author's personal copy

http://www.openlinksw.com
http://aksw.github.io/LSQ/
https://www.wikidata.org/wiki/Wikidata:SPARQL_query_service/queries/examples
https://www.wikidata.org/wiki/Wikidata:SPARQL_query_service/queries/examples

A. Bonifati et al.

Table 1 Sizes of query logs in our corpus

Source Total #Q Valid #Q Unique #Q

DBpedia9-12 28,651,075 27,622,233 13,437,966

DBpedia13 5,243,853 4,819,837 2,628,000

DBpedia14 37,219,788 33,996,486 17,217,416

DBpedia15 43,478,986 42,709,781 13,253,798

DBpedia16 15,098,176 14,687,870 4,369,755

DBpedia17 169,110,041 164,297,723 34,440,636

LGD13 1,927,695 1,531,164 357,843

LGD14 1,999,961 1,951,973 628,640

BioP13 4,627,270 4,624,449 687,773

BioP14 26,438,932 26,404,716 2,191,151

BioMed13 883,375 882,847 27,030

SWDF13 13,853,604 13,670,550 1,229,759

BritM14 1,555,940 1,545,643 135,112

Wikidata17 309 308 308

Total 350,089,005 338,745,580 90,605,187

other DBpedia’X sets contain the query logs from the year
’X, be it from USEWOD or from Openlink.7

Compared to the conference version of this article [11],
we have obtained 169,110,041 new queries from Openlink,
which is reflected in the DBpedia17 dataset. Some of the
other datasets are slightly larger than in the conference ver-
sion, due to an issue with the parser, which we fixed. In some
cases, the parser would have an internal error and the query
would not even show up in our total count.

We prepared the logs for analysis as follows: We first
cleaned the logs, since some contained entries that were not
queries (e.g., http requests). In the following we only report
on the actual SPARQL queries in the logs. For each of the
logs, the table summarizes the total number of queries (Total)
and the number of queries that we could parse using Apache
Jena 3.7.0 (Valid). From the latter set, we removed dupli-
cate queries after whitespace normalization, resulting in the
unique queries that we could parse (Unique). In the remain-
der of the paper, we present results on both Valid andUnique
datasets. In [11]we reported the results for theUnique corpus
only. Adding theValid dataset is important for improving our
understanding of the query logs though: While the Unique
dataset gives us an idea of the different types of queries that
appear in the logs, the Valid dataset gives a better idea of the
queries and the workload that the SPARQL endpoints actu-
ally receive. In summary, our corpus of query logs contains
the latest blend of USEWOD and Openlink DBPedia query
logs (the latter providing 51M more queries in the period

7 We discovered that we received three log files from USEWOD as
well as from Openlink, in the sense that only the hash values used for
anonymization were different. These duplicate log files were deleted
prior to all analysis and are not taken into account in Table 1.

2013–2016 than the USEWOD corpus, and 169M more for
2017), plus BritM andWikidata queries. We are not aware of
other existing studies on such a large and up-to-date corpus.
Finally, although the online Wikidata example queries (Feb
13th, 2017) are a manually curated set, there was one query
that we could not parse.8

Throughout the article, we will use the following notation
to discuss results on theValid andUnique datasets.Whenever
we report a number or a percentage in the format X (Y), the
number X refers to the Valid and the number Y to theUnique
set of queries. This notation allows the reader to stay informed
about the queries that the endpoint actually receives (Valid)
and about those without duplicates in this set (Unique).

The query logs we received are anonymized in the sense
that they do not contain IP addresses, precise time stamps,
or user agents. Time stamps are typically either completely
absent, or rounded to an hour. (In some of the logs, all time
stamps are set to 3:00.) This means, in particular, that these
logs do not allow a classification into robotic and organic
queries, as was done by Bielefeldt et al. [9] and Malyshev et
al. [39].

In the total dataset, 16,639,701 (2,978,945) queries, or
4.91% (3.29%) of the logs do not have a body. All these
queries are Describe queries and almost exclusively occur
in DBpedia14–DBpedia17. To be more precise, 99.47%
(97.22%) of the Describe queries do not have a body. We
therefore conduct some of our analyses only on Select, Ask,
and Construct queries.

3 Preliminaries

We recall some basic definitions on RDF and SPARQL [47,
48]. We closely follow the exposition of [48].

RDF RDF data consist of a set of triples 〈s, p, o〉 where we
refer to s as subject, p as predicate, and o as object. Accord-
ing to the specification, s, p, and o can come from pairwise
disjoint sets I (IRIs), B (blank nodes), and L (literals) as
follows: s ∈ I∪B, p ∈ I, and o ∈ I∪B∪L. For this paper,
the precise definition of IRIs, blank nodes, and literals is not
important. The most important thing to know is that we treat
blank nodes similar to variables, which we discuss later.

SPARQL For our purposes, a SPARQL query Q can be seen
as a tuple of the form

(query-type, pattern P, solution-modifier).

8 The query was called “Public Art in Paris” and was malformed
(closing braces were missing and it had a bad aggregate). It was still
malformed on June 29th, 2017.

123

Author's personal copy

An analytical study of large SPARQL query logs

We now explain how such queries work conceptually. The
central component is the Pattern P , which contains patterns
that are matched onto the RDF data. The result of this part
of the query is a multiset of mappings that match the pattern
to the data.

The solution-modifier allows aggregation, grouping, sort-
ing, duplicate removal, and returning only a specific window
(e.g., the first ten) of the multiset of mappings returned by
the pattern. The result is a list L of mappings.

The query-type determines the output of the query. It is one
of four types: Select, Ask, Construct, and Describe. Select
queries return projections of mappings from L . Ask queries
return a Boolean and answer true iff the pattern P could
be matched. Construct queries construct a new set of RDF
triples based on the mappings in L . Finally,Describe queries
return a set of RDF triples that describes the IRIs and the
blank nodes in L . The exact output of Describe queries is
implementation dependent. Such queries are meant to help
users explore the data. Compared to [48], we allow more
solution modifiers and more complex patterns, as explained
next.

Patterns Let V = {?x, ?y, ?z, ?x1, . . .} be an infinite set
of variables, disjoint from I, B, and L. As in SPARQL, we
always prefix variables by a question mark. A triple pattern
is an element of (I ∪B∪V)× (I ∪V)× (I ∪B∪L∪V). A
property path is a regular expression over the alphabet I. A
property path pattern is an element of (I∪B∪V)× pp×(I∪
B∪L∪V), where pp is a property path. A SPARQL pattern
is an expression generated from the following grammar:

P : := t | pp | Q | P1 And P2 | P Filter R
| P1 Union P2 | P1 Opt P2
| Graph iv P | Values tup T

Here, t is a triple pattern, pp is a property path pattern, Q
is again a SPARQL query, R is a so-called SPARQL filter
constraint, and iv ∈ I ∪V . We note that property paths (pp)
and subqueries (Q) in the above grammar are new features
since SPARQL 1.1. SPARQL filter constraints R are built-in
conditions which can have unary predicates, (in)equalities
between variables, and Boolean combinations thereof. The
keyword Values binds a tuple tup to values in a given table
T . We refer to the SPARQL 1.1 recommendation [22] and
the literature [47] for the precise syntax of filter constraints
and the semantics of SPARQL queries. We write vars(P) to
denote the set of variables occurring in P .

We illustrate by example how our definition corre-
sponds to real SPARQL queries. The following query comes
from WikiData (“Locations of archaeological sites”, from
[26]).

SELECT ?label ?coord ?subj

WHERE
{?subj wdt:P31/wdt:P279* wd:Q839954 .
?subj wdt:P625 ?coord .
?subj rdfs:label ?label filter
(lang(?label)="en")}

The query uses the property path wdt:P31/wdt:P279*,
literalwd:Q839954, and triple pattern?subj wdt:P625
?coord. It also uses a filter constraint. In SPARQL, the
And operator is denoted by a dot (and is sometimes implicit
in alternative, even more succinct syntax). The Select query
will return all bindings of ?label, ?coord, and ?subj
for which the body can be satisfied. If we would turn it into
an Ask query, i.e., replace the entire with the keyword ASK, it
would return true if and only if the Select query would return
at least one output.

The following Construct query from WikiData [26] con-
structs a new RDF graph related to “asthma” (literal
wd:Q35869), by recording the respective qualifiers and
their provenance information if available as Opt edges.
CONSTRUCT {

wd:Q35869 ?p ?o . ?o ?qualifier ?f .
?o prov:wasDerivedFrom ?u . ?u ?a ?b .}

WHERE {
wd:Q35869 ?p ?o . OPTIONAL {?o ?qualifier ?f .}
OPTIONAL {?o prov:wasDerivedFrom ?u . ?u ?a ?b .}}

Finally, we define conjunctive queries, which are a central
class of queries in database research and which we will build
on in the remainder of the paper. In the context of SPARQL,
we define them as follows:

Definition 1 A conjunctive query (CQ) is a SPARQL pattern
that only uses the triple patterns and the operator And.

4 Shallow analysis

In this section we investigate simple syntactical properties of
queries.

4.1 Keywords

A basic usage analysis of SPARQL features was done by
counting the keywords in queries. The results are in Table 2.9

The table contains four blocks: types of queries, solution
modifiers, SPARQLalgebra operators, and aggregation oper-
ators. In each of the blocks, we sorted the operators by their
number of occurrences in the Valid dataset.

9 We also investigated the occurrence of other operators (Service,
Bind, Assign, Data, Dataset, Sample, Group Concat), each of which
appeared in less than 1% of the queries. We omit them from the table
for succinctness.

123

Author's personal copy

A. Bonifati et al.

Table 2 Keyword count in
queries

Element AbsoluteV RelativeV % AbsoluteU RelativeU %

Select 311,496,923 91.96 79,929,422 88.22

Describe 16,727,191 4.94 3,061,636 3.38

Ask 8,265,673 2.44 5,943,216 6.56

Construct 2,255,793 0.67 1,670,913 1.84

Distinct 96,055,447 28.36 29,973,911 33.08

Limit 46,442,970 13.71 17,043,706 18.81

Offset 8,651,005 2.55 4,112,839 4.54

Order By 3,481,015 1.03 1,609,921 1.78

Filter 148,681,968 43.89 34,609,372 38.20

And 129,524,653 38.24 26,737,378 29.51

Opt 107,447,875 31.72 13,119,429 14.48

Union 85,024,759 25.10 15,761,764 17.40

Graph 27,556,055 8.13 1,523,675 1.68

Values 7,595,583 2.24 5,086,033 5.61

Not Exists 2,527,452 0.75 1,096,099 1.21

Minus 2,199,152 0.65 1,664,359 1.84

Exists 13,965 0.00 7,832 0.01

Group By 9,100,381 2.69 3,887,216 4.29

Count 924,474 0.27 653,756 0.72

Having 197,463 0.06 40,401 0.04

Avg 7,714 0.00 731 0.00

Min 7,040 0.00 3,749 0.00

Max 6,504 0.00 3,796 0.00

Sum 2,768 0.00 785 0.00

The first block in Table 2 describes the type of queries.
In total, 91.96% (88.22%) of the queries are Select queries,
4.94%(3.38%)Describequeries, 2.44%(6.56%)Ask queries,
and 0.67% (1.84%) Construct queries. There are, however,
tremendous differences between the datasets. BioMed13
has less than 3.47% (12.83%) Select queries and almost
94% (85%) Describe queries, whereas LGD13 has 17%
(28%) Select queries and almost 81% (71%) Construct
queries.

Even within the same kind of data, we see significant dif-
ferences. DBpedia16 has 85% (62%) Select queries (and
12.1% (34%) Describe queries), whereas DBpedia15 has
92% (81.5%) Select queries and 4% (11.5%) Ask queries.
The other DBpedia datasets have over 87.5% Select queries.
DBpedia17 has 91% (88%) Select queries, 2.1% (9.1%)
Ask queries, and 5.8% (1.4%) Describe queries.

The second block in Table 2 contains solution modi-
fiers, ordered by their popularity.10 Looking into the specific
datasets, we see the following things stand out. Almost all
89% (97%) of BritM14 queries use Distinct. This is sim-
ilar, but to a lesser extent in BioP13 (96% (82%)) and

10 The remaining solution modifier, Reduced, was only found in 6,126
(1,149) queries.

BioP14 (92%(68%)). In DBpedia we again see significant
differences. FromDBPedia9-12 toDBPedia17,we have 21%
(18%), 7% (8%), 16% (11%), 20% (38%), 6% (8%), and 26%
(52%) of queries with Distinct, respectively.

