
Verification of Tree Updates for Optimization

Michael Benedikt�, Angela Bonifati�, Sergio Flesca�, and Avinash Vyas�

� Bell Laboratories,
� Icar CNR, Italy,

� D.E.I.S., University of Calabria

Abstract. With the rise of XML as a standard format for representing tree-
shaped data, new programming tools have emerged for specifying transforma-
tions to tree-like structures. A recent example along this line are the update lan-
guages of [17, 16, 9] which add tree update primitives on top of the declarative
query languages XPath and XQuery. These tree update languages use a “snap-
shot semantics”, in which all querying is performed first, after which a generated
sequence of concrete updates is performed in a fixed order determined by query
evaluation. In order to gain efficiency, one would prefer to perform updates as
soon as they are generated, before further querying. This motivates a specific
verification problem: given a tree update program, determine whether generated
updates can be performed before all querying is completed. We formalize this
notion, which we call “Binding Independence”. We give an algorithm to verify
that a tree update program is Binding Independent, and show how this analysis
can be used to produce optimized evaluation orderings that significantly reduce
processing time.

1 Introduction
The rise of XML as a common data format for storing structured documents and data
has spurred the development of new languages for manipulating tree-structured data,
such as XSLT [2] and XQuery [19]. In this work, we deal with a new class of languages
for specifying updates – programs that describe changes to an input tree. Specification
and processing of updates to tree-structured data is a critical data management task.
In the XML context, updates have long been implementable in node-at-a-time fashion
within navigational interfaces such as DOM, but languages for specifying bulk updates
are now emerging. Several language proposals based on extensions of the declarative
languages XPath and XQuery have been put forward in the literature [17, 16, 9, 8],
and the World Wide Web consortium is well underway in extending XQuery, the XML
standard query language, with the capability of expressing updates over XML data.
Since XML documents are basically trees, and since the update primitives of these
languages cannot violate the tree structure, we refer to these as tree update languages.
A sample declarative tree update program, in the syntax of [16] is shown below:

�� � ��� �� �� ������ 	
�����

����� ��������	������ ���� ����
�����
������ ���������

������������� is an XPath expression returning the set of openauction nodes in
the tree, hence the opening 	�
 loop binds the variable �� to every openauction node in
turn. In the body of the loop, the XPath expression $i������������� returns the subtree

underneath a ���� node lying below a ������� child of a node bound to variable �� at this
iteration of the loop. The expression $i�����
 returns all the bidder nodes below the
node bound to ��. Informally, example U1 states that below each ��

��� child of an
����������� node a copy of the subtree rooted at a certain ���� node is inserted, and
that each ����
 node lying below a ����������� element should be deleted. The effect
of this program over an instance, is shown in Figure 1(a) and (b).

Previous tree update language proposals differ in many details, but they agree on a
critical semantic issue regarding how program evaluation is to be ordered. The current
proposals generally center upon the snapshot semantics [16], which specifies the use of
two logical phases of processing: in the first all evaluation of query expressions is done,
yielding an ordered set of point updates. In the second phase the sequence of updates
is applied in the specified order. In the example above, a sequence consisting of a list
of insertions and deletions will be generated, based on the ordering of the results of
������������� and the other queries; this sequence will be applied in that order to the
tree.

The snapshot semantics has a number of attractive features; it is consistent with
the semantics of declarative relational update languages such as SQL, and it averts the
possibility of ill-formed reads arising at runtime. The main drawback is that the naive
implementation of it is very inefficient. In a straightforward implementation the inter-
mediate results must all be materialized before any writes are performed. To increase
performance, one would prefer a more pipelined chaining of reads to subsequent writes
– an interleaved semantics. Our approach to this problem is to maintain the use of the
snapshot semantics, but to verify that an interleaved implementation does not violate
the semantics of a given program. We concentrate on determining statically whether
updates generated from a program can be applied as soon as they are generated. We
denote this property Binding Independence, and our main contribution is an algorithm
for verifying it.

In example U1, our analysis detects that evaluation order of U1 can be rearranged
to perform updates as soon as they are generated: that is, U1 is Binding Independent.
Intuitively, this is because the ����
� and ������ operations in one iteration do not af-
fect the evaluation of expressions in subsequent iterations. More generally, we formal-
ize a notion of non-interference of an update with an expression. We show that non-
interference implies Binding Independence, and then present algorithms that decide
non-interference properties. In this paper, we concentrate on a subset of the language of
[16], but our techniques are applicable to other tree update language proposals that use
snapshot semantics.

Optimization based on specification-time verification is particularly attractive for
bulk updates in XML, given that they are often defined well in advance of their exe-
cution and are used to specify computing-intensive modifications to data that may take
minutes or even hours on current update processors. Thus the contributions of the pa-
per are: (i) a formalization of Binding Independence, a property of programs that is
critical to update optimization, (ii) the notion of non-interference of programs, and an
algorithm for reducing Binding Independence to a series of non-interference properties,
(iii) an algorithm for deciding non-interference and (iv) experiments investigating the
feasibility of the verification.

