Efficient Query Evaluation
over Compressed XML Data

Andrei Arion', Angela Bonifati?, Gianni Costa?, Sandra D’ Aguanno®,
Ioana Manolescu', and Andrea Pugliese®

1 INRIA Futurs, Parc Club Orsay-Universite,
4 rue Jean Monod, 91893 Orsay Cedex, France
{firstname.lastname}@inria.fr
? Icar-CNR, Via P. Bucci 41/C,
87036 Rende (CS), Italy
{bonifati,costa}@icar.cnr.it
3 DEIS, University of Calabria, Via P. Bucci 41/C,
87036 Rende(CS), Italy
apugliese@si.deis.unical.it

Abstract. XML suffers from the major limitation of high redundancy. Even if
compression can be beneficial for XML data, however, once compressed, the data
can be seldom browsed and queried in an efficient way. To address this prob-
lem, we propose XQueC, an [XQue]ry processor and [Clompressor, which covers
a large set of XQuery queries in the compressed domain. We shred compressed
XML into suitable data structures, aiming at both reducing memory usage at query
time and querying data while compressed. XQueC is the first system to take ad-
vantage of a query workload to choose the compression algorithms, and to group
the compressed data granules according to their common properties. By means of
experiments, we show that good trade-offs between compression ratio and query
capability can be achieved in several real cases, as those covered by an XML
benchmark. On average, XQueC improves over previous XML query-aware com-
pression systems, still being reasonably closer to general-purpose query-unaware
XML compressors. Finally, QETs for a wide variety of queries show that XQueC
can reach speed comparable to XQuery engines on uncompressed data.

1 Introduction

XML documents have an inherent textual nature due to repeated tags and to PCDATA
content. Therefore, they lend themselves naturally to compression. Once the compressed
documents are produced, however, one would like to still query them under a com-
pressed form as much as possible (reminiscent of “lazy decompression” in relational
databases [[1], [2]]). The advantages of processing queries in the compressed domain are
several: first, in a traditional query setting, access to small chunks of data may lead to
less disk I/Os and reduce the query processing time; second, the memory and compu-
tation efforts in processing compressed data can be dramatically lower than those for
uncompressed ones, thus even low-battery mobile devices can afford them; third, the
possibility of obtaining compressed query results allows to spare network bandwidth
when sending these results to a remote location, in the spirit of [3].

E. Bertino et al. (Eds.): EDBT 2004, LNCS 2992, pp. 200-218| 2004.
(© Springer-Verlag Berlin Heidelberg 2004

Verwendete Distiller 5.0.x Joboptions
Dieser Report wurde automatisch mit Hilfe der Adobe Acrobat Distiller Erweiterung "Distiller Secrets v1.0.5" der IMPRESSED GmbH erstellt.
Sie koennen diese Startup-Datei für die Distiller Versionen 4.0.5 und 5.0.x kostenlos unter http://www.impressed.de herunterladen.

ALLGEMEIN --
Dateioptionen:
 Kompatibilität: PDF 1.3
 Für schnelle Web-Anzeige optimieren: Nein
 Piktogramme einbetten: Nein
 Seiten automatisch drehen: Nein
 Seiten von: 1
 Seiten bis: Alle Seiten
 Bund: Links
 Auflösung: [2400 2400] dpi
 Papierformat: [594.962 841.96] Punkt

KOMPRIMIERUNG --
Farbbilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 300 dpi
 Downsampling für Bilder über: 450 dpi
 Komprimieren: Ja
 Automatische Bestimmung der Komprimierungsart: Ja
 JPEG-Qualität: Maximal
 Bitanzahl pro Pixel: Wie Original Bit
Graustufenbilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 300 dpi
 Downsampling für Bilder über: 450 dpi
 Komprimieren: Ja
 Automatische Bestimmung der Komprimierungsart: Ja
 JPEG-Qualität: Maximal
 Bitanzahl pro Pixel: Wie Original Bit
Schwarzweiß-Bilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 2400 dpi
 Downsampling für Bilder über: 3600 dpi
 Komprimieren: Ja
 Komprimierungsart: CCITT
 CCITT-Gruppe: 4
 Graustufen glätten: Nein

 Text und Vektorgrafiken komprimieren: Ja

SCHRIFTEN --
 Alle Schriften einbetten: Ja
 Untergruppen aller eingebetteten Schriften: Nein
 Wenn Einbetten fehlschlägt: Abbrechen
Einbetten:
 Immer einbetten: [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol]
 Nie einbetten: []