Limit is used most widely in SWDF13 (48 (47%)),
in LGD13 (59% (17%)), and LGD14 (54 (41%)). The
most prevalent datasets for queries with Offset are LGD14
(30% (38%)), LGD13 (52%(13%)), and DBpedia13 (10%
(12%)).

Order By is used by far the most in Wikidata (44%),
which may be due to the case that Wikidata17 is not a
query log, but a Wiki page that contains cherry-picked and
user-submitted queries. These queries are intended to show-
case system’s behavior or highlight features of the Wikidata
dataset and should therefore produce a nice output. The other
datasets are true query logs, whichmay therefore also contain
the “development process” of queries: Users start by asking
a query and gradually refine it until they have the one they
want. (We come back to this in Sect. 10).

The third block has keywords associated with SPARQL
algebra operators that occur in the body. We see that Filter,

123

Author's personal copy

An analytical study of large SPARQL query logs

DB
pe
di
a9
-1
2

DB
pe
di
a1
3

DB
pe
di
a1
4

DB
pe
di
a1
5

DB
pe
di
a1
6

DB
pe
di
a1
7

LG
D1
3

LG
D1
4

Bi
oP
13

Bi
oP
14

Bi
oM
ed
13

SW
DF
13

Br
it
M1
4

Wi
ki
da
ta
17

0%

20%

40%

60%

80%

100%
11+
10
9
8
7
6
5
4
3
2
1
0

Fig. 1 Percentages of queries exhibiting different number of triples (in colors) for each dataset for Valid (left hand side of each bar) and Unique
queries (right-hand side of each bar)

And, Union, and Opt are quite common.11 The next com-
monly used operator is Graph but, looking closer at our data,
we see that 96% (78%) and 85% (40%) of the queries using
Graph originate from BioP13 and BioP14. The use of Fil-
ter ranges from 63% (58%) for DBpedia13 to 0.7% (3%)
or less for BioMed13 and BioP13, respectively.

The fourth block has aggregation operators. We were sur-
prised that these operators are used so sparsely, even though
aggregates are only supported since SPARQL 1.1 (March
2013) [22]. In all datasets, each of these operators was used
in 3% or less of the Unique queries, except for LGD14
(31% with Count), DBpedia17 (11% with Group By), and
Wikidata17 (30% with Group By). We see a higher rel-
ative use of aggregation operators in Wikidata17 than in
the other sets, which we again believe is due to the fact that
the Wikidata17 set is not a query log.

Overall, when we compare the Unique and Valid logs,
it is striking that the relative occurrences of the four main
SPARQL algebra operators Filter, And, Union, and Opt all
decrease when eliminating duplicate queries.

4.2 Number of triples in queries

In order to measure the size of the queries belonging to the
datasets under study, we have counted the total number of
triples of the kind 〈s, p, o〉 contained in Select, Ask, and
Construct queries. In this experiment, we merely counted
the number of triples contained in each query without further
investigating the possible relationships among them (such as
join conditions and unions), which are studied in the remain-
der of the paper. We focus on Select, Ask, and Construct

11 Conjunctions in SPARQL are actually denoted by “.” or “;” for
brevity, but we group them under “And” in this paper for readability.

queries as opposed to [11], which analyzed Select and Ask
on their corpus. We discard the Describe statements, which
have an implementation-dependent semantics.12

The plot in Fig. 1 illustrates how queries containing 0
to 11+ triples are distributed over the Select, Ask, and
Construct queries in each of the datasets. A first observa-
tion that we can draw from Fig. 1 is that for the majority
of the datasets, the queries with a low number of triples
(from 0 to 2) have a noticeable share within the total
amount of queries per dataset. Whereas these queries are
almost the only queries present in the BioP13 and BioP14
datasets, they have the least concentration in BritM14 and
Wikidata17. The latter datasets have in fact unique char-
acteristics,BritM14 being a collection of queries with fixed
templates and Wikidata17 being the most diverse dataset
of all, gathering queries of rather disparate nature that are
representatives of classes of real queries issued on Wiki-
data. Finally,DBpedia9-12untilDBpedia17, alongwith
LGD14 and BioMed13, are the datasets exhibiting the most
complex queries with extremely high numbers of triples
exceeding 10.

We should note that BioMed13 has almost 94% (87%)
Describe queries. The numbers reported here only depict the
remaining 6% (13%).

Overall, we observe that 63.62% (58.40%) of the Select,
Ask, and Construct queries in our corpus use at most one
triple, 77.89% (90.16%) uses at most six triples, and 99.44%
(98.35%) at most twelve triples. The largest queries we
found came from DBpedia15 (209 and 211 triples) and
BioMed13 (221 and 229 triples). In the new query logs of
DBpedia17, the largest queries contain 207 and 209 triples.

12 For instance, 95% (97%) of the Describe statements in our corpus
do not have a body and therefore no triples.

123

Author's personal copy

A. Bonifati et al.

If we compare the Unique and Valid query logs overall,
we see that the Valid logs usually have more large queries
than the Unique logs (sometimes quite significantly, e.g., in
DBpedia17). This means that in particular, the DBpedia
SPARQL endpoint seems to receive significantly more large
queries than what the results on Unique queries in [11] sug-
gest, but also that there are many duplicates among these
large queries.

4.3 Operator distribution

In Table 2 we see that Filter, And, Union, Opt, and Graph
are used fairly commonly in the bodies of Select-, Ask-, and
Construct queries. We can notice that the numbers in Table 2
are generally compatible with those of our previous corpus
in [11]. We can notice, however, a remarkable increase in the
usage of Group By queries (from 0.3% to 4.29% in the new
corpus).

We then investigated how these operators occur together.
In particular, we investigated for which queries the body only
uses constructs with these operators.13

The results are in Table 3, which has two kinds of rows.
Each white row has, on its left, a set S of operators from
O = {Filter,And,Opt,Graph,Union,Values} and, on its
right, the amount of queries in our logs for which the body
uses exactly the operators in S (and none from O \ S). The
value for none is the amount of queries that do not use any
of the operators in O (including queries that do not have a
body).

Conjunctive patterns with filters are considered to be an
important fragment of SPARQL patterns, because they are
believed to appear often in practice [46,50].

Definition 2 A conjunctive query with filters (CQF) is a
SPARQL pattern that only uses triple patterns and the oper-
ators And and Filter.

Our logs contain 50.51% (66.89%)CQF queries. AddingOpt
to the CQF fragment would increase its relative size with
11.80% (7.20%) resulting in 62.31% (74.09%) our queries.
(Similarly for Union, Graph and Values.) Table 3 classifies
95.07% (96.62%) of the Select, Ask, and Construct queries
in our corpus. The remaining queries either use other com-
binations from O 1.64% (2.79%) or use other features than
those in O in their body 2.10% (3.61%) like Bind, Minus,
subqueries, or property paths. A recurrent combination of
features than those inO has been observed in the latest query
logs (DBpedia17), in which Union and Values appear
together in 1.30% (5.08%) of the queries, whereas they are
mostly not existing in the other datasets.

13 There is one exception: For Wikidata, we removed SERVICE sub-
queries before the analysis (which appears in approximately 200 of its
queries and is used to change the language of the output).

Whenwe compare theValid with theUnique datasets, two
changes stand out: Graph and the A,F,O,U fragment become
much less commonwhen duplicates are removed. For Graph,
it seems that the BioPortal query logs are responsible, since
these logs harbor almost all queries that use Graph. For the
A,F,O,U fragment, we see that all DBpedia logs from 2013 on
contain many duplicates of A,F,O,U queries. For instance, in
theValid DBpedia17 logswehave 25.87%A,F,O,Uqueries,
but in theUnique DBpedia17 logs, this fragment only con-
stitutes 6.06% of the queries.

4.4 Subqueries and projection

Only 1,309,040 (575,666) queries in our corpus use sub-
queries. The feature was most used in WikiData (9.74%),
about an order of magnitude more than in any of the other
datasets.

Projection plays a crucial role in the complexity of query
evaluation.Many papers [8,34,37,47,48] define evaluation as
the following question: Given an RDF graph G, a SPARQL
pattern P , and a mapping μ, is μ an answer to P when
evaluated on G? In other words, the question is to verify if a
candidate answerμ is indeed an answer to the query. If P is a
CQ, this problem isNP-complete if the queries use projection
[8,13,37], but its complexity drops to Ptime if projection is
absent [8,37,47].14 Therefore, the use of projection has a
huge influence of the complexity of query evaluation.

Surprisingly, we discovered that at least 9.1% (13.13%) of
the queries use projection, which is significantly higher than
what Picalausa and Vansummeren discovered in DBpedia
logs from 2010 [48]. The 9.1% (13.13%) consists of 8.33%
(11.88%) Select queries plus 0.76% (1.24%) Ask queries.
Notice that the total number of Ask queries 2.44% (6.56%)
is significantly higher, even though they just return a Boolean
value and onewould intuitively expect that almost all of them
would use projection. The reason is that most Ask queries do
not use variables: they ask if a concrete RDF triple is present
in the data. Following the test for projection in Section 18.2.1
in the SPARQL recommendation [22], we classified these
queries as not using projection.

Due to the use of the Bind operator or to the presence
of subqueries, there was a number of queries (3.08% for
Valid and 5.37% for Unique queries) where we could not
determine if they use projection or not. Therefore, the number
of queries with projection lies between 9.1% and 12.18%
for Valid queries (13.13% and 18.5% for Unique queries,
respectively).

14 This difference can be understood as follows: If the query tests the
presence of a k-clique, then without projection we are given a k-tuple
of nodes and need to verify if they form a k-clique. With projection, we
need to solve the NP-complete k-clique problem.

123

Author's personal copy

An analytical study of large SPARQL query logs

Table 3 Sets of operators used
in queries: And (A), Filter (F),
Graph (G), Opt (O), Union (U),
and Values (V)

Operator Set AbsoluteV RelativeV % AbsoluteU RelativeU %

None 107,285,016 33.32 31,785,844 36.31

A 15,106,778 4.69 7,769,170 8.87

F 30,679,572 9.53 14,822,993 16.93

A,F 9,583,490 2.98 4,176,586 4.77

CQF subtotal 162,654,856 50.51 58,554,593 66.89

O 2,921,810 0.91 625,663 0.71

A,O 3,436,987 1.07 1,807,483 2.06

F,O 7,115,439 2.21 2,096,526 2.39

A,F,O 24,512,799 7.61 1,773,624 2.03

CQF+O +37,987,035 +11.80 +6,303,296 +7.20

U 8,533,645 2.65 4,627,921 5.29

A,U 1,627,742 0.51 1,010,579 1.15

F,U 627,559 0.19 254,640 0.29

A,F,U 1,824,697 0.57 1,057,080 1.21

CQF+U +12,613,643 +3.92 +6,950,220 +7.94

V 151,078 0.05 63,912 0.07

A,V 207,180 0.06 164,175 0.19

F,V 2,497,572 0.78 2,204,598 2.52

A,F,V 142,211 0.04 98,560 0.11

CQF+V +2,998,041 +0.93 +2,531,245 +2.89

G 26,288,960 8.16 1,380,991 1.58

A,G 391,433 0.12 42,315 0.05

F,G 876 0.00 269 0.00

A,F,G 34,418 0.01 9,495 0.01

CQF+G +26,715,687 +8.30 +1,433,070 +1.64

A,F,O,U 67,026,601 20.81 6,170,843 7.05

5 Structural analysis

SPARQL patterns of queries using only triple patterns and
the operators And, Opt, and Filter (and, in particular, not
using subqueries or property paths) received considerable
attention in the literature (see, e.g., [8,34,36,37,47]). We
refer to such Select, Ask, or Filter patterns as And/Opt/Filter
patterns or, for succinctness, AOF patterns. Our corpus has
200,641,891 (64,857,889) AOF patterns, which amounts to
62.31% (74.09%) of the Select, Ask, and Construct queries.

In Sects. 6 and 7 we investigate the graph and hypergraph
structure of AOF patterns. The graph structure gives us a clear
view on how such queries are structured and can tell us how
complex such queries are to evaluate. For a significant portion
of queries, however, the graph structure is not meaningful to
capture their complexity (cf. Example 1) and we therefore
need to turn to their hypergraph structure. Since the graph
structure may be easier to understand and is often sufficient,
we use the graph structure whenever we can.