Related Work. Tree update languages are similar to tree transducers, whose verification
is studied in [1, 3]. These works are similar to ours in that they concern capturing the
iteration of one transducer with the single action of another transducer. However, the
expressiveness of the respective formalisms is incomparable: update languages work
on ordered trees with no bound on rank, while [1, 3] deal with fixed-ranked trees; the
iteration here is a bounded looping construct, while in [1, 3] it is a transitive closure. The
works differ also in the notion of “capturing” (equality up to isomorphism vs. language
containment) and the application (optimization vs. model checking). There has been
considerable work on static analysis of other tree query and transformation languages.
In the XML setting a good summary, focusing on the type-checking problem, can be
found in [15]. [11] presents a system for doing static analysis of XSLT. Because XQuery
and XSLT cannot perform destructive updates, their analysis is much different than
ours. Still, [11, 6] include techniques for performing conservative satisfiability tests on
trees that could be used in conjunction with our analysis.

The main technique in our analysis is transforming dynamic assertions into static
ones. This idea is certainly an ancient one in program analysis (e.g. [4]). Distinctive
features in our setting include the fact that a tree pattern query language, XPath, is part
of the programming formalism we analyze; also that the update operations stay within
the domain of trees, making both the reduction and the final static test simpler.

2 Trees, Queries, and Tree Update Languages
In this section, we review the basics of the data model and the fragment of the XPath
query language considered in this work.
Data Model. We deal here with node-labeled trees. Since we think of these as abstrac-
tions of XML documents, we refer to labels as tags, and generally use� (for document)
to range over trees. Each node has additionally a unique identity, referred to as its node
identifier or nodeId. Moreover, trees are ordered according to the document order for
nodes, which is the order returned by an in-order depth-first traversal of the tree. An
example of one of our trees is given in Figure 1(a).

date time increase

initial

text

ID23

date time increase

initial

text

ID21

current ID21

current

(a)

(......)
open_auction

open_auctions

site

open_auction

bidder
bidder

(b)
open_auctions

site

open_auction
open_auction

(......)

text

Fig. 1. An example XML tree, before (a) and after (b) the update U1.

XPath. A key component of update languages is the use of patterns or queries to iden-
tify nodes. Although our analysis could work for many tree pattern languages, for sim-
plicity we use a subset of the XPath language. XPath consists of expressions, each of
which defines a map from a node in a tree to an ordered set of output nodes from the

same tree, and filters, which define predicates on nodes in the tree. The ordering of the
output of our XPath expressions will always be via the depth-first traversal ordering of
the input tree, so we will not show it explicitly. In this paper, a top-level XPath expres-
sion is either a basic expression or a union �� � � � � � �� of basic expressions. Basic
expressions are built up from rules � � ���, � � ��, � � ���, � � ��, � � ���,
and � � �� �. Here A is any label and F is any filter (defined below). An expression
/A returns all the children labeled A of the input node, while //A returns all the A de-
scendants of an input node. The expression /* returns all children of a node, while //*
returns all descendants. � is the composition operator on binary relations and [F] is the
identity restricted to nodes satisfying filter F. A filter is either a basic expression E, [la-
bel=A] for A a tag, or a conjunction of filters. The filter E holds exactly when E returns
nonempty at a node, while the label comparison has the obvious meaning. Following
convention, we often omit the composition operator for brevity: e.g. writing /A/B rather
than ((/A)/(/B)) for the XPath query that returns all B children of A children of an input
node. We use XP to denote the XPath language above. As seen in the opening exam-
ple, our update programs deal with XPath expressions with variables in them. We use
XP��� to denote the language built up as above but with the additional rule � � � �,
where �� is a variable in �. We let XPv denote an XPath expression with variables.
Such expressions are evaluated relative to an assignment of a nodeId in a tree to each
variable, with the expression �� returning exactly the node associated with the nodeId
bound to �� under the assignment, or � if there is no such node. An expression with
variables in � will be denoted����. For a tree�, we let ������� be the evaluation of
� at the root of� in a context where �� is assigned ��.

Schemas and DTDs. Our algorithms can take into account constraints on the input
tree. Our most general notion of constraint will be a non-deterministic bottom-up tree
automaton on unranked trees. In accordance with XML terminology, we refer to an
automaton as a schema. Our implementation requires the schema to be given as a Doc-
ument Type Definition (DTD) from XML. A DTD enumerates a finite set of labels that
can be used, and for each label a regular expression over the label alphabet which con-
strains the children of a node with label. A DTD thus describes a very restricted kind
of regular language of unranked trees, where the state depends only on the label. The
examples in this paper are based on the XMark DTD [14], used for benchmarking XML
tools.

Templates. Finally, in order to present our core update language, we will need functions
that construct trees from XPv expressions. A template is a tree whose nodes are labeled
with literal tags or XPv expressions, with the latter appearing only at leaves. A template
� is evaluated relative to a tree� and an assignment 	 of variables to nodeIds in�. The
result of evaluation is ���
 	� � �, where � is the forest formed by replacing each
node in � that is an XP expression � with the sequence of trees resulting from the
evaluation of � relative to�
 	.