FARBE(N) --
Farbmanagement:
 Farbumrechnungsmethode: Farbe nicht ändern
 Methode: Standard
Geräteabhängige Daten:
 Einstellungen für Überdrucken beibehalten: Ja
 Unterfarbreduktion und Schwarzaufbau beibehalten: Ja
 Transferfunktionen: Anwenden
 Rastereinstellungen beibehalten: Ja

ERWEITERT --
Optionen:
 Prolog/Epilog verwenden: Ja
 PostScript-Datei darf Einstellungen überschreiben: Ja
 Level 2 copypage-Semantik beibehalten: Ja
 Portable Job Ticket in PDF-Datei speichern: Nein
 Illustrator-Überdruckmodus: Ja
 Farbverläufe zu weichen Nuancen konvertieren: Ja
 ASCII-Format: Nein
Document Structuring Conventions (DSC):
 DSC-Kommentare verarbeiten: Ja
 DSC-Warnungen protokollieren: Nein
 Für EPS-Dateien Seitengröße ändern und Grafiken zentrieren: Ja
 EPS-Info von DSC beibehalten: Ja
 OPI-Kommentare beibehalten: Nein
 Dokumentinfo von DSC beibehalten: Ja

ANDERE --
 Distiller-Kern Version: 5000
 ZIP-Komprimierung verwenden: Ja
 Optimierungen deaktivieren: Nein
 Bildspeicher: 524288 Byte
 Farbbilder glätten: Nein
 Graustufenbilder glätten: Nein
 Bilder (< 257 Farben) in indizierten Farbraum konvertieren: Ja
 sRGB ICC-Profil: sRGB IEC61966-2.1

ENDE DES REPORTS --

IMPRESSED GmbH
Bahrenfelder Chaussee 49
22761 Hamburg, Germany
Tel. +49 40 897189-0
Fax +49 40 897189-71
Email: info@impressed.de
Web: www.impressed.de

Adobe Acrobat Distiller 5.0.x Joboption Datei
<<
 /ColorSettingsFile ()
 /AntiAliasMonoImages false
 /CannotEmbedFontPolicy /Error
 /ParseDSCComments true
 /DoThumbnails false
 /CompressPages true
 /CalRGBProfile (sRGB IEC61966-2.1)
 /MaxSubsetPct 100
 /EncodeColorImages true
 /GrayImageFilter /DCTEncode
 /Optimize false
 /ParseDSCCommentsForDocInfo true
 /EmitDSCWarnings false
 /CalGrayProfile ()
 /NeverEmbed []
 /GrayImageDownsampleThreshold 1.5
 /UsePrologue true
 /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 /AutoFilterColorImages true
 /sRGBProfile (sRGB IEC61966-2.1)
 /ColorImageDepth -1
 /PreserveOverprintSettings true
 /AutoRotatePages /None
 /UCRandBGInfo /Preserve
 /EmbedAllFonts true
 /CompatibilityLevel 1.3
 /StartPage 1
 /AntiAliasColorImages false
 /CreateJobTicket false
 /ConvertImagesToIndexed true
 /ColorImageDownsampleType /Bicubic
 /ColorImageDownsampleThreshold 1.5
 /MonoImageDownsampleType /Bicubic
 /DetectBlends true
 /GrayImageDownsampleType /Bicubic
 /PreserveEPSInfo true
 /GrayACSImageDict << /VSamples [1 1 1 1] /QFactor 0.15 /Blend 1 /HSamples [1 1 1 1] /ColorTransform 1 >>
 /ColorACSImageDict << /VSamples [1 1 1 1] /QFactor 0.15 /Blend 1 /HSamples [1 1 1 1] /ColorTransform 1 >>
 /PreserveCopyPage true
 /EncodeMonoImages true
 /ColorConversionStrategy /LeaveColorUnchanged
 /PreserveOPIComments false
 /AntiAliasGrayImages false
 /GrayImageDepth -1
 /ColorImageResolution 300
 /EndPage -1
 /AutoPositionEPSFiles true
 /MonoImageDepth -1
 /TransferFunctionInfo /Apply
 /EncodeGrayImages true
 /DownsampleGrayImages true
 /DownsampleMonoImages true
 /DownsampleColorImages true
 /MonoImageDownsampleThreshold 1.5
 /MonoImageDict << /K -1 >>
 /Binding /Left
 /CalCMYKProfile (U.S. Web Coated (SWOP) v2)
 /MonoImageResolution 2400
 /AutoFilterGrayImages true
 /AlwaysEmbed [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol]
 /ImageMemory 524288
 /SubsetFonts false
 /DefaultRenderingIntent /Default
 /OPM 1
 /MonoImageFilter /CCITTFaxEncode
 /GrayImageResolution 300
 /ColorImageFilter /DCTEncode
 /PreserveHalftoneInfo true
 /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 /ASCII85EncodePages false
 /LockDistillerParams false
>> setdistillerparams
<<
 /PageSize [595.276 841.890]
 /HWResolution [2400 2400]
>> setpagedevice