We provide some background on the relationship between
the (hyper)graph structure of queries and the complexity
of their evaluation. Evaluation of CQs is NP-complete in

general [13], but becomes Ptime if their hypertreewidth is
bounded by a constant [20]. Here, the hypertreewidth mea-
sures how close the query is to a tree. (The lower the width,
the closer the query is to a tree.) Several state-of-the-art join
evaluation algorithms (e.g., [1,33]) effectively use the hyper-
graph structure of queries to improve their performance, even
in the context ofRDFprocessing [2].We establish in Sect. 5.2
that there are significant performance differences in today’s
query engines, even when the hypertreewidth of queries just
increases from one to two.

5.1 Graph and hypergraph of a query

We first make more precise what we mean by the graph and
hypergraph of a query. An (undirected) graph G is a pair
(V , E) where V is its (finite) set of nodes and E is its set
of edges, where an edge e is a set of one or two nodes, i.e.,
e ⊆ V and |e| = 1 or |e| = 2. A hypergraphH consists of a
(finite) set of nodes V and a set of hyperedges E ⊆ 2V , that
is, a hyperedge is a set of nodes.

123

Author's personal copy

A. Bonifati et al.

Most SPARQL patterns do not use variables as predicates,
that is, they use triple patterns (s, p, o)where p is an IRI.We
also allow p ∈ vars if p is not used elsewhere in the query (in
this case, p serves as a wildcard, possibly binding to a value
that is returned to the output). We call such patterns graph
patterns. Evaluation of graph patterns is tightly connected to
finding embeddings of the graph representation of the query
into the data.15 We define the triple graph of graph pattern P
to be the following graph: E = {{x, y}) | (x, �, y) is a triple
pattern in P and � ∈ I ∪ V} and V = {x | {x, y} ∈ E}.

Hypergraph representations can be considered for all AOF
patterns. The triple hypergraph of a SPARQL pattern P is
defined as E = {X |; there is a triple pattern t in P such that
X is the set of blank nodes and variables appearing t} and
V = ∪e∈Ee.

For several types of queries, we will analyze the structure
of their triple graph. However, the usage of some keywords
of types of subqueries (notably, Filter and Values) can put
additional constraints on the query that are not reflected in
the triple (hyper)graph and we therefore need to augment
it with additional (hyper)edges. We will call the resulting
graphs the canonical (hyper)graphs of the queries. For CQs,
however, we define their canonical (hyper)graph to be equal
to their triple (hyper)graph.

Example 1 Consider the following (synthetic) CQs:

ASK WHERE {?x1 :a ?x2 . ?x2 :b ?x3 . ?x3 :c ?x4}
ASK WHERE {?x1 ?x2 ?x3 . ?x3 :a ?x4 . ?x4 ?x2 ?x5}

Figure 2 (top left) depicts the canonical graph of the first
query, which is a sequence of three edges. (We annotated the
edges with their labels in the query to improve understand-
ing.) The bottom left graph in Fig. 2 shows why we do not
consider canonical graphs for queries with variables on the
predicate position in triples. The topological structure of this
graph is a sequence of three edges, just as for the first query.
This completely ignores the join condition on ?x2. For this
query, the canonical hypergraph in Fig. 2 (right) correctly
captures the cyclicity of the query.

5.2 Comparative evaluation of chain and cycle
queries

We conducted a set of experiments aiming at comparing
the execution times of conjunctive queries whose canoni-
cal graphs exhibit specific shapes. We have chosen chain
and cycle queries in this empirical study. A chain query (of
length k) is a CQ for which the canonical graph is isomorphic

15 In particular, it consists of finding embeddings of the directed and
edge-labeled variant of the graph, but we omit the edge directions and
labels for simplicity. They do not influence the structure and cyclicity
of graph patterns.

x1 x2 x3 x4
:a :b :c

x1 x3 x4 x5
x2 :a x2

x2 x1 x3

x4

x5

Fig. 2 Canonical graphs and hypergraph for queries in Example 1

to the undirected graph with edges {x0, x1}, {x1, x2}, . . . ,
{xk−1, xk}. (The first query in Example 1 is a chain query of
length three.) A cycle query (of length k) is a CQ for which
the canonical graph is isomorphic to {x0, x1}, . . . , {xk−1, x0}.
As an edge case, we also allow chains of length zero. Such
chains consist either of a single node or no node at all. These
shapes have been selected as representatives of the queries
with hypertreewidth 1 and 2, respectively, and have also been
used to compare the performances of join algorithms in other
studies, e.g., [33].

In order to generate query workloads containing the
aforementioned types of queries, we have used gMark [4],
a publicly available16 schema-driven generator for graph
instances and graph queries. We tuned gMark to gener-
ate diverse query workloads, each containing 100 chain
and cycle queries, respectively.17 Each workload has been
generated by using chains and cycles of different length
varying from 3 to 8. In these experiments, we have con-
sidered and contrasted two opposite graph database systems,
namely PostgreSQL [30], an open-source relational DBMS,
and BlazeGraph [28], a high-performance SPARQL query
engine powering theWikimedia’s official query service [51],
and thus used for the official Wikidata SPARQL endpoint.
We have run these experiments on 2-CPUs Intel Xeon E5-
2630v2 2.6 GHz server18 with 128GB RAM and running
Ubuntu 16.04 LTS. We used PostgreSQL v.9.3 and Blaze-
graph v.2.1.4 for the experimental setup. We employed the
Bib use case in the gMark configuration [4] for the schema
of the generated graph (of size 100k nodes) and of the gen-
erated queries as well. We employed the query workloads in
SQL and SPARQL as generated by gMark after elimination
of empty unions (since gMark is geared toward generating
UCRPQs) and of the keyword Distinct in the body of the
queries. Since gMark allowed us to obtain mixed workloads
of Select/Ask queries and we wanted to focus on one query

16 https://github.com/graphMark/gmark.
17 We recall that gMark can generate queries of four shapes: chain,
star, chain–star, and cycle. We have thus cherry-picked chain queries as
representatives of queries with hypertreewidth equal to 1.
18 Every CPU has 6 physical cores and, with hyperthreading, 12 logical
cores.

123

Author's personal copy

https://github.com/graphMark/gmark

An analytical study of large SPARQL query logs

W-3 W-4 W-5 W-6 W-7 W-8

108

109

1010

1011
A
vg

.
qu

er
y
ru

nt
im

e
p
er

w
or
kl
oa

d
W

-x
(i
n
ns

)

chainBG chainPG cycleBG cyclePG*

W-x W-3 W-4 W-5 W-6 W-7 W-8
%t/o 18% 34% 43% 39% 43% 30%

Fig. 3 Execution times (top) of diverse workload of chain/cycle queries
(of length 3, 4, 5, 6) on Blazegraph (BG) and Postgresql (PG). Number
of timeouts per workload for CyclePG only (bottom). CyclePG times
include t/o of 300s (per query)

type at a time, we manually replaced the Select clauses with
compatible Ask clauses.

Figure 3 (top) depicts the average runtime (in ns, logscale)
of our workloads of chain (cycle, resp.) queries with length
from 3 to 8 on Blazegraph (BG) and PostgreSQL (PG). We
can observe that the overall performance of BG is superior
to that of PG. Indeed, in PG many cycles queries are timed
out (after 300s per query) and we expect that the real overall
performance of PG is even worse19 than the results reported
in Fig. 3. Figure 3 (bottom) reports the reached timeouts for
workloads of cycle queries of various sizes when executed in
PG. It is worthwhile observing that for both systems the dif-
ference between average runtime of chain query workloads
and cycle queryworkloads is non-negligible, thus confirming
that we cannot ignore the graph representation and the shape
of queries. This experiment also motivated us to dig deeper
in the shape analysis of our query logs, which we report in
Sect. 6.

5.3 Classes of queries for (hyper)graphs

We now discuss the classes of queries for which we will
investigate their canonical graph and hypergraph structures
in Sect. 6. To the best of our knowledge, all the literature relat-
ing (hyper)graph structure of queries to efficient evaluation
was done on AOF patterns. Here, we focus on fragments of
AOF patterns, plus a mild extension, namely with additional
Values blocks. The simplest queries we consider are the CQs,
which motivated the classical literature on query evaluation

19 In the case in which we let PG run beyond the time-out and collect
the new numbers.

and hypertree structure [13,20]. We discovered that 61.00%
(60.99%) of the AOF patterns are CQs.

Definition 3 A CQ is suitable for graph analysis if it is a
graph pattern. For a CQ that is suitable for graph analysis,
its canonical graph is defined as its triple graph. For every
other CQ, its canonical hypergraph is defined as its triple
hypergraph.

Next, we extend the above terminology for CQs with Fil-
ter, Opt, and Values. We only want to consider canonical
(hyper)graphs for queries such that the relationship between
efficient query evaluation and their (hyper)graph structure is
still similar as for CQs. However, this requires some care,
especially when considering Opt [8,47].

CQF patterns can be evaluated similarly to CQs, but we
need discuss the fragment for which we will analyze the
graph structures. We say that a filter constraint R is simple if
vars(R) contains at most two variables. (An almost identical
class of queries was considered in [48].)

Definition 4 A CQF query is suitable for graph analysis if it
is a graph pattern and all filter constraints are simple. For such
aCQF query, we define its canonical graph as its triple graph,
to which we add an edge {x, y} for each filter constraint that
uses the two variables x and y. For all other CQF queries,
its canonical hypergraph is obtained from its triple graph,
to which we add a hyperedge {x1, . . . , xk} for each filter
constraint that uses precisely the k variables x1, . . . , xk .

In our corpus, 81.07% (90.28%) of the CQF patterns are
suitable for graph analysis.

We now additionally consider Opt. Pérez et al. [47]
showed that unrestricted use of Opt in SPARQL patterns
makes query evaluation Pspace-complete, which is signifi-
cantly more complex than the NP-completeness of CQs or
CQF queries. They discovered that patterns that satisfy an
extra condition called well-designedness [47] can be eval-
uated more efficiently. Letelier et al. [37] show that in the
presence of projection, evaluation of well-designed patterns
is Σ P

2 -complete.

Definition 5 A SPARQL pattern P using only the operators
And, Filter, and Opt is well-designed if for every occurrence
i of an Opt-pattern (P1 Opt P2) in P , the variables from
vars(P2) \ vars(P1) occur in P only inside i .20

In our corpus, 98.74% (98.18%) of the AOF patterns are well
designed (but do not necessarily have simple filters). Unfor-
tunately, it is not yet sufficient for well-designed patterns to
have a hypergraph of constant hypertreewidth for their evalu-
ation to be tractable [8].However, Barceló et al. show that this

20 Perez et al.’s definition also has a safety condition on the filter state-
ments of the patterns, but the omission of this condition does not affect
the results in this paper.

123

Author's personal copy

A. Bonifati et al.

(?A, name, ?N)

(?A, email, ?E) (?A, webPage, ?W)

(?A, name, ?N)

(?A, email, ?E)

(?A, webPage, ?W)

T1: T2:

Fig. 4 Pattern trees that correspond to the queries in Example 2

can be mended by an additional restriction called bounded
interface width. We explain this notion by example and refer
to [8] for details.

Example 2 The following patterns come from [37,47]:

P1 = (((?A, name, ?N) Opt (?A, email, ?E))

Opt(?A,webPage, ?W))

and P2 = ((?A, name, ?N)

Opt((?A, email, ?E) Opt (?A,webPage, ?W)))

Figure 4 has tree representations T1 and T2 for P1 and P2,
respectively, called pattern trees. The pattern trees Ti are
obtained from the parse trees of Pi by applying a standard
encoding based on Currying [40, Section 4.1.1]. The encod-
ing only affects the arguments of the Opt operators in the
queries. If the query also uses And, then it should first be
brought in Opt-normal form [47] and then turned into a pat-
tern tree. The resulting pattern trees will then have a CQ in
each of its nodes.

Barceló et al. define pattern trees to be well designed if,
for each variable, the set of nodes in which it occurs forms
a connected set. Notice that this is the case for T1 and T2. It
would be violated in T1 if the root would not use the variable
?A. Likewise, it would be violated in T2 if the node labeled
(?A, email, ?E) would not use the variable ?A.