Tree Update Language. We present the syntax of the tree update language TUpdate we
use throughout the paper. This language is an abstraction of that presented in [16]. The
top-level update constructs we deal with are as follows:

Here XPathExpr and tExpr are XPv expressions, while cExpr is a template. In-
tuitively, tExpr computes the target location where the update is taking place, while

UpdateStatement ::= SimpleUpdate � ComplexUpdate

ComplexUpdate ::= ��� var �� XPathExpr ComplexUpdate� UpdateBlock

UpdateBlock ::= SimpleUpdate�

SimpleUpdate ::= (“�����” cExpr (“	����” � “������”) tExpr) � (“�����” cExpr “����” tExpr) �
(“������” tExpr) � (“����	��” tExpr “����” cExpr)

cExpr constructs a new tree which is to be inserted or replaced at the target of the
update.

We now review the semantics of tree update programs in the style of [17, 16]. The
semantics of all existing update proposals [17, 16, 9, 13] consists first of a description
of how individual updates apply, and secondly how query evaluation is used to generate
an ordered sequence of individual updates. Following this, our semantics will be via a
transition system, with two kinds of transitions, one for application of individual up-
dates and the other for reducing complex updates to simpler ones based on queries. We
will give both these transitions, and then discuss the order in which transitions fire.
Concrete Update API. Let � be a tree, � be a forest (ordered sequence of trees),
and a node identifier. A concrete update �, is one of the following operations: (i)
� � InsAft�
 �� or � � InsBef�
 ��: when applied to a tree � the operation returns
a new tree, such that, if � �, the trees in � are inserted immediately after (before) the
node with id in the parent node of , in the same order as in the forest � . If �� �,
the operation just returns � (we omit the similar requirement on the updates below);
(ii) � � InsInto�
 ��: when applied to �, the operation returns a new tree such that,
if � �, the trees in � are inserted after the last child of node ; (iii) � � Del��:
the operation returns a new tree obtained from� by removing the sub-tree rooted at ;
(iv) � � Replace�
 ��: the operation returns a new tree such that, if � �, the trees
in � replace the sub-tree rooted in the node (in the ordering given by �). In all cases
above, fresh nodeIds are generated for inserted nodes.
Single-step processing of programs. We now present the next main component of
update evaluation, the operator that reduces a single partially-evaluated update to a
sequence of simpler ones.

An expression binding for an update � is a mapping associating a set of tuples to
occurrences of XPath expressions in �. A tuple will be either a nodeId in the original
tree or a tree constructed from the original one (e.g., a copy of the subtree below a node).
A bound update is a pair �	
 �� where � is an UpdateStatement and 	 is an expression
binding for �. The update reduction operator ��� takes a bound update and produces a
sequence of bound updates and concrete updates. We refer to such a sequence as an
update sequence. We define ��� for a bound update � � �	
 �� as follows. If � � �	�

��� �� � ��
 	�, we form ��� by evaluating � to get nodes � � � � �, and return the
sequence whose ��� element is �	�
 �

�� , where 	� extends 	 by assigning ��� to �. If
� is an update block �� � � � ��, then ��� returns �	
 ��� � � � �	
 ���. If � is a simple update
with no bindings for the expressions in �, ��� is formed by first evaluating the template
in � (in case of
������ or ����
�) to get a forest, and evaluating the target expressions in
� to get one or more target node identifiers. We then proceed as follows: for an ����
�

or
������ if the target expression evaluated to more than one target node, ��� is the
empty sequence, otherwise ��� is �	�
 ���, where 	� extends 	 by binding the remaining
variables according to the evaluation just performed. For a ������, let nodeIds � � � � �
be the result of evaluation of the target expression. ��� is �	�
 �� � � � �	�
 ��, where 	�

extends 	 by assigning the target expression of the delete to �. Finally, if � � �	
 ��
is a bound update in which � is simple and every expression is already bound, then
��� is simply the concrete update formed by replacing the expressions in � with the
corresponding nodeId or forest given by the bindings.
Processing Order for Complex Updates. We are now ready to define the semantics of
programs, using two kinds of transitions acting on a program state, which consists of a
tree and an update sequence.

An evaluation step on a program state ��
 us � �� � � � ��� is a transition to ��
 us��
where the new update sequence us � is formed by picking a bound update � � �	
 ��
from the update sequence and replacing � by ��� in the sequence. If ps is the program
state before such an evaluation step and ps � is the result of the step, we write ps��

� ps�.
For example, the processing of the update � = ��� �� �� ���� ����� ���� ���� �� at
program state ps� � ��
 p� � ��
 ��� would begin with the step: ps� �

�
��

ps� where
ps

�
is: �, ���=(� $x:i� �, ����� ���� ���� ��); �� � �� $x:i� �, ����� ���� ���� ��� 	

and where the nodeIds ���
 ��	 are the result of evaluating ����. An application step
simply consumes a concrete update � from the update sequence and replaces the tree�
by the result of applying � to�. We write ps�	

 ps�

An evaluation sequence is any sequence of steps �� and �	 as above, leading
from the initial tree and update statement to some tree with empty update sequence. The
final tree is the output of the sequence. In general, different evaluation sequences may
produce distinct outputs. As mentioned in the introduction, all existing proposals use a
snapshot semantics which restricts to evaluation sequences such that (i) (snapshot rule)
all available evaluation transitions�� must be applied before any application step�	

is performed, and (ii) (ordering rule) the application steps�	 must then be applied in
exactly the order given in the update sequence - that is, we always perform� 	

� starting
at the initial concrete update in the update sequence. It is easy to see that this results in
a unique output for each update. We say ��
�� ���	� �� if ��
 ���
 ��	 rewrites to
���
 �� via a sequence of�� and�	 transitions, subject to the conditions above.