Efficient Query Evaluation over Compressed XML Data 201

Previous systems have been proposed recently, i.e. XGrind [4] and XPRESS [5],
allowing the evaluation of simple path expressions in the compressed domain. However,
these systems are based on a naive top-down query evaluation mechanism, which is not
enough to execute queries efficiently. Most of all, they are not able to execute a large
set of common XML queries (such as joins, inequality predicates, aggregates, nested
queries etc.), without spending prohibitive times in decompressing intermediate results.

In this paper, we address the problem of compressing XML data in such a way
as to allow efficient XQuery evaluation in the compressed domain. We can assert that
our system, XQueC, is the first XQuery processor on compressed data. It is the first
system to achieve a good trade-off among data compression factors, queryability and
XQuery expressibility. To that purpose, we have carefully chosen a fragmentation and
storage model for the compressed XML documents, providing selective access paths to
the XML data, and thus further reducing the memory needed in order to process a query.
The XQueC system has been demonstrated at VLDB 2003 [6].

The basis of our fragmentation strategy is borrowed from the XMill [7] project.
XMill is a very efficient compressor for XML data, however, it was not designed to
allow querying the documents under their compressed form. XMill made the important
observation that data nodes (leaves of the XML tree) found on the same path in an
XML document (e.g. /site/people/person/address/city in the XMark [8] documents) often
exhibit similar content. Therefore, it makes sense to group all such values into a single
container and choose the compression strategy once per container. Subsequently, XMill
treated a container like a single “chunk of data” and compressed it as such, which
disables access to any individual data node, unless the whole container is decompressed.
Separately, XMill compressed and stored the structure tree of the XML document.

While in XMill a container may contain leaf nodes found under several paths, leaving
to the user or the application the task of defining these containers, in XQueC the frag-
mentation is always dictated by the paths, i.e., we use one container per root-to-leaf path
expression. When compressing the values in the container, like XMill, we take advantage
of the commonalities between all container values. But most importantly, unlike XMill,
each container value is individually compressed and individually accessible, enabling
an effective query processing.

We base our work on the principle that XML compression (for saving disk space)
and sophisticated query processing techniques (like complex physical operators, indexes,
query optimization etc.) can be used together when properly combined. This principle has
been stated and forcefully validated in the domain of relational query processing [[1], [3].
Thus, it is not less important in the realm of XML.

In our work, we focus on the right compression of the values found in an XML docu-
ment, coupled with a compact storage model for all parts of the document. Compressing
the structure of an XML document has two facets. First, XML tags and attribute names
are extremely repetitive, and practically all systems (indeed, even those not claiming
to do “compression”) encode such tags by means of much more compact tag numbers.
Second, an existing work [9]] has addressed the summarization of the tree structure itself,
connecting among them parent and child nodes. While structure compression is inter-
esting, its advantages are not very visible when considering the XML document as a
whole. Indeed, for a rich corpus of XML datasets, both real and synthetic, our measures

202 A. Arion et al.

have shown that values make up 70% to 80% of the document structure. Projects like
XGrind [4]] and XPRESS [5] have already proposed schemes for value compression
that would enable querying, but they suffer from limited query evaluation techniques
(see also Section[I.2). These systems apply a fixed compression strategy regardless of
the data and query set. In contrast, our system increases the compression benefits by
adapting its compression strategy to the data and query workload, based on a suitable
cost model.

By doing data fragmentation and compression, XQueC indirectly targets the problem
of main-memory XQuery evaluation, which has recently attracted the attention of the
community [9], [10]. In [10]], the authors show that some current XQuery prototypes
are in practice limited by their large memory consumption; due to its small footprint,
XQueC scales better (see Section B). Furthermore, some such in-memory prototypes
exhibit prohibitive query execution times even for simple lookup queries. [9] focuses
on the problem of fitting into memory a narrowed version of the tree of tags, which is
however a small percentage of the overall document, as explained above.