The interface width of the pattern trees is the maximum
number of common variables between a node and its child.
Both trees in Fig. 4 (and both queries P1 and P2) therefore
have interface width one. (Common variables are bold in
Fig. 4.) If T1 would use variable ?W instead of ?N , then its
interface width would be two.

Definition 6 A SPARQL pattern P using only the operators
And, Filter, andOpt is a CQOF query if it has a well-designed
pattern tree with interface width 1. It is suitable for graph
analysis if it is a graph pattern and all its filter conditions
are simple. The canonical graph and hypergraph of a CQOF
query is defined analogously to that of CQF queries. That is,
its triple graph (resp. hypergraph) is augmented with edges
{x, y} for each filter constraint that uses precisely the vari-
ables x and y (resp. hyperedges {x1, . . . , xk} for each filter
constraint that uses precisely the variables x1, . . . , xk).

We discovered that 98.72% (98.13%) of the AOF patterns are
CQOF queries, which is almost equal to the number of well-
designed patterns. Moreover, 85.30% (93.87%) are CQOF
patterns that are suitable for graph analysis.

The Values keyword was used in 2.24% (5.61%) of the
queries. It is particularly often used in DBpedia17, where
it appears in 4.03% (13.37%) of the queries. The purpose of
Values blocks is to test if a variable (or a tuple of variables)
appears in a set that is given in the query. For instance, the
subquery
VALUES (?country) {"Belgium" "France" "Germany"}

restricts the variable ?country to be assigned to one of
the values "Belgium", "France", or "Germany". The
Values block is used almost exclusively for unary conditions,
that is, to test if the value of a single variable is in a given set
of constants. However, it can also be used to test higher arity
constraints, as in the subquery

VALUES (?x ?y) {(:a :b) (:a :c)}

which imposes a binary constraint, i.e., it binds the variable
pair (?x ?y) to one of the two pairs in the body of the
Values block. Concerning our shape analysis, we distinguish
between Values blocks that use constraints of arity two or
less and the others.

Definition 7 A CQOFV query is a SPARQL pattern P using
only the operators And, Filter,Opt, and Values, such that the
pattern obtained from P by removing all Values blocks is
a CQOF query. It is suitable for graph analysis if all filters
are simple and all values blocks have arity at most two. If
a CQOFV query is suitable for graph analysis, its canonical
graph is obtained from the triple graph by augmenting it
with an edge for each binary filter constraint, and an edge for
each binary Values block. For every other CQOFV queries, its
canonical hypergraph is obtained from the triple hypergraph
by augmenting it with a hyperedge {x1, . . . , xk} for each filter
or values block that uses precisely the variables x1, . . . , xk .

5.4 (Weak) well-designedness and unions

Weconclude the sectionwith a brief note on the usageofwell-
designedness with respect to the entire corpus of queries.
Kaminski and Kostylev [34] defined a weaker version of
well-designedness that has similar favorable computational
properties. We therefore also analyzed whether queries are
weakly well-designed. Table 4 shows the number of AOF
queries and the percentages thereof that are well-designed
(wd) and weakly well-designed (wwd). We also took the set
of queries that only useAnd,Opt, Filter, andUnion (AOFU in
Table 4) and investigated the percentages of queries thereof
that are unions of wd or wwd queries. In most cases where
the query is not a union of wd or wwd queries, it is because
the union is not the top-level operator.

123

Author's personal copy

An analytical study of large SPARQL query logs

Table 4 Well-designedness
(wd), weak well-designedness
(wwd), and unions thereof

Property AbsoluteV RelativeV % AbsoluteU RelativeU %

wd 198,109,323 98.74 63,677,171 98.18

wwd 200,064,814 99.71 64,749,468 99.83

AOF 200,641,891 100.00 64,857,889 100.00

uwd 208,672,931 74.35 69,279,286 88.72

uwwd 210,638,343 75.05 70,360,134 90.10

AOFU 280,672,732 100.00 78,088,794 100.00

CQ CQ
F

CQ
O
F

CQ
O
F
V

0%

20%

40%

60%

80%

100%

11+
10
9
8
7
6
5
4
3
2

Fig. 5 Size of Valid (versus Unique) CQ-like queries with at least two
triples

6 Shape classification

In this section, we analyze the shapes of the canonical graphs
and the treewidth and hypertreewidth of CQ, CQF, CQOF,
and CQOFV queries. We start with a note on the size of these
queries. Figure 5 shows the respective sizes of these queries
that have at least two triples by considering both Valid and
Unique queries side by side. The fractions of queries with
one triple are 90.65% (85.36%), 87.71% (83.22%), 81.54%
(76.99%), and 81.81%(77.81%) for CQ, CQF, CQOF, and
CQOFV, respectively. Unsurprisingly, small queries are more
likely to be in one of these fragments and, therefore, simple
queries are represented evenmore in these datasets than in the
overall dataset. Nevertheless, we have CQs and CQF queries
with up to 81 triples and CQOF and CQOFV queries with up
to 211 triples.

6.1 Graph structure

We analyze the graph structure of queries. We only consider
graphs for queries that were defined to be suitable for graph
analysis in Sect. 5.1. We consider the remaining 27.27 mil-
lion queries in CQOF in Sect. 6.2.

We first recall or define the basic shapes of the canonical
graphs that we will study in this section. The shapes chains
and cycle are already defined in Sect. 5.2. A chain set is a
graph in which every connected component is a chain. (So,
each chain is also a chain set.)

A tree is an undirected graph such that, for every pair of
nodes x and y, there exists exactly one undirected path from
x to y. (Hence, every chain is also a tree.) A forest is a graph
in which every connected component is a tree.

A star is a tree forwhich there exists atmost one nodewith
more than two neighbors, that is, there is at most one node u
such that there exist u1, u2, and u3, all pairwise different and
different from u, for which {u, ui } ∈ E for each i = 1, 2, 3.

Inspired by the results obtained with gMark on synthetic
queries, we proceeded with the analysis of the query logs by
looking at the encountered query shapes. Here, we consider
queries as edge-labeled graphs, as defined in Sect. 5. In the
next subsection we also investigate the hypergraph structure.

We investigate CQs, CQF queries, CQOF queries, and
CQOFV queries. The last three fragments are interesting in
that they bring under scrutiny more queries than the plain
CQ set of query logs (by an increase of roughly 33% (50%),
44% (64%), and 47% (70%), respectively). We first wanted
to identify classical query shapes, such as all variants of tree-
like shapes (single edges, chains, sets of chains, stars, trees,
and forests). The results are summarized in Table 5. From
the analysis, we can draw the following observations. Tree-
shaped queries even in their simple forms (chain of length
1 or single edges) are very frequent along with star queries,
which also exhibit high occurrence in the cumulative analysis
performed on the new logs.

Since simple queries are overrepresented in query logs
(already over 87.76% (83.23%) of CQF patterns uses only
one triple, for example), it is no surprise that the overwhelm-
ing majority of the queries is acyclic, i.e., a forest. However,
we alsowanted to get a better understanding of themore com-
plex queries in the logs, so we also investigated the cyclic
queries. Our goal is to obtain a cumulative shape analysis
where simpler shapes are subsumed by more sophisticated
query shapes, with the latter reaching almost 100% coverage
of the query logs.

123

Author's personal copy

A. Bonifati et al.

Table 5 Cumulative shape analysis of graph patterns in CQ, CQF, CQOF, and CQOFV, across all logs. The relative numbers are w.r.t. the queries
that are suitable for graph analysis

Shape CQ/graph CQF/graph CQOF/graph CQOFV/graph

#Queries Relative% #Queries Relative% #Queries Relative% #Queries Relative%

VALID

No edge 73,147 0.06 73,155 0.05 73,155 0.04 74,891 0.04

≤ 1 edge 107,268,916 90.71 137,634,760 87.56 139,234,499 81.35 141,642,411 81.49

Chain 116,816,836 98.78 151,963,617 96.68 159,787,714 93.36 162,216,710 93.32

Star 117,683,253 99.52 155,325,069 98.82 168,220,691 98.29 170,671,088 98.19

Tree 118,059,399 99.83 155,716,314 99.07 168,936,241 98.71 171,386,859 98.60

Flower 118,225,680 99.98 156,730,621 99.71 170,174,607 99.43 172,922,659 99.48

Chain set 116,835,460 98.80 151,990,203 96.70 159,931,312 93.45 162,287,197 93.36

Forest 118,078,726 99.85 155,748,689 99.09 169,089,411 98.80 171,466,918 98.64

Bouquet 118,245,059 99.99 156,763,406 99.73 170,328,206 99.52 173,003,151 99.53

tw ≤ 2 118,254,672 100.00 157,183,767 100.00 171,147,726 100.00 173,822,690 100.00

tw ≤ 3 118,254,676 100.00 157,183,771 100.00 171,147,730 100.00 173,822,694 100.00

Total 118,254,676 100.00 157,183,771 100.00 171,147,730 100.00 173,822,694 100.00

UNIQUE

No edge 1,279 0.00 1,284 0.00 1,284 0.00 1,661 0.00

≤ 1 edge 31,785,575 85.41 46,480,574 83.05 46,772,128 76.82 48,866,909 77.37

Chain 36,839,344 98.99 54,131,560 96.72 56,042,768 92.05 58,142,029 92.06

Star 37,123,785 99.75 55,417,051 99.02 60,203,786 98.89 62,306,677 98.65

Tree 37,184,810 99.92 55,487,815 99.15 60,311,400 99.06 62,414,439 98.82

Flower 37,202,015 99.96 55,892,860 99.87 60,735,713 99.76 63,010,697 99.77

Chain set 36,851,176 99.02 54,150,770 96.76 56,096,837 92.14 58,196,121 92.15

Forest 37,197,115 99.95 55,509,443 99.19 60,370,204 99.16 62,473,266 98.92

Bouquet 37,214,357 100.00 55,914,792 99.91 60,794,835 99.86 63,069,846 99.86

tw ≤ 2 37,216,150 100.00 55,965,143 100.00 60,881,508 100.00 63,156,533 100.00

tw ≤ 3 37,216,153 100.00 55,965,146 100.00 60,881,511 100.00 63,156,536 100.00

Total 37,216,153 100.00 55,965,146 100.00 60,881,511 100.00 63,156,536 100.00

A first observation was that plain cycles are not very com-
mon. By visually inspecting the remaining cyclic queries,
we observed that many of them could be seen as a node with
simple attachments, which we call flower.

Definition 8 A petal is a graph consisting of a source node s,
target node t , and a set of at least two node-disjoint paths from
s to t . (For instance, a cycle is a petal that uses two paths.) A
flower is a graph consisting of a node x with three types of
attachments: chains (the stamens), trees that are not chains
(the stems), and petals. As an edge case, we also consider the
empty graph to be a flower.

An example of a real flower query posed by users in one of our
DBpedia logs is illustrated in Fig. 6. It consists of a central
node with four petals (one of which using three paths), ten
stamens, and zero stems attached.

We also considered sets of flowers, which we called bou-
quets, to further increase the ratio of queries that could
be classified from the original logs. The number of flow-

ers and bouquets in the query logs only overcome those
of trees and forests by roughly 0.01%–0.09% (0.03–0.10%)
for all the four fragments. Furthermore, for all fragments,
the majority of the cyclic queries is captured by bou-
quets.