3 Optimized Evaluation and Verification
Naturally, an implementation of the snapshot semantics will differ from the conceptual
version above: e.g. multiple evaluation or concrete update steps can be folded into one,
and cursors over intermediate tables containing query results will be used, rather than
explicit construction of the update sequence. However, even a sophisticated implemen-
tation may be inefficient if it respects the snapshot rule (i) above. The snapshot rule
forces the evaluation of all embedded expressions to occur: this can be very expensive
in terms of space. Furthermore, it may be more efficient to apply ������ operations as
soon as they are generated, since these can dramatically reduce the processing time in
further evaluations.

The eager evaluation of an update � is the evaluation formed by dropping the snap-
shot rule and replacing it with the requirement (i’) that whenever the update sequence
has as initial element a concrete update �, we perform the application step� 	

�. It is easy
to see that (i’) also guarantees that there is at most one outcome of every evaluation. We
denote the corresponding rewriting relation by� �	�� .

We say that a program � is Binding Independent (BI) if any evaluation sequence
for � satisfying requirement the ordering rule (ii) produces the same output modulo

an isomorphism preserving any nodeIds from the input tree. Note that if two trees are
isomorphic in this sense, then no user query can distinguish between them. Clearly, if
an update is BI we can use��	�� instead of���	�. Similarly, we say that a program
� is BI with respect to a schema (automaton or DTD) if the above holds for all trees
� satisfying the schema. The example U1 is BI with respect to the XMark DTD (a fact
which our analysis verifies). A simple example of an update that is not BI is:

�� � ��� �� �� ������	
��������� $ � �� ������	
������
����� �� ���� ��

Indeed, the eager evaluation of U2 can increase the size of the tree exponentially,
since at each $i element we duplicate every openauction element in the tree. A simple
argument shows that snapshot evaluation can increase the size of the tree only polyno-
mially. Unfortunately, one cannot hope to decide whether an arbitrary TUpdate program
is BI. That is, we have:

Theorem 1. The problem of deciding whether a TUpdate program is Binding Indepen-
dent with respect to an automaton is undecidable.

The proof is by a reduction to solvability of diophantine equations, and is omitted
for space reasons. We thus turn to the main goal of the paper: a static analysis procedure
that gives sufficient conditions for BI. These conditions will also guarantee that the
number of evaluation steps needed to process the update under eager evaluation is no
greater than its time under snapshot evaluation.
Binding Independence Verification Algorithm. We give a conservative reduction of
BI testing to the decidable problem of satisfiability testing for XPath equations. Given�
a sequence of variables, a system of XPath equations in � is a conjunction of statements
either of the form �� � ��, where �� is in XP��� � � � �����, or of one of the forms
��	��� � �, ��	��� �� �, �� �� �� for � �� �. Given a tree � and sequence of nodeIds
�� � � � ��, we say � satisfies the equations if �� is in the result of �� evaluated in a
context where � interpreted by �, and if the label and inequality conjuncts are satisfied.
A system of equations ���� is unsatisfiable iff for all trees � there is no � satisfying
� in �. We define the notion of unsatisfiability with respect to a schema analogously.
Our goal is an algorithm that, given a TUpdate program� will produce a set of systems
of XPath equations �� � � � �� such that: each �� is unsatisfiable implies � is BI.
Non-interference. Intuitively, an update is BI if performing concrete updates that are
generated from a program does not impact the evaluation of other XPath expressions.
For example U1, we can see that in order to verify BI it suffices to check that: i) for
each �� in //openauction, the update ($i:a�, ����
� $i/initial/text ���� $i/current) does
not change the value of the expression $i/initial/text, $i/current, or $i/bidder, where in
the last expression $i can be bound to any �� in //openauction, and in the first two to
any �� �� �� ii) for each a� in //openauction, ($i:a� , ������ $i/bidder) does not effect
$i/initial/text, or $i/current for any $i, and does not effect $i/bidder when $i is bound to
�� �� ��. The above suffices to show BI, since it implies that performing any evaluation
step after an update gives the same result as performing the evaluation before the update.

We say a TUpdate program � is non-interfering if: for every �, for each two dis-
tinct tuples � and �� that can be generated from binding the 	�
 loops in � on �,
for each simple update � in � and every XPath expression � in � , ��� ����� returns
the same set as ��������������, and if the above holds for � � � � if � is not in

�. Note that both eager and snapshot semantics agree on what ������� means for a
simple update �. The discussion previously is summarized in the observation: if � is
non-interfering, then � is BI. Furthermore, if � is non-interfering, the eager evaluation
terminates in at most the number of steps needed to evaluate � under snapshot evalua-
tion. The condition is not necessary. Thus far we have found that BI updates arising in
practice (i.e. in the uses of our update engine within projects at Lucent Technologies)
are non-interfering. Moreover, non-interference can be tested effectively; however, to
gain additional efficiency, we provide only a conservative test in our implementation.