XQueC addresses this problem in a two-fold way. First, in order to diminish its
footprint, it applies powerful compression to the XML documents. The compression
algorithms that we use allow to evaluate most predicates directly on the compressed
values. Thus, decompression is often necessary only at the end of the query evaluation
(see SectionH). Second, the XQueC storage model includes lightweight access support
structures for the data itself, providing thus efficient primitives for query evaluation.

1.1 The XQueC System

The system we propose compresses XML data and queries them as much as possible
under its compressed form, covering all real-life, complex classes of queries.
The XQueC system adheres to the following principles:

1. As in XMill, data is collected into containers, and the document structure stored
separately. In XQueC, there is a container for each different < type, pe >, where pe
is a distinguished root-to-leaf path expression and type is a distinguished elementary
type. The set of containers is then partitioned again to allow for better sharing of
compression structures, as explained in Section 2.2l

2. Incontrast with previous compression-aware XML querying systems, whose storage
was plainly based on files, XQueC is the first to use a complete and robust storage
model for compressed XML data, including a set of access support structures. Such
storage is fundamental to guarantee a fast query evaluation mechanism.

3. XQueC seamlessly extends a simple algebra for evaluating XML queries to include
compression and decompression. This algebra is exploited by a cost-based optimizer,
which may choose query evaluation strategies, that freely mix regular operator and
compression-aware ones.

4. XQueC is the first system to exploit the query workload to (i) partition the containers
into sets according to the source modelll| and to (ii) properly assign the most suitable

! The source model is the model used for the encoding, for instance the Huffman encoding tree
for Huffman compression [11]] and the dictionary for ALM compression [12]], outlined later.

Efficient Query Evaluation over Compressed XML Data 203

compression algorithm to each set. We have devised an appropriate cost model,
which helps making the right choices.

5. XQueC is the first compressed XML querying system to use the order—preservingﬂ
textual compression. Among several alternatives, we have chosen to use the
ALM [12]] compression algorithm, which provides good compression ratios and still
allows fast decompression, which is crucial for an algorithm to be used in a database
setting [[13]. This feature enables XQueC to evaluate, in the compressed domain,
the class of queries involving inequality comparisons, which are not featured by the
other compression-aware systems.

In the following sections, we will use XMark [8] documents for describing XQueC.
A simplified structural outline of these documents is depicted in Figure [T] (at right).
Each document describes an auction site, with people and open auctions (dashed lines
represent IDREFs pointing to IDs and plain lines connect the other XML items). We
describe XQueC following its architecture, depicted in Figure [[(at left). It contains the
following modules:

1. The loader and compressor converts XML documents in a compressed, yet
queryable format. A cost analysis leverages the variety of compression algorithms
and the query workload predicates to decide the partition of the containers.

2. The compressed repository stores the compressed documents and provides: (i) com-
pressed data access methods, and (ii) a set of compression-specific utilities that
enable, e.g., the comparison of two compressed values.

3. The query processor evaluates XQuery queries over compressed documents. Its
complete set of physical operators (regular ones and compression-aware ones) allows
for efficient evaluation over the compressed repository.

1.2 Related Work

XML data compression was first addressed by XMill [7], following the principles out-
lined in the previous section. After coalescing all values of a given container into a single
data chunk, XMill compresses separately each container with its most suited algorithm,
and then again with gzip to shrink it as much as possible. However, an XMill-compressed
document is opaque to a query processor: thus, one must fully decompress a whole chunk
of data before being able to query it.

The XGrind system [4] aims at query-enabling XML compression. XGrind does not
separate data from structure: an XGrind-compressed XML document is still an XML
document, whose tags have been dictionary-encoded, and whose data nodes have been
compressed using the Huffman [11]] algorithm and left at their place in the document.
XGrind’s query processor can be considered an extended SAX parser, which can han-
dle exact-match and prefix-match queries on compressed values and partial-match and
range queries on decompressed values. However, several operations are not supported
by XGrind, for example, non-equality selections in the compressed domain. Therefore,
XGrind cannot perform any join, aggregation, nested queries, or construct operations.

% Note that a compression algorithm comyp preserves order if for any 1, x2, comp(z1) <
comp(xz) iff 1 < 2.