In the above analysis, we have analyzed the shapes of
queries when the latter are represented as graphs as defined
in Sect. 5, i.e., the nodes can be either variables or constants.
Constants are in fact helpful for us to obtain a rough idea
of the shape of patterns that users try to find in graphs, but
research on query optimization often focuses on the shape
of patterns without constants. (The reason is that constants
can typically be matched to only one node in the graph and
therefore do not highly contribute to the complexity of eval-
uation.) For that reason, we have rerun the above analysis
on queries excluding constants in order to identify the dif-
ferences in the obtained shape classification (Table 6). The
most significant observation here is that many shapes disin-
tegrate to a set of variables (i.e., no more edges are present

123

Author's personal copy

An analytical study of large SPARQL query logs

Table 6 Cumulative shape analysis of graph patterns in CQ, CQF, CQOF, and CQOFV, after removal of IRIs, across all logs. The relative numbers
are w.r.t. the queries that are suitable for graph analysis

Shape CQ/graph CQF/graph CQOF/graph CQOFV/graph

#Queries Relative% #Queries Relative% #Queries Relative% #Queries Relative%

VALID

No edge 106,952,766 90.44 136,357,792 86.75 144,549,634 84.46 144,643,932 83.21

≤ 1 edge 116,643,820 98.64 150,954,951 96.04 160,737,562 93.92 163,386,730 94.00

Chain 117,774,655 99.59 155,832,073 99.14 167,819,465 98.06 170,472,931 98.07

Star 117,876,831 99.68 156,787,151 99.75 170,062,935 99.37 172,737,353 99.38

Tree 118,235,060 99.98 157,146,906 99.98 170,423,705 99.58 173,098,147 99.58

Flower 118,243,330 99.99 157,162,189 99.99 170,439,245 99.59 173,114,179 99.59

Chain set 117,785,058 99.60 155,852,116 99.15 167,851,157 98.07 170,504,640 98.09

Forest 118,245,559 99.99 157,167,354 99.99 170,732,618 99.76 173,407,077 99.76

Bouquet 118,253,840 100.00 157,182,660 100.00 170,748,181 99.77 173,423,132 99.77

tw ≤ 2 118,254,674 100.00 157,183,769 100.00 171,147,728 100.00 173,822,692 100.00

tw ≤ 3 118,254,676 100.00 157,183,771 100.00 171,147,730 100.00 173,822,694 100.00

Total 118,254,676 100.00 157,183,771 100.00 171,147,730 100.00 173,822,694 100.00

UNIQUE

No edge 32,886,654 88.37 47,048,004 84.07 49,453,297 81.23 49,490,285 78.36

≤ 1 edge 36,511,703 98.11 52,939,383 94.59 56,293,258 92.46 58,562,031 92.73

Chain 37,150,107 99.82 55,596,772 99.34 60,134,203 98.77 62,405,465 98.81

Star 37,164,017 99.86 55,898,107 99.88 60,743,607 99.77 63,018,260 99.78

Tree 37,210,340 99.98 55,944,891 99.96 60,791,019 99.85 63,065,687 99.86

Flower 37,213,881 99.99 55,954,879 99.98 60,801,134 99.87 63,076,131 99.87

Chain set 37,151,726 99.83 55,605,967 99.36 60,148,326 98.80 62,419,603 98.83

Forest 37,212,024 99.99 55,954,365 99.98 60,834,660 99.92 63,109,343 99.93

Bouquet 37,215,574 100.00 55,964,373 100.00 60,844,795 99.94 63,119,807 99.94

tw ≤ 2 37,216,152 100.00 55,965,145 100.00 60,881,510 100.00 63,156,535 100.00

tw ≤ 3 37,216,153 100.00 55,965,146 100.00 60,881,511 100.00 63,156,536 100.00

Total 37,216,153 100.00 55,965,146 100.00 60,881,511 100.00 63,156,536 100.00

in their graph). More precisely, for the four fragments CQ,
CQF, CQOF, and CQOFV, we have that, respectively, 90.44%
(88.37%), 86.75% (84.07%), 84.46 (81.23%), and 83.21%
(78.36%) of the queries that are suitable for graph anal-
ysis have no more edges when considering the restriction
of their canonical graphs to variables only. This is a huge
change, since such shapes only constituted 0.00%–0.06% of
the shapes of queries with constants in Table 5.

As a final remark, we can notice that the shift from shapes
with constants to shapes with only variables is significantly
affecting the “no edge” fragment and has less impact on the
other shapes. For the “no edge” fragment, many queries boil
down to a set of isolated nodes or to a singleton when con-
stants are removed.We could not observe in both Tables huge
differences between the Valid and Unique query logs that
rather resemble each other in terms of relative percentages
of shapes.

Fig. 6 An example of a flower query found in our DBpedia query logs
(we added arrows to indicate the edge directions in the query; labels are
omitted)

123

Author's personal copy

A. Bonifati et al.

?subject nationality?subject birthPlace ?subject genre

?object genre?object birthPlace ?object nationality

Fig. 7 The DBpedia query exhibiting treewidth equal to 3

6.2 Treewidth and hypertreewidth

It is well-known that the treewidth or hypertreewidth of
queries is important indicator to gauge the complexity of
their evaluation. We therefore investigated the treewidth and
hypertreewidth of CQ, CQF CQOF, and CQOFV queries. We
do not formally define treewidth or hypertreewidth in this
paper but instead refer to an excellent introduction [19]. In the
terminology of Gottlob et al., we investigate the treewidth of
the graphs of the queries and the generalized hypertreewidth
of the canonical hypergraphs of queries.

Treewidth All shapes we discussed in Sect. 6.1 have
treewidth at most two. Forests (and all subclasses thereof)
have treewidth one, whereas flowers and bouquets have
treewidth two. We investigated the remaining queries using
the tool21 JDrasil [7] and discovered that three queries had
treewidth three (one such query is in Fig. 7) and all others had
treewidth two, see Table 5. This new tool lets us compute the
treewidth of the queries in our corpus, whereas in the confer-
ence version of the paper we used detkdecomp, which out-
puts the generalized hypertreewidth. The latter can be lower
than the treewidth; thus, the results reported here exhibitmore
precision. From the treewidth perspective, it is interesting to
note that many queries of treewidth two are also flowers or
bouquets (Definition 8), which are a very restricted fragment.

Hypertreewidth Werecall thatwe only considered the graph
of queries forwhich variables in the predicate position are not
re-used elsewhere (if theyoccur at all). InCQOFV, 58,782,592
(17,333,741) queries used a variable in a predicate condition
or a filter or values condition of arity more than two, and we
therefore considered their hypergraph structure, without con-
stants, to assess the cyclicity of these queries.We determined
their generalized hypertreewidthwith the tooldetkdecomp
from the Hypertree Decompositions home page [17]. Fur-
thermore, we measure the cyclicity of the hypergraphs
without constants, as it is usually done in the literature.

Our results are summarized in Table 7, which contains the
hypertreewidth of queries fromCQ, CQF, CQOF, and CQOFV
that were not yet analyzed in Sect. 6.1. Concerning CQs, all
the remaining queries had hypertreewidth one, except for 68

21 Available on https://maxbannach.github.io/Jdrasil/.

(56) queries with hypertreewidth two and eight queries with
hypertreewidth three. In the largest fragment, CQOFV, we
have 542,409 (242,941) such queries with hypertreewidth
two and nine with hypertreewidth three. So, especially in the
fragment CQOFV, we see a significant portion of the queries
that exhibits cyclicity, i.e., 8.03% of the unique queries. This
means that considering Values constructs indeed can have an
impact on the cyclicity of queries.

We also looked at the number of nodes in the hypertree
decompositions that the tool gave us, since this number can
be a guide for how well caching can be exploited for query
evaluation [33]. (The higher the number, the better caching
can be exploited.) For the queries with hypertreewidth one,
the number of nodes in the decompositions corresponds to
their number of edges, which can already be seen in Fig. 5.
(Nevertheless, we found several hundred queries in CQOFV
queries with 100 or more nodes in their hypertree decom-
positions, the vast majority occurring in the DBpedia logs.)
Finally, out of the querieswith hypertreewidth two, 598 (465)
had decompositions of size more than 10, going up to a max-
imum of 16. The CQOFV queries of hypertreewidth three all
had decompositions of size smaller than 10, except for one
query in DBpedia17which had a decomposition of size 33.

7 Analysis of the shapes

In this section, we provide a deeper characterization of the
query shapes found in our large corpus, by presenting various
measures of these shapes. We first focus on chain-, tree-, and
star-shaped queries, which are the most recurrent shapes in
our logs, and we identify some measures for the ensemble
of these shapes or separately for each class. At the end of
the section, we also provide more insights about the cyclic
queries found in our logs.

An immediate measure of the span of a query shape is
the size of the longest (undirected) path in the query. Such a
measure is readily applicable to chain-, star- and tree-shaped
queries. The size of the longest path for a tree-shaped query
is the length of the longest path from one leaf to another leaf.
For instance, if we consider the tree-shaped query in Fig. 8,
we observe that its longest path has length 7 (highlighted
in bold). The same applies to star-shaped queries where the
longest path is the path from one vertex to another traversing
the central node of the star, whereas the longest path in a
chain is the length of the chain itself.

Table 8 reports the lengths of the longest paths in chain-
, tree-, and star-shaped queries in our logs. We can notice
that the longest paths in chain and star queries are majorly
small (significant percentages go up to size of the longest path
equal to 3 for chain queries and to 4 for star queries, respec-
tively), whereas trees are somehow different. Their nonzero
percentages characterize lengths of longest paths up to 6 for

123

Author's personal copy

https://maxbannach.github.io/Jdrasil/

An analytical study of large SPARQL query logs

Table 7 Hypertreewidth (htw) of the queries that asre not analyzed in Sect. 6.1, i.e., queries that use filter or values conditions of arity three or
more, or that re-use some variable in the predicate position elsewhere

AbsoluteV RelativeV % AbsoluteU RelativeU % AbsoluteV RelativeV % AbsoluteU RelativeU %

CQ CQF

htw = 1 4,137,042 100.00 2,338,797 100.00 5,162,377 95.42 2,557,651 99.17

htw = 2 68 0.00 56 0.00 248,050 4.58 21,410 0.83

htw = 3 8 0.00 8 0.00 8 0.00 8 0.00

Total new 4,137,118 100.00 2,338,861 100.00 5,410,435 100.00 2,579,069 100.00

CQOF CQOFV

htw = 1 26,680,385 99.07 2,743,833 99.22 26,725,649 98.01 2,780,838 91.97

htw = 2 249,126 0.93 21,678 0.78 542,409 1.99 242,941 8.03

htw = 3 8 0.00 8 0.00 9 0.00 9 0.00

Total new 26,929,519 100.00 2,765,519 100.00 27,268,067 100.00 3,023,788 100.00

Fig. 8 A tree-shaped query with longest path of length 7 (in bold) and
maximal degree of nodes equal to 4 (for the gray node)

tree-shaped queries. In all shapes, we could find some exam-
ples of queries with quite long paths (from length 10 to 23)
and these are comparably higher in chains and stars than in
tree-shaped queries.

We then proceeded with the analysis of the shapes by
focusing on the nodes with the maximal degree of nodes in
star- and tree-shaped queries. In our example of a tree-shaped
query in Fig. 8, we can easily see that the maximal degree of
nodes is equal to 4.Obviously, thismeasure is not informative
for chain queries,which are completely characterized by their
length (and whose vertices have a maximal degree of two).
Table 9 shows the results for star- and tree-shaped queries.
The higher percentages of star queries have maximal degree
of their vertices equal to 3, whereas for tree-shaped queries,
the majority has maximal degree equal to 3 or 5. The highest
values ofmaximal degrees can be observed in starsmore than
in tree-shaped queries.

We then focused on tree-shaped queries and computed
the number of nodes we found with high degrees. This mea-
sure is only applicable to tree-shaped queries and neither to
stars (that always have one node with highest degree) nor
to chains. The results are shown in Table 10, where we can
notice 49.09% (43.32%) of the tree-shaped queries have 5
high-degree vertices. We also found one query with 11 high-
degree vertices.

We did not dig further into the actual values of the degrees
for these high-degree nodes, even though a combined view
of Tables 8 and 9 provides a quick grasp on that.

Further investigating the tree shapes, we computed in
Table 11 the average degrees of inner nodes in these shapes
(again not applicable to chains and stars). We can observe
that the majority of inner nodes degrees stay in between 2
and 4 on average.

Finally, we looked at the class of cyclic queries and mea-
sured the maximal and minimal cycle lengths of the cycles.
The cycle computation considered again the queries as undi-
rected graphs and aimed at constructing the cycle basis for
such graphs. A cycle basis is formed from any spanning tree
or spanning forest of the given graph, by selecting the cycles
obtained by combining a path in the tree with a single edge
outside the tree. In order to keep the computation of cycle
basis polynomial, we set up an empirical bound (equal to 8)
to the number of cycles that form the cycle basis. We thus
counted the minimal and maximal cycle length of the dis-
covered cycle basis of each query. Tables 12 and 13 report
the results of this analysis for CQOFV queries.