Non-interference breaks down into a number of assertions about the invariance of
expressions under updates, each of which needs to be verified separately. A delete non-
interference assertion is of the form �����
 ����
���
��� where ���� is a system
of XPath equations,� is a system of equations in XP��
��, and � is a SimpleUpdate.
The system � is the monitored system of the assertion while � is the context system.
An insert non-interference assertion has the same form.

A delete non-interference assertion is valid iff for all trees � � satisfying ����
in �, for every � in �, we have �
� ���
 �� � �������
� ���
 ��. That is, �
does not delete anything from the monitored system. An insert non-interference asser-
tion is valid iff for all trees �, � satisfying ���� in �, and for every � in �����,
�������
� ���
 �� � �
� ���
 ��. That is, � does not add anything to the
monitored system. Note that if � is a ������, then we need only consider delete non-
interference assertions, since the XPath queries we deal with are monotone; similarly,
if � is an ����
�, we consider only insert non-interference assertions. Hence we drop the
word “insert” or “delete” before non-interference assertions for these simple updates,
implicitly assuming the non-vacuous case. We write non-interference assertions in tab-
ular form. For example, the non-interference assertion below, generated from U1, states
that a ������ in U1 for an index $i does not effect the expression $i/current for any other
value of $i:

C= ���://openauction u= ������ $i�/bidder M= �i� �� �i� ; ���://openauction; $z:�i�/current

Non-interference of � amounts to verifying a set of non-interference assertions,
one for each triple consisting of a simple update in � , an XPath expression in � , and an
index that witnesses that the context variables are distinct. To increase precision, we can
exclude considering non-interference assertions where � is a ������ and � is the target
expression of �: this broadening of the definition of non-interference is sound, since if
���� deletes from ����� this does not effect the final evaluation but merely accelerates
it.
From Non-interference to Satisfiability. Validity of non-interference assertions still
requires reasoning about updates over multiple trees, while we wish to reason about
XPath satisfiability over a single tree. Our main result is a reduction of non-interference
assertions to satisfiability tests. This reduction makes use of a fundamental property of
the snapshot semantics: under this semantics elements in the output tree are in one-to-
one correspondence with tuples of elements in the input tree.

Consider the non-interference assertion generated from U1 in the table above. To
check this it suffices to confirm that the deleted items do not overlap with the moni-
tored expression $i�/current. So the non-interference assertion is equivalent to the joint

unsatisfiability of the equations: $i�://openauction; $i�://openauction; $i� �� �i�; $z:
$i�/bidder//*; $z:$i�/current. This system is unsatisfiable because $z cannot be both a
descendant of $i� and a child of �i� �� �i�, and this is easily detected by our satisfiabil-
ity test. In general, for ������ operations, a non-interference assertion requires checking
whether the system � is unsatisfiable, where � contains the context and monitored
equations, and equations $o:�����. Here �� is the target expression of the ������, and
$o is the variable appearing in an XPath equation in the monitored system (for a ������,
this will consist of inequalities plus one XPath equation).

The analysis for inserts requires a much more complex transformation. We give
the intuition for this by example, leaving details for the full paper. Consider the non-
interference assertion generated from U1, which states that the insert into $i/current
does not effect $i/initial/text:

C=$i://openauction u = ����� $i/initial/text ���� $i/current M = $i�://openauction; $i� �� $i; $z:$i�/initial/text;

We want to derive a collection of systems of equations such that they are all unsatis-
fiable iff this assertion holds. We start by normalizing the assertion so that all equations
are basic: a basic equation is either a label test, an inequality, or of the form $x:$y/* or
$x:$y//*. That is, all the XPath expressions consist of just a single step. We do this by
introducing additional variables for intermediate steps in all path expressions.

C lab($i)=openauction; $k:$i/*; lab($k)=initial;
$l:$k/*; lab($l)=text; $m:$i/*; lab($m)=current;

u ����� $l ���� $m
M $i� ��$i; lab($i�)=openauction; $k�:$i�/*;

lab($k�)=initial; $l�:$k�/*; lab($l�)=text;

So this assertion says that for any values of �
 �
 �
� satisfying the equations at the
top, the operation in the center does not insert any new witness for the equations on
the bottom. Note that there is a further approximation being done here, since instead of
checking whether the output of an XPath expression changes, we check whether there
is a change to a vector of variables that projects onto that output. This approximation al-
lows us to reduce non-interference to a satisfiability test, while an exact non-interference
test would require a (EXPTIME complete [10]) containment test in the presence of a
schema.

To reason about these assertions, we consider the possible ways in which a new
witness set for the monitored equations can occur. Continuing with our example, let �
be some tree, �
 �
 �
� be witnesses for the context equations in �, and � ���
 �
 �
��
be the tree resulting from the insert above. Every node in � � is either a node from the
initial tree � (an “old” witness) or was inserted by the operation ����
� $l ���� $m.
In general, nodes arising from an ����
� or
������ can be classified by which node
of the ����
� or
������ template they arose from. They are either matched by a literal
node � of a template, or they are matched by a node � that lies inside a copy of the
subtree �	 of � rooted at node �, where � was matched by some variable � associated
with template node � of the ����
� operation. In either of the last two cases, we say
that is generated by template node �. In the second case we say the node � is the
pre-witness of : that is, � is the element of the old tree that was copied to get . We
write � � �
���. In the case is an old witness, we say �
��� � , and in the case

is associated with a literal template node, we set �
��� to be the insertion point where
the constructed witness was appended. We can classify our witness tuple by means of a
witness map: this is a function � assigning to each variable in the monitored equations
either an element of the insert or replace template, or the keyword ���.

In the example above, one of the witness maps is: � �i �� � � �k�� � ���
 � �l�� �
� where � is the only template node of the insert. We reduce the number of maps
considered by enforcing some simple consistency conditions needed for a map to have
the possibility of generating a witness. For example, not all variables can be mapped to
���, if there is equation ��	��� � � in� , and � is mapped by � to a literal node of a
template, then the label of that node must be the literal �.

In the case above, these rules imply that the map above is the only witness map
that could yield a witness violating the non-interference assertion, because the template
node is a text node and hence cannot witness a non-text node. Figure 2 illustrates the
situation: a) shows the initial tree before the insert, with the inserted tree and insert point
highlighted. b) shows the tree resulting from the insert, and c) shows the pattern needed
to witness the interference assertion in the new tree, according to this witness map. Note

Old Tree

m

New Tree

m

New Tree

m

Old Tree

(a) (b) (c) (d)

l l

copy of l

i′

k′

l

l′
pre(l′)=l

k′=m

i′

Fig. 2. A pattern and its precondition relative to a witness map.
that the monitored equations assert that � � is the parent of ��. So we have an old node � �

that is the parent of a newly-inserted node l �. From the picture, it is clear that this can
happen only if k� is actually the target of the ����
�, namely�, while l � is a copy of the
root � of the inserted tree. Hence in the original tree�, the pre-witnesses for i �
 k�
 l� are
shown in Figure 2d); since k�
 i� are old witnesses, we write i� instead of �
��i�� in the
figure. The pre-witnesses of i�
 k� are a pair satisfying the context equations, but with
�
��k�� constrained to be�; the pre-witness of � � will be �. Figure 2d) thus shows what
the old tree must look like. The set of equations corresponding to this is shown below.
The equations are unsatisfiable, since� � �
��k�� but they have distinct labels.

lab($i)=openauction; $k:$i/*; lab($k)=initial; $l:$k/*; lab($l)=text; $m:$i/*; lab($m)=current;
$i� �� $i; lab($i�)=openauction; �����k��:$i�/*; lab(����$k��)=initial; ����$k�� �$m; ����$l�)=$l;

Given a witness map � and assertion � � �����
 ����
���
���, we can now
state more precisely our goal: to get a set of equations ��
� �� such that for any tree
� and � satisfying � in �, for any �� in �, ��
 ��� holds iff there is � such that
���
 �� holds in �� � ������� and �
��b�� � b��. As the example shows, we get this
set of equations by unioning the context equations with a rewriting of the monitored
equations. Details are given in the full paper.

Theorem 2. For every non-interference assertion � we can generate a collection of
systems of equations �� � � � �� such that � is valid iff each of the �� are unsatisfiable.

Accounting for a schema. The analysis above checks that an update program � is
Binding Independent when run on any tree �. Of course, since many programs are

not BI on an arbitrary input, it is essential to do a more precise analysis that verifies
BI only for input trees satisfying a given automata or DTD �. It is tempting to think
that relativizing to a schema requires one only to do the satisfiability test relative to the
schema. That is, one might think that a program� is BI w.r.t. schema � if for every tree
� satisfying �, for any concrete update � generated from � and any path expression
� with parameters from �, � has the same value on � as it does on ����. However,
this is not the case. Consider the update � : 	�
 $x in //A ����
� $x ���� $x//C ����
� $x
���� $x//B ������ A/[/B and /C]. Suppose that we wish to consider whether or not � is
BI with respect to a given schema �. It is clear that we need to know that instances of
the ����
� do not produce a new witness to A/[/B and /C]. Thus, we need to prove that
under eager evaluation there is no evaluation sequence adding a new witness pattern
consisting of A,B, and C nodes. But the final witness to this pattern will result from
an update to some intermediate tree � �, which may not satisfy �. Hence to reduce BI
analysis to non-interference of concrete updates over trees� satisfying the schema, we
must deal with the impact of sequences of concrete updates on�.

For integer �, a TUpdate � is � non-interfering with respect to a schema � if for
every � satisfying � i) no ������ or
������ operation generated from � deletes a wit-
ness to an XPath expression in � for a distinct binding, and ii) for every sequence
����

�� � � � ����
��, where �� are simple inserts or replaces in � and �� are tuples sat-

isfying the 	�
 loop bindings in �, for every expression �, and every � satisfying the
bindings and distinct from all ��, ������� � ��������, where �� is the result of ap-
plying each ��� ���� to �. Here �� for � �
������ E ���� � is defined to be ����
� �
���� E, and �� � � for other simple updates. Informally, � non-interfering means that
no single update deletes a witness to an XPath expression in � , and no sequence of �
updates inserts a witness. It is easy to see that programs with this property for every �
are Binding Independent w.r.t. �. The following result gives a bound on �: its proof is
given in the full paper.