We also computed the property of free-connex acyclicity
for CQ, CQF, CQOF, and CQOFV. A conjunctive query is
free-connex acyclic if it is acyclic and the set of its free vari-
ables22 is a connex subset of the join tree of the query [6].
The join tree of a query corresponds to the tree structure of
the acyclic hypergraph underlying the query. Free-connex
acyclicity is interesting because it characterizes the conjunc-
tive queries for which certain kinds of efficient algorithms
exist for enumerating their output [6,31] (under standard
complexity-theoretical assumptions). Table 14 shows the
results by comparing the number of all conjunctive queries
(including those that are not suitable for graph analysis and
thus are not considered in Table 5) and the number of free-
connex acyclic queries found in our logs. We can notice that
the latter are abundant in all the fragments CQ, CQF, CQOF,
andCQOFV. For a cross-comparison,we also show the hyper-

22 The free or distinguished variables of a query considered as a first-
order propositional formula are the set of variables used as output in the
formula.

123

Author's personal copy

A. Bonifati et al.

Table 8 Analysis of longest
paths in chain, star, and tree
queries (Valid and Unique
queries)

Longest path length #V chain Relative % #V star Relative % #V tree Relative %

1 142,644,649 87.34

2 16,185,787 9.91 7,884,906 92.42

3 3,880,284 2.38 376,217 4.41 59,537 8.00

4 601,580 0.37 264,287 3.10 284,953 38.29

5 1,970 0.00 6,408 0.08 14,167 1.90

6 2,132 0.00 136 0.00 385,110 51.75

7 1,011 0.00 10 0.00 436 0.06

8 1,015 0.00 8 0.00 2 0.00

9 4 0.00 7 0.00 0 0.00

10–23 8 0.00 11 0.00 2 0.00

Total 163,318,440 100.00 8,531,990 100.00 744,207 100.00

Longest path length #U chain Relative % #U star Relative % #U tree Relative %

1 49,039,098 84.01

2 6,853,199 11.74 3,833,545 91.21

3 2,400,853 4.11 212,739 5.06 17,213 15.56

4 76,828 0.13 155,883 3.71 31,779 28.73

5 1,333 0.00 901 0.02 12,752 11.53

6 1,468 0.00 50 0.00 48,792 44.11

7 1,009 0.00 8 0.00 79 0.07

8 1,011 0.00 8 0.00 2 0.00

9 3 0.00 6 0.00 0 0.00

10–23 7 0.00 7 0.00 2 0.00

Total 58,374,809 100.00 4,203,147 100.00 110,619 100.00

Table 9 Maximal degree of nodes in star and tree queries (Valid and Unique)

Max degree #V star Relative % #U star Relative % #V tree Relative % #U tree Relative %

3 5,791,971 67.89 3,173,041 75.49 401,873 54.00 73,125 66.11

4 1,183,578 13.87 406,272 9.67 26,154 3.51 2,640 2.39

5 350,676 4.11 191,479 4.56 279,092 37.50 30,844 27.88

6 710,511 8.33 228,573 5.44 31,258 4.20 3,305 2.99

7 223,651 2.62 68,179 1.62 5,367 0.72 589 0.53

8 78,890 0.92 55,056 1.31 375 0.05 51 0.05

9 38,711 0.45 25,152 0.60 47 0.01 36 0.03

10–19 147,266 1.73 53,067 1.26 39 0.01 27 0.02

20–29 2,758 0.03 2,077 0.05 2 0.00 2 0.00

30–39 230 0.00 192 0.00

40–49 64 0.00 51 0.00

50–59 6 0.00 6 0.00

60–63 3,678 0.04 2 0.00

Total 8,531,990 100.00 4,203,147 100.00 744,207 100.00 110,619 100.00

treewidth of all the conjunctive queries in our logs (and not
only those reported in Table 5). We can observe that all the
CQs in our logs have htw less or equal to 3.

8 Tree pattern queries

Tree pattern queries (e.g., [15,16,35,42]) are a well-studied
query formalism on trees which is inspired on XPath but
which can just as well be used for querying graph-structured

123

Author's personal copy

An analytical study of large SPARQL query logs

Table 10 Number of high-degree nodes (#HD) in tree-shaped queries
(Valid and Unique)

#HD #V tree Relative % #U tree Relative %

2 59,537 8.00 17,213 15.56

3 281,184 37.78 31,197 28.20

4 14,348 1.93 12,877 11.64

5 365,318 49.09 47,920 43.32

6 23,811 3.20 1,405 1.27

7 7 0.00 5 0.00

9 1 0.00 1 0.00

11 1 0.00 1 0.00

Total 744,207 100.00 110,619 100.00

Table 11 Average degree of inner nodes (AvgDeg) in tree-shaped
queries (Valid and Unique)

AvgDeg #V tree Relative % #U tree Relative %

2–2.9 400,426 53.81 61,955 56.01

3–3.9 308,649 41.47 44,358 40.10

4–4.9 34,514 4.64 4,027 3.64

5–5.9 346 0.05 160 0.14

6–6.9 103 0.01 52 0.05

7–7.9 157 0.02 58 0.05

8–8.9 12 0.00 9 0.01

Total 744,207 100.00 110,619 100.00

Table 12 Maximal cycle length in cyclic queries

MaxCyc # Valid # Unique

3 1,455,724 328,118

4 51,308 23,946

5 25,062 5,865

6 3,243 79

7 7 7

8 1 1

10 1 1

Total 1,535,346 358,017

data [15,38]. We next define a tree-pattern-like fragment of
our queries and investigate how common it appears in the
logs.

Property paths have the power to do forward and back-
ward navigation through edges. For instance, if a is an IRI,
then the property path â allows to follow an a-edge in the
graph in backward direction. In the following definition, we
only allow forward navigation.A directed tree is a connected,
directedgraph such that there is a uniquenodewithout incom-
ing edges (the root) and, for all edges (u, v) and (u′, v), we
have that u = u′. (Every node has at most one parent.)

Table 13 Minimal cycle length in cyclic queries

MinCyc # Valid # Unique

3 1,456,037 328,347

4 51,023 23,739

5 25,048 5,853

6 3,230 70

7 7 7

10 1 1

Total 1,535,346 358,017

Definition 9 A conjunctive regular path query (CRPQ) is a
SPARQL pattern that only uses triple patterns, the operator
And, and property paths.

The directed canonical graph of a CRPQ P is the directed
graph obtained from the edges E ∪ Ep, where E = {(x, y) |
(x, �, y) is a triple pattern in P and � ∈ I ∪ V} and Ep =
{(x, y) | (x, pp, y) is a property path pattern in P}.
Definition 10 A CRPQ P is a tree pattern query if

– its directed canonical graph is a directed tree and
– every property path is a concatenation of IRIs and prop-
erty paths of the form a∗, where a is an IRI.

Our analysis shows that 99.77% (99.91%) of the CRPQs
have a canonical graph that is an undirected tree.Out of these,
87.92% (84.96%) are tree pattern queries. This is a fairly
significant number, considering that we require the shape to
be a directed tree. If we additionally allow the Filter operator
(in a similar way as in Sect. 6), these percentages remain
roughly the same.

9 Property paths

We found 1,412,762 (329,984) queries using property paths
in our corpus. From these queries, we extracted 1,528,701
(404,721) property paths in total, which is about 67% more
than the 247,404 unique property paths considered in [11].
Although property paths are therefore rare in relation to the
entire corpus, this is not so for every data set: 92 queries
(29.87%) in Wikidata17 have property paths.23

A large fraction of these property paths are extremely
simple. For instance, 65,693 (63,428) property paths are
!a (“follow an edge not labeled a”) and 80,421 (58,156)
are â (“follow an a-edge in reverse direction”). In total,
65,751 (63,478) queries use the different-from operator “!”
23 Even though our set of Wikidata queries is very small, Malyshev et
al. [39] recently found a similar percentage of property path usage in
Wikidata logs consisting of ∼ 480M valid queries.

123

Author's personal copy

A. Bonifati et al.

Table 14 Free-connex acyclicity (FCA) and htw of all the CQs in our logs

AbsoluteV RelativeV % AbsoluteU RelativeU % AbsoluteV RelativeV % AbsoluteU RelativeU %

CQ CQF

FCA 117,669,790 96.14 36,786,611 93.00 152,870,355 93.98 53,393,254 91.19

htw ≤ 1 118,245,559 96.61 37,212,024 94.08 157,167,354 96.63 55,954,365 95.56

htw ≤ 2 122,391,781 100.00 39,555,004 100,00 162,654,843 100.00 58,554,583 100.00

htw ≤ 3 122,391,794 100.00 39,555,014 100.00 162,654,856 100.00 58,554,593 100.00

Total 122,391,794 100.00 39,555,014 100.00 162,654,856 100.00 58,554,593 100.00

CQOF CQOFV

FCA 160,545,014 80.02 55,059,069 84.89 163,203,235 58.15 57,331,127 73.42

htw ≤ 1 170,732,618 85,09 55,954,365 86.27 173,407,077 61.78 63,109,343 80.82

htw ≤ 2 200,641,878 100.00 64,857,879 100.00 280,672,718 100.00 78,088,783 100.00

htw ≤ 3 200,641,891 100.00 64,857,889 100.00 280,672,732 100.00 78,088,794 100.00

Total 200,641,891 100.00 64,857,889 100.00 280,672,732 100.00 78,088,794 100.00

and 394,726 (144,569) use the reverse navigation operator
“ˆ”.

In Table 15, we present an overview of all the property
paths we found in the corpus. For readability, we do not
explicitly denote the concatenation operator “/”, so we write
ab instead of a/b. In our classification, we treat â and !a
the same as a literal. For instance, we classify ab, (̂ a)b, and
(!a)b all as a1 · · · ak with k = 2. We use capital letters to
denote subexpressions that can match a set of different IRIs.
For example, (a|b) can match a and b, i.e., a set of two
symbols. In the column Set Sizes, we wrote these sizes of
sets we found. If the expression uses the !-operator, it can
actually be matched by an infinite number of IRIs and can be
seen as awildcard test. (Some users evenwrite the expression
(!a|!b) to obtain a wildcard that can match any IRI.) If we
found expressions that use the !-operator, we annotate this
with (wc) in the Set Sizes column.

Furthermore, each row represents the expression type
listed on the left plus its symmetric form. For instance, when
we write a∗b, we count the expressions of the form a∗b and
ba∗. The variant listed in the table is the one that occurred
most often in the data. That is, a∗b occurred more often than
ba∗.

In the new corpus, we could enumerate a total of 111
different property paths, regrouped into 35 classes. This cor-
responds to an increase of roughly one-third in the number
of different property paths and classes (respectively, equal
to 87 and 22 in the conference version of this paper [11].)
The occurrences of classes already found in [11] are roughly
preserved in the new corpus if we focus on Unique queries.
However, the new analysis presented here includes the per-
centages of occurrences in the logs of Valid queries, which is
interesting by itself. For instance, the transitive closure of a
single label a+ is quite prominent in the Valid queries (more

than 40% compared to 2% in the logs of Unique queries in
the previous corpus).

Bagan et al. [5] proved a dichotomy on the data com-
plexity of evaluating property paths under a simple path
semantics, i.e., expressions can only be matched on paths
in the RDF graph in which nodes appear only once. They
showed that although evaluating property paths under this
semantics is NP-complete in general, it is possible in Ptime
if the expressions belong to a class calledCtract. Remarkably,
we only found eight expressions in our corpus which are not
in Ctract, namely (ab)∗ (once) and ab(ab)∗ (seven times).
The complexity of enumerating answers to property paths
of the form as in Table 15 is studied in [41]. More precisely,
the paper investigates enumeration problems for simple tran-
sitive expressions, which capture 99.03% (99.74%) of the
expressions in Table 15.

10 Evolution of queries over time

In a typical usage scenario of a SPARQL endpoint, a user
queries the data and gradually refines her query until the
desired result is obtained. In this section, we analyze towhich
extent such behavior occurs. The results are very preliminary
but show that in certain contexts, it can be interesting to
investigate optimization techniques for sequences of similar
queries.