Theorem 3. A program � is BI with respect to � if it is �-non-interfering, with respect
to �, where � is the maximum of the number of axis steps in any expression �.

From the theorem, we can see that Binding Independence of � w.r.t. schema � can
be reduced to polynomially many non-interference assertions, where this notation is
extended to allow a collection of updates. If we consider the update U1 with regard to
schema-based BI verification, we need to check assertions such as:

C $i� ://openauction; $i� ://openauction; $i� ://openauction;
� ����� $i�/initial/text ���� $i�/current ����� $i�/initial/text ���� $i�/current ����� $i�/initial/text ���� $i�/current
M $i�://openauction; $i� �� $i�,i�,i�; $z:$i�/initial/text;

These new non-interference assertions are reduced to satisfiability through the use
of witness maps and rewriting as previously – we now map nodes in the monitored
equations to template nodes in any of the updates.
(Un)Satisfiability Test. The previous results allow us to reduce BI analysis to a collec-
tion of unsatisfiability tests of systems of XPath equations on a single tree. Unsatisfi-
ability can be seen decidable via appeal to classical decidability results on trees [18].
Although we could have made use of a third party satisfiability test for logics on trees
(e.g. the MONA system [5], although this deals only with satisfiability over ranked

trees), we found it more convenient to craft our own test. Our satisfiability problem is
in CO-NP; in contrast MONA implements a satisfiability test for a much more power-
ful logic, whose worst-case complexity is non-elementary. For the quantifier-free XPath
equations considered here, the satisfiability problem is known to be NP-complete [7].
From this, we can show that non-interference is CO-NP hard.

Since an exact test is CO-NP, we first perform a conservative unsatisfiability test
which simply extracts the descendant relations that are permitted by the schema (for a
DTD, this is done by taking the transitive closure of the dependency graph) and then
checks each axis equation for consistency with these relations: this test is linear in the
size of the equations, and if all equations generated by the reduction are unsatisfiable,
we have verified Binding Independence. Our exact test uses a fairly standard automata-
theoretic method. The basic idea is to “complete” a system of equations � to get a
system �� in which: i) the dependency relation between variables forms a tree, ii) dis-
tinct variables are related by inequations, and variables that are siblings within the tree
are related by a total sibling ordering iii) if � is a variable then there is at most one vari-
able ! that is related to � by an equation y: x//*. The significance of complete systems is
that they can be translated in linear time into a tree automaton. There are many comple-
tions of a given system, and we can enumerate them by making choices for the relations
among variables. Although the number of completions is necessarily exponential in the
worst case, in the presence of a schema we can trim the number significantly by making
only those choices consistent with the schema dependency graph. In the absence of a
schema, any propositionally consistent complete equation system is satisfiable; thus we
can test satisfiability by checking for existence of a complete consistent extension. In
the presence of a schema, we translate complete systems into automata, and then take
a product. Consider the standard encoding of an ordered unranked tree " by a binary
tree " �: in this encoding a node � � " � represents a node � " , with the left child #�

of � corresponding to the first child of , and the right child of � corresponding to the
following sibling of in " (this sibling ordering is given as part of the complete sys-
tem). Relative to this coding, we translate a complete system into a system of equations
over binary trees. Our translation maps an XPath equation $ to a “binary XPath equa-
tion” $� , where these equations mention the axes � ����
 ������
 �

�

����� � � � . For example,
an equation of the form $x:$y/* maps to an equation $x:$y/� ������

�

�����. The resulting
binary equations are again complete, and can thus be translated easily into a bottom-up
non-deterministic tree automaton over finite trees.

We have thus arrived at a collection of automata A � representing complete binary
systems extending our original system �. We can likewise transform the schema � into
an automaton A� accepting exactly the binary encodings of trees conforming to �. A
standard product construction then yields an automaton A �

� accepting exactly those trees
conforming to� for which � returns a result, and a simple fixed point algorithm is used
to see if the language returned by an A �

� is nonempty [12].

4 Experimental results
The overall flow of the verification and its use is shown in Figure 3. At verification time,
a program is parsed and then goes through the stages of: i) generating non-interference
assertions, ii) for each assertion generating the witness maps, iii) for each assertion
and witness map, performing rewriting to get a system of equations which needs to

be found unsatisfiable. Each system produced is tested for satisfiability with respect to
the DTD, if one is present. If a system is found satisfiable, analysis terminates; in this
case, nothing is known about the program. If all systems are unsatisfiable, the analysis
outputs that the program is verified to be BI. At runtime, the program is processed by our
modification of the Galax-based XML update engine. A flag is passed with the program
telling whether the program is BI; if so, the eager evaluation is used. The verification

����
����
����
����

����
����
����
����

D′
RUN-TIME

SAT U
BI/¬BI flag GALAX

D

...

Witness MapsANALYSIS-TIME

U

DTD

(C(�x), u(�x),M(�x, �y))

REWRITING
GENERATION
MAP

Equation Systems

NON-INTERFERENCE
ASSERTION

GENERATION

Fig. 3. Architecture of Static Analysis-time and Run-time in Galax.

algorithms are in Java, while the runtime, like the rest of Galax, is in OCAML.
We ran our analysis algorithms on a testbed of sample updates, corresponding in

size and complexity to those used in our application of the XML update language of
[16] at Lucent Technologies. In Table 1 we show the verification times as the number
of steps in the update increases. The times are based on a Pentium 4 with a 1GB RAM
and 2.80GHz CPU running XP: in each case, the verification runs in seconds. The times
are an average over 1-4 updates, 90% BI and 10% non-BI. We were interested also in
tracking the two potential sources of combinatorial blow-up in our algorithms: the first
is the number of witness maps to be considered, which determines the number of equa-
tion systems that need to be generated. The second is the complexity of the satisfiability
test. The first is controlled by the consistency rules for witness map assignment, and
our preliminary results (also shown in the figure) show that our rules keep the number
of equations systems, and hence calls to satisfiability, low, generally in single digits.
The complexity of the satisfiability test is controlled principally by filtering using an
approximate test and secondly by using the DTD dependency graph to limit the number
of completions. The latter is particularly useful given that DTDs tend to give strong
restrictions on the tags that can appear in a parent/child relationship. Currently, our ap-
proximate test is quite crude, and eliminates only a small percentage of the equation
systems. However, the XMark DTD reduces the number of completions significantly
– in our sample updates, to at most several hundred. This results in low time for the
aggregate test, since for complete systems the satisfiability test is linear.

Acknowledgements:We thank Jérôme Siméon for many helpful discussions on up-
date semantics, and Andrea Pugliese for his support in implementation of the static
analysis routines. We are also very grateful to Glenn Bruns and Patrice Godefroid for
invaluable comments on the draft.

References

1. A. Bouajjani and T. Touili. Extrapolating Tree Transformations. In Proceedings of CAV,
2002.

2. James Clark. XSL Transformations (XSLT). W3C Recommendation, November 1999.
http://www.w3.org/TR/xslt.

Query Steps Verification Time(��) Nr. of Equation Systems

9 344 7
10 2390 15
11 5125 15
12 6953 17
13 8250 17
14 10984 17
15 8719 17
16 15701 17
17 25046 17
18 29781 17
19 31281 17

Table 1. Results of Analysis on a query with variable number of steps.

3. D. Dams, Y. Lakhnech, and M. Steffen. Iterating Transducers for Safety of Data-
Abstractions. In Proceedings of CAV, 2001.

4. E. W. Dijkstra. A Discipline of Programming. Prentice-Hall, 1976.
5. Jacob Elgaard, Nils Klarlund, and Anders Moller. Mona 1.x: new techniques for WS1S and

WS2S. In Computer Aided Verification, CAV ’98, volume 1427 of LNCS, 1998.
6. C. Kirkegaard, A. Moller, and M. I. Schwartzbach. Static Analysis of XML Transformations

in Java. IEEE Transactions on Software Engineering, 2004.
7. L. V. S. Lakshmanan, G. Ramesh, H. Wang, and Z. Zhao. On Testing Satisfiability of Tree

Pattern Queries. In Proc. of VLDB, 2004.
8. A. Laux and L. Martin. XUpdate - XML Update Language., 2000.

http://www.xmldb.org/xupdate/xupdate-wd.html.
9. P. Lehti. Design and Implementation of a Data Manipulation Processor. Diplomarbeit,

Technische Universitat Darmstadt, 2002. http://www.lehti.de/beruf/diplomarbeit.pdf.
10. F. Neven and T. Schwentick. XPath Containment in the Presence of Disjunction, DTDs, and

Variables. In Proc. of ICDT, pages 315–329, 2003.
11. Mads Olesen. Static validation of XSLT, 2004. http://www.daimi.au.dk/ mad-

man/xsltvalidation.
12. Grzegorz Rozenberg and Arto Salomaa. Handbook of formal languages, volume 3: beyond

words. Springer Verlag, 1997.
13. M. Rys. Bringing the Internet to Your Database: Using SQLServer 2000 and XML to Build

Loosely-Coupled Systems. In Proc. of ICDE, pages 465–472, 2001.
14. A. Schmidt, F. Waas, M. Kersten, M. Carey, I. Manolescu, and R. Busse. XMark: A bench-

mark for XML data management. In Proc. of VLDB, 2002.
15. Michael Schwartzbach and Anders Moller. The design space of type checkers for XML

transformation languages. In Proc. of ICDT, 2005.
16. G. Sur, J. Hammer, and J. Siméon. An XQuery-Based Language for Processing Updates in

XML. In PLAN-X, 2004. See http://www.cise.ufl.edu/research/mobility.
17. I. Tatarinov, Z. Ives, A.Y. Halevy, and D.S. Weld. Updating XML. In Proc. of ACM SIG-

MOD, 2001.
18. J.W. Thatcher and J.B. Wright. Generalized finite automata with an application to a decision

problem of second-order logic. Math. Systems Theory, 2:57–82, 1968.
19. Website. XQuery 1.0: An XML Query Language, 2004. http://www.w3.org/TR/xquery.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