We consider a query log to be an ordered list of queries
q1, . . . , qn . We introduce the notion of a streak, which intu-
itively captures a sequence of similar queries within close
distance of each other. To this end we assume the existence
of a similarity test between two queries. We then say that
queries qi and q j with i < j match if (1) qi and q j are
similar and (2) no query qi ′ with i < i ′ < j is similar to
qi . A streak (with window size w) is a sequence of queries

123

Author's personal copy

An analytical study of large SPARQL query logs

Table 15 Structure of property paths in our corpus. Capital letters denote unions of symbols or wildcards

Expression Type AbsoluteV RelativeV % AbsoluteU RelativeU % Set sizes Values for k

a+ 618,459 40.46 5,968 1.47

A∗ 361,402 23.64 89,379 22.08 ≤ 4 (wc)

a∗ 160,628 10.51 68,681 16.97

a∗b 23,523 1.54 20,566 5.08

a∗b∗ 14,674 0.96 997 0.25

A∗B? 7,252 0.47 1,326 0.33 ≤ 5

abc∗ 70 0.00 54 0.01

(ab∗)|c 45 0.00 15 0.00

a∗b? 45 0.00 15 0.00

A+ 19 0.00 18 0.00 ≤ 7 (wc)

ab(ab)∗ 7 0.00 7 0.00

a+|b+ 3 0.00 3 0.00

Ab∗ 2 0.00 1 0.00 ≤ 1 (wc)

aB∗ 2 0.00 2 0.00 ≤ 2 (wc)

a|b∗ 2 0.00 2 0.00

a|b+ 2 0.00 2 0.00

A+B? 1 0.00 1 0.00 ≤ 5

A∗B 1 0.00 1 0.00 ≤ 5

A∗bc 1 0.00 1 0.00 = 5

a?b∗ 1 0.00 1 0.00

(ab)∗ 1 0.00 1 0.00

A 139,662 9.14 129,515 32.00 ≤ 6 (wc)

a1 · · · ak 109,166 7.14 25,431 6.28 ≤ 6

â 80,421 5.26 58,156 14.37

a? 9,864 0.65 3,347 0.83

a1? · · · ak? 2,704 0.18 971 0.24 ≤ 5

a1? · · · ak−1?ak 664 0.04 197 0.05 ≤ 3

aB? 40 0.00 34 0.01 ≤ 2

ab?c?d 12 0.00 10 0.00

Ab 8 0.00 6 0.00 ≤ 2

AB 7 0.00 4 0.00 ≤ 2

a|ba|c|d 6 0.00 2 0.00

A? 4 0.00 4 0.00 ≤ 2 (wc)

abc?d? 2 0.00 2 0.00

AAAAAA 1 0.00 1 0.00 = 2

Total 1,528,701 100 404,721 100

qi1 , . . . , qik such that for each � = 1, . . . , k−1, we have that
i�+1 − i� ≤ w and qi�+1 matches qi� .

In theory, it is possible for a query to belong to multiple
streaks. For example, it is possible that q1 and q2 do not
match, but query q3 is sufficiently similar to both. In this
case, q3 belongs to both streaks q1, q3 and q2, q3.

In the present study, we used Levenshtein distance as
a similarity test. More precisely, we said that two queries
are similar if their Levenshtein distance, after removal of

namespace prefixes, is at most 25%.24 We removed names-
pace prefixes prior to measuring their Levenshtein distance,
because they introduce superficial similarity. As such, we
require queries to be at least 75% identical starting from the
first occurrence of the keywords Select, Ask, Construct, or
Describe. We took a window size of 30.

24 We normalized the measure by dividing the Levenshtein distance by
the length of the longer string.

123

Author's personal copy

A. Bonifati et al.

Table 16 Length of streaks in three single-day logs

Streak length #DBP’14 #DBP’15 #DBP’16

1–10 42,272 167,292 199,375

11–20 3,732 24,001 37,402

21–30 2,425 4,813 17,749

31–40 884 667 5,849

41–50 283 162 1,998

51–60 88 40 711

61–70 27 8 322

71–80 15 4 129

81–90 5 1 47

91–100 5 0 27

>100 4 0 24

Streak length Since the discovery of streaks was extremely
resource-consuming, we only analyzed streaks in three ran-
domly selected log files from DBpedia14, DBpedia15,
and DBpedia16. The sizes of these log files, each reflect-
ing a single day of queries to the endpoint, were 273MiB,
803MiB, and 1004MiB, respectively.

For the ordering of the queries, we simply considered the
ordering in the log files, since the logs are sorted over time.

The results on streak length are in Table 16. Using win-
dow size 30, the longest streak we found had length 169 and
was in the 2016 log file.Whenwe increased the window size,
we noticed that it was still possible to obtain longer streaks.
We believe that a more refined analysis on the encountered
streaks can be carried out when tuning the window size
and deriving more complex metrics on the similarity of the
querieswithin each streak. These issues are, however, subject
of further research, which we plan to pursue in future work.

Evolution of size and structure In addition to the length
of streaks, we also investigated how the number of triples
and structure of queries in streaks change over time. To this
end, we needed to parse the queries in streaks. The three log
files contain a combined amount of 510,361 streaks. Out of
these streaks, 321,042 have at least two queries and 234,627
additionally have at least one query that parses. Remarkably,
in the latter set, only 1,402 streaks have an erroneous query.
Here, 1,202 have an erroneous query followed by a correct
one, and 789 have a correct query followed by an erroneous
one.

We then investigated the number of triples of queries in
streaks. We have 355,466 streaks which have at least one
parsable query that contains at least one triple.25 Table 17
contains, for each of the 355,466 streaks, what is themaximal

25 For 88,201 streaks, all queries had an empty body.Another 31 streaks
had a non-empty body, containing no triples.

Table 17 Largest query occurring in streaks

Max Max

#Triples #Streaks #Triples #Streaks

1 130,706 13–20 9,509

2 41,811 21–30 544

3 34,081 31–40 233

4 9,990 41–50 86

5 3,325 51–60 44

6 1,733 61–70 32

7 8,465 71–80 17

8 10,604 81–90 11

9 7,837 91–100 3

10 1,080 101–110 9

11 51,521 > 110 7

12 43,819

Table 18 Structures of queries appearing in the same streak (chn =
chain, bt = ’branching tree’, i.e., tree that is not a chain, cyc = cyclic)

Shapes #Streaks

Containing chn 148,632

Consisting only of chn 147,106

Containing bt 39,839

Consisting only of bt 39,810

Containing cyc 526

Consisting only of cyc 493

Containing bt and cyc 12

Consisting only of bt or cyc 40,315

Containing bt and chn 2

Consisting only of bt or chn 186,918

Containing chn and cyc 21

Consisting only of chn or cyc 147,620

Consisting only of chn, bt, or cyc 187,444

number of triples in any of its queries. We noticed that this
number is quite stable: We only have 3,915 streaks in which
this number changes during the streak.

Table 18 contains results on the shapes of queries in
streaks. We considered chain queries, trees that branch (and
therefore are no chains), and cyclic queries, that is, queries
that contain a cycle. Table 18 contains, for each subset S of
these three shapes, the number of streaks that contain only
shapes from S and the number of streaks that consist only of
shapes from S.

Interestingly,we found a correlation between streak length
and query shape and size. For instance, out of the 526 streaks
that contain a cyclic query, 472 (89.73%)only consist of a sin-
gle query. This strongly contrasts the entire log, where only
189,319 streaks (37.10%) consist of a single query. Simi-

123

Author's personal copy

An analytical study of large SPARQL query logs

larly, we have 1,378 streaks that contain a query of at least
16 triples, but 1,332 of these streaks (96.66%) only have a
single query. This suggests that highly complex queries are
less likely to occur in longer streaks. We stress again that the
datasets used for this study only consisted of DPpedia query
logs for three days, which is a very small sample. We leave
the evaluation on the total corpus for future work.

11 Conclusions and discussion

We have conducted an extensive analytical study on a large
corpus of real SPARQL query logs. Our corpus is inherently
heterogeneous and consists of a majority of DBpedia query
logs along with query logs on biological datasets (namely
BioPortal and BioMed datasets), geological datasets (LGD),
bibliographic data (SWDF), and query logs from amuseum’s
SPARQL endpoint (British Museum). We have completed
this corpus with the example queries from Wikidata (Feb.
2017), which are cherry-picked from real SPARQL queries
on this data source. Compared to the conference version of
this paper, we have augmented the corpus with 169M queries
from DBpedia, which lets us almost double the size of the
corpus and also corroborate or deflect some of the insights
gained before on the old logs. Furthermore, novel non-trivial
analyses have been run as also recapitulated in this conclud-
ing section.

A note on query logs and interpretation of results When
onewants to draw conclusions from our analyses, one always
needs to keep inmindwhat kind of data we analyzed, in order
to put the conclusions in the right perspective. In this paper,
we mainly analyzed query logs from SPARQL endpoints. We
believe that this means that simple queries may be overrep-
resented. For instance, some users may decide to download a
local copy of the database to their own server and process the
complex queries locally, e.g., to avoid time-out issues with
the public SPARQL endpoint.

Another point to keep in mind is that we believe that it
is difficult to conclude from such a log analysis that certain
types of queries are not interesting. Again, this is due to the
open-world nature of the logs. There can be very interesting
types of queries that some users are highly interested in, but
that are absent from the logs.

What one can discover in our analysis is classes of queries,
or aspects (such as sequences of queries) that are interesting
for future research. After all, the queries we studied here
are indeed precisely the ones that have been submitted to
SPARQL endpoints, which makes them interesting.

Considerations about the datasets The majority of the
datasets exhibit similar characteristics, such as the simplic-
ity of queries amounting to 1 or 2 triples. The only exception

occurs with British Museum and Wikidata datasets (Fig. 1),
where the former is a set of queries generated from fixed tem-
plates and the latter is a query wiki rather than a query log.
Clearly, the DBpedia datasets are the most voluminous and
recent in our corpus, thus making their results quite signifi-
cant. For instance, despite the fact that single triple queries
are numerous in these datasets, more complex queries (with
11 triples or more) have lots of occurrences (up to 21%
of the total number of queries for DBpedia13). Strikingly,
the largest queries of all belong to DBpedia (especially the
last logs newly analyzed in this paper), which is one of the
outcome of the new comparison between Valid and Unique
queries, as carried out in this paper and could not be observed
before in [11], which only focused on Unique queries.

We observed that most of the analyzed queries across
all datasets are Select/Ask/Construct, which range between
94% and 100% for all datasets except DBpedia16, BioMed,
and SWDF, which have 88% or less. Therefore, we focused
on such queries in the remainder of the paper since these
queries turn out to be the queries that users most often formu-
late in SPARQL query endpoints. We have further examined
the occurrences of operator distributions and the number of
projections and subqueries. This analysis lets us address a
specific fragment, namely the And/Opt/Filter patterns (AOF
patterns). For such patterns, we derived the graph and hyper-
graph structures and analyzed the impact of the structure on
query evaluation.

Benefits of shape analysis We synthetically reproduced the
observed real chain and cycle query logs with a synthetic
generator by building diverse workloads of Ask queries and
measured their average runtime in two systems, Blazegraph,
used by the Wikimedia foundation, and PostgreSQL. In both
systems, the difference between average performances of
such different query shapes is perceivable. We decided to dig
deeper in the shape analysis in order to classify these queries
under general query shapes as canonical graphs and char-
acterize their tree-likeness as hypergraphs. We believe that
this shape analysis can serve the need of fostering the dis-
cussion on the design of new query languages for graph data
[10,25], as pursued, for instance, by the LDBC Graph Query
Language Task Force [24]. It can also inspire the concep-
tion of novel query optimization techniques suited for these
query shapes, along with tuning and benchmarking meth-
ods. For instance, we are not aware of existing benchmarks
targeting flowers and flower sets. The analysis on property
paths showed that these are not yet widely used in the entire
corpus, even though they are numerous in the Wikidata cor-
pus. A recent discussion (July 6th, 2017) in a Neo4J working
group [29] concerned the support of full-fledged regular path
queries in OpenCypher. This discussion, and other discus-
sions on standard graph query languages [10,24,25] could
benefit from our analysis, devoted to find which property

123

Author's personal copy

A. Bonifati et al.

Henry VIII

?Spouse1

?Spouse2

?Spouse3

?Spouse4

?Spouse5

?Spouse6

Fig. 9 TheHenryVIII query, a 7-clique containing one constant and six
variables. All edges between Henry VIII and the variables are labeled
“dbpedia-owl:spouse,” and all edges between variables are labeled with
the property path “!dbpedia-owl:sameAs”

paths are actually used most often when ordinary users have
the power of regular expressions. On both shape analysis
and property path analysis, the addition of the new DBpe-
dia17 logs provided us with both (1) confirmation of the
trends observed before on a restricted corpus [11]; (2) new
insights due to the injection of new logs. Concerning the
shape analysis, we introduced a new class (no edge) leading
to classify queries consisting of isolated nodes, such class
being inflated when constants are disregarded in the analy-
sis. Furthermore, the shapes of Valid queries studied for the
first time in this paper are comparably more complex than
the shapes of Unique queries. Precisely, we have observed
that Valid queries exhibit on average longer paths and higher
degree nodes compared to their Unique counterparts. For
the property paths, we could confirm the presence of classes
observed before with most occurrences but also introduce
entirely new classes due to the presence of more diversified
DBpedia query logs.

Benefits of streak analysis Finally, we performed a study on
the way users specify their queries in SPARQL query logs,
by identifying streaks of similar queries. This analysis is, for
instance, crucial to understand query specification from real
users and thus usability of databases, which is a hot research
topic in our community [32,45].

Extensibility Our analysis has been carried out with scripts
in different languages, amounting to a total of roughly 9, 000
source lines of code (SLOC). We plan to make these scripts
open source and extensible to the new query logs that will be
produced by users on SPARQL endpoints in the near future.

Future work A preliminary investigation on our data set
showed that a shape analysis that incorporates property paths
(and therefore considering extensions of CRPQs instead of
CQs) may reveal interesting results. For instance, we found
a 7-clique query (6-clique without constants) similar to the
one in Fig. 9. We also found this particular query interesting
because we believe that its semantics is probably different
from what the user intended. We believe that the user wanted
to search for (possibly all permutations of) six different
spouses of Henry VIII. However, “!dbpedia-owl:sameAs”
tests if there exists an edge between two nodes that is not
classified as dbpedia-owl:sameAs. We embarked on a study
for Wikidata query logs in [12].

Acknowledgements We would like to acknowledge USEWOD and
Patrick van Kleef together with the team of OpenLink Software for
hosting the official DBPedia endpoint and granting us the access to the
large DBpedia query logs analyzed in this paper. We thank Stijn Van-
summeren for his suggestion to investigate free-connex acyclicity of
queries.

References

1. Aberger, C.R., Tu, S., Olukotun, K., Ré, C.: EmptyHeaded: a rela-
tional engine for graph processing. In: International Conference on
Management of Data (SIGMOD), pp. 431–446 (2016)

2. Aberger, C.R., Tu, S., Olukotun, K., Ré, C.: Old techniques for new
join algorithms: a case study in RDF processing. In: International
Conference on Data Engineering (ICDE) Workshops, pp. 97–102
(2016)

3. Arias, M., Fernández, J.D., Martínez-Prieto, M.A., de la Fuente,
P.: An empirical study of real-world SPARQL queries. CoRR,
arXiv:1103.5043 (2011)

4. Bagan, G., Bonifati, A., Ciucanu, R., Fletcher, G.H.L., Lemay,
A., Advokaat, N.: gmark: Schema-driven generation of graphs and
queries. IEEE Trans. Knowl. Data Eng. 29(4), 856–869 (2017)

5. Bagan, G., Bonifati, A., Groz, B.: A trichotomy for regular simple
path queries on graphs. In: Principles ofDatabase Systems (PODS),
pp. 261–272 (2013)

6. Bagan, G., Durand, A., Grandjean, E.: On acyclic conjunctive
queries and constant delay enumeration. In: Computer Science
Logic (CSL), pp. 208–222 (2007)

7. Bannach, M., Berndt, S., Ehlers, T.: Jdrasil: a modular library for
computing tree decompositions. In: 16th International Symposium
on Experimental Algorithms (SEA), pp. 28:1–28:21 (2017)

8. Barceló, P., Pichler, R., Skritek, S.: Efficient evaluation and approx-
imation of well-designed pattern trees. In: Principles of Database
Systems (PODS), pp. 131–144 (2015)

9. Bielefeldt, A., Gonsior, J., Krötzsch, M.: Practical linked data
access via SPARQL: the case of wikidata. In: Workshop on Linked
Data (LDOW) (2018)

10. Bonifati, A., Fletcher, G.H.L., Voigts, H., Yakovets, N.: Query-
ing Graphs. Synthesis Lectures on Data Management. Morgan &
Claypool, San Rafael (2018)

11. Bonifati, A., Martens, W., Timm, T.: An analytical study of large
SPARQL query logs. PVLDB 11(2), 149–161 (2017)

12. Bonifati, A., Martens, W., Timm, T.: Navigating the maze of Wiki-
data query logs. In: The World Wide Web Conference (WWW),
pp. 127–138 (2019)

123

Author's personal copy

http://arxiv.org/abs/1103.5043

An analytical study of large SPARQL query logs

13. Chandra, A., Merlin, P.: Optimal implementation of conjunctive
queries in relational data bases. In: Symposium on the Theory of
Computing (STOC), pp. 77–90 (1977)

14. Chekuri, C., Rajaraman, A.: Conjunctive query containment revis-
ited. In: International Conference on Database Theory (ICDT), pp.
56–70 (1997)

15. Czerwiński, W., Martens, W., Niewerth, M., Parys, P.: Minimiza-
tion of tree patterns. J. ACM 65(4), 26:1–26:46 (2018)

16. Czerwiński, W., Martens, W., Parys, P., Przybylko, M.: The
(almost) complete guide to tree pattern containment. In:ACMSym-
posium on Principles of Database Systems (PODS), pp. 117–130
(2015)

17. detkdecomp. wwwinfo.deis.unical.it/~frank/Hypertrees. Vis-
ited on August 10th (2016)

18. Gottlob, G., Greco, G., Leone, N., Scarcello, F.: Hypertree decom-
positions: questions and answers. In: Principles of Database
Systems (PODS), pp. 57–74 (2016)

19. Gottlob, G., Greco, G., Scarcello, F.: Treewidth and hypertree
width. In: Tractability: Practical Approaches to Hard Problems,
pp. 3–38. Cambridge University Press (2014)

20. Gottlob, G., Leone, N., Scarcello, F.: Hypertree decompositions
and tractable queries. J. Comput. Syst. Sci. 64(3), 579–627 (2002)

21. Han, X., Feng, Z., Zhang, X., Wang, X., Rao, G., Jiang, S.: On the
statistical analysis of practical SPARQL queries. In: WebDB, p. 2
(2016)

22. Harris, S., Seaborne, A.: SPARQL 1.1 query language. Technical
report,WorldWideWebConsortium (W3C),March (2013). https://
www.w3.org/TR/2013/REC-sparql11-query-20130321

23. Huelss, J., Paulheim, H.: What SPARQL query logs tell and do
not tell about semantic relatedness in LOD—or: The unsuccessful
attempt to improve the browsing experience ofDBpedia by exploit-
ing query logs. In: ESWC Satellite Events, pp. 297–308 (2015)

24. http://ldbcouncil.org
25. https://databasetheory.org/node/47
26. http://wikidata.org
27. http://wiki.dbpedia.org/datasets
28. http://www.blazegraph.com
29. http://www.opencypher.org/ocig2
30. http://www.postgresql.org
31. Idris, M., Ugarte, M., Vansummeren, S.: The dynamic yannakakis

algorithm: compact and efficient query processing under updates.
In: International Conference on Management of Data (SIGMOD),
pp. 1259–1274 (2017)

32. Jagadish, H. V., Chapman, A., Elkiss, A., Jayapandian, M., Li, Y.,
Nandi, A., Yu, C.: Making database systems usable. In: Interna-
tional Conference on Management of Data (SIGMOD), pp. 13–24
(2007)

33. Kalinsky, O., Etsion, Y., Kimelfeld, B.: Flexible caching in trie
joins. In: International Conference on Extending Database Tech-
nology (EDBT), pp. 282–293 (2017)

34. Kaminski, M., Kostylev, E.V.: Beyond well-designed SPARQL.
In: International Conference on Database Theory (ICDT), pp. 5:1–
5:18 (2016)

35. Kimelfeld, B., Sagiv, Y.: Revisiting redundancy and minimization
in an XPath fragment. In: International Conference on Extending
Database Technology (EDBT), pp. 61–72 (2008)

36. Kröll, M., Pichler, R., Skritek, S.: On the complexity of enumer-
ating the answers to well-designed pattern trees. In: International
Conference on Database Theory (ICDT), pp. 22:1–22:18 (2016)

37. Letelier, A., Pérez, J., Pichler, R., Skritek, S.: Static analysis and
optimization of semantic web queries. ACM Trans. Database Syst.
38(4), 25:1–25:45 (2013)

38. Libkin, L., Martens, W., Vrgoc, D.: Querying graphs with data. J.
ACM 63(2), 14:1–14:53 (2016)

39. Malyshev, S., Krötzsch, M., González, L., Gonsior, J., Bielefeldt,
A.: Getting the most out of wikidata: Semantic technology usage
in wikipedia’s knowledge graph. In: International Semantic Web
Conference (ISWC), pp. 376–394 (2018)

40. Martens, W., Niehren, J.: On the minimization of XML schemas
and tree automata for unranked trees. J. Comput. Syst. Sci. 73(4),
550–583 (2007)

41. Martens, W., Trautner, T.: Enumeration problems for regular path
queries. CoRR, arXiv:1710.02317 (2017)

42. Miklau, G., Suciu, D.: Containment and equivalence for a fragment
of xpath. J. ACM 51(1), 2–45 (2004)

43. Möller,K.,Hausenblas,M.,Cyganiak,R.,Handschuh, S.,Grimnes,
G.: Learning from linked open data usage: Patterns & metrics. In:
Web Science Conference (WSC) (2010)

44. Morsey, M., Lehmann, J., Auer, S., Ngomo, A.N.: DBpedia
SPARQL benchmark—performance assessment with real queries
on real data. In: International Semantic Web Conference (ISWC),
pp. 454–469 (2011)

45. Nandi,A., Jagadish,H.V.:Guided interaction: rethinking the query-
result paradigm. PVLDB 4(12), 1466–1469 (2011)

46. Neumann, T., Weikum, G.: The RDF-3X engine for scalable man-
agement of RDF data. VLDB J. 19(1), 91–113 (2010)

47. Pérez, J., Arenas, M., Gutierrez, C.: Semantics and complexity of
SPARQL. ACM Trans. Database Syst. 34(3), 16:1–16:45 (2009)

48. Picalausa, F., Vansummeren, S.: What are real SPARQL queries
like? In: International Workshop on Semantic Web Information
Management (SWIM), pp. 1–7 (2011)

49. Saleem, M., Ali, I., Hogan, A., Mehmood, Q., Ngonga Ngomo,
A.-C.: LSQ: The linked SPARQL queries dataset. In: International
Semantic Web Conference (ISWC), pp. 261–269 (2015)

50. Vidal, M., Ruckhaus, E., Lampo, T., Martínez, A., Sierra, J.,
Polleres, A.: Efficiently joining group patterns in SPARQL queries.
In: Extended Semantic Web Conference (ESWC), pp. 228–242
(2010)

51. Vrandecic, D., Krötzsch, M.:Wikidata: a free collaborative knowl-
edgebase. Commun. ACM 57(10), 78–85 (2014)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

Author's personal copy

wwwinfo.deis.unical.it/~frank/Hypertrees
https://www.w3.org/TR/2013/REC-sparql11-query-20130321
https://www.w3.org/TR/2013/REC-sparql11-query-20130321
http://ldbcouncil.org
https://databasetheory.org/node/47
http://wikidata.org
http://wiki.dbpedia.org/datasets
http://www.blazegraph.com
http://www.opencypher.org/ocig2
http://www.postgresql.org
http://arxiv.org/abs/1710.02317

	An analytical study of large SPARQL query logs
	Abstract
	1 Introduction
	2 Datasets
	3 Preliminaries
	4 Shallow analysis
	4.1 Keywords
	4.2 Number of triples in queries
	4.3 Operator distribution
	4.4 Subqueries and projection

	5 Structural analysis
	5.1 Graph and hypergraph of a query
	5.2 Comparative evaluation of chain and cycle queries
	5.3 Classes of queries for (hyper)graphs
	5.4 (Weak) well-designedness and unions

	6 Shape classification
	6.1 Graph structure
	6.2 Treewidth and hypertreewidth

	7 Analysis of the shapes
	8 Tree pattern queries
	9 Property paths
	10 Evolution of queries over time
	11 Conclusions and discussion
	Acknowledgements
	References