204 A. Arion et al.

XQueC XQuery XML query
compressed query results

repository .
Y
XQueC Query M
/4' Stats Parser XQueC Pejme
+ 70l *

losed_auction
)l K

o
2
@

query
! Optimizer rocessor person
! ,4’L;(tgéi%e ‘/ P closed_auctions -'\iﬁmref g
1 iq 7
1) i profile
! ,'/ ' | | Executor price se‘ler bjyer ,“ p N\
S incom
11 M| indexes i person person ' | et
[Y S~ e A
VN | [structare Compressed Comp. “ country creditcard
[NERNY Tree containers)
v Rk v Utilities province category
Sy oIS~ -
=== — &
XQueC loader & compressor
Huffman, ALM, ...

Fig. 1. Architecture of the XQueC prototype (left); simplified summary of the XMark XML doc-
uments (right).

Such operations occur in many XML query scenarios, as illustrated by XML benchmarks
(e.g., all but the first two of the 20 queries in XMark [8]]).

Also, XGrind uses a fixed naive top-down navigation strategy, which is clearly in-
sufficient to provide for interesting alternative evaluation strategies, as it was done in
existing works on querying compressed relational data (e.g., [1]], [2]). These works con-
sidered evaluating arbitrary SQL queries on compressed data, by comparing (in the
traditional framework of cost-based optimization) many query evaluation alternatives,
including compression / decompression at several possible points.

A third recent work, XPRESS [5] uses a novel reverse arithmetic encoding method,
mapping entire path expressions to intervals. Also, XPRESS uses a simple mechanism
to infer the type (and therefore the compression method suited) of each elementary data
item. XPRESS’s compression method, like XGrind’s, is homomorphic, i.e. it preserves
the document structure.

To summarize, while XML compression has received significant attention [4], [S],
[7], querying compressed XML is still in its infancy [4]], [S)]. Current XML compression
and querying systems do not come anywhere near to efficiently executing complex
XQuery queries. Indeed, even the evaluation of XPath queries is slowed down by the
use of the fixed top-down query evaluation strategy.

Moreover, the interest towards compression even in a traditional data warehouse
setting is constantly increasing in commercial systems, such as Oracle [14]. In [14],
it is shown that the occupancy of raw data can be reduced while not impacting query
performance. In principle, we expect that in the future a big share of this data will be
expressed in XML, thus making the problem of compression very appealing.

Finally, for what concerns information retrieval systems, [15] exploits a variant
of Huffman (extended to “bytes” instead of bits) in order to execute phrase matching
entirely in the compressed domain. However, querying the text is obviously only a subset
of the XQuery features. In particular, theta-joins are not feasible with the above variant
of Huffman, whereas they can be executed by means of order-aware ALM.

Efficient Query Evaluation over Compressed XML Data 205

1.3 Organization

The paper is organized as follows. In Section 2] we motivate the choice of our storage
structures for compressed XML, and present ALM [12] and other compression algo-
rithms, which we use for compressing the containers. Section[3 outlines the cost model
used for partitioning the containers into sets, and for identifying the right compression
to be applied to the values in each container set. Section[4] describes the XQueC query
processor, its set of physical operators, and outlines its optimization algorithm. Section
shows the performance measures of our system on several data sets and XQuery queries.

2 Compressing XML Documents in a Queryable Format

In this section, we present the principles behind our approach for storing compressed
XML documents, and the resulting storage model.

2.1 Compression Principles

In general, we make the observation that within XML text, strings represent a large per-
centage of the document, while numbers are less frequent. Thus, compression of strings,
when effective, can truly reduce the occupancy of XML documents. Nevertheless, not all
compression algorithms can seamlessly afford string comparisons in the compressed do-
main. In our system, we include both order-preserving and order-agnostic compression
algorithms, and the final choice is entrusted to a suitable cost model.

Our approach for compressing XML was guided by the following principles:
Order-agnostic compression. As an order-agnostic algorithm, we chose classical Huff-
manf], whichis universally known as a simple algorithm which achieves the best possible
redundancy among the resulting codes. The process of encoding and decoding is also
faster than universal compression techniques. Finally, it has a set of fixed codewords,
thus strings compressed with Huffman can be compared in the compressed domain
within equality predicates. However, inequality predicates need to be decompressed.
That is why in XQueC we may exploit order-preserving compression as well as not
order-preserving one.

Order-preserving compression. Whereas everybody knows the potentiality of Huff-
man, the choice of an order-preserving algorithm is not immediate. We had initially
three choices for encoding strings in an order-preserving manner: the Arithmetic [[16],
Hu-Tucker [17] and ALM [12] algorithms. We knew that dictionary-based encoding has
demonstrated its effectiveness w.r.t. other non-dictionary approaches [18] while ALM
has outperformed Hu-Tucker (as described in [19]). The former being both dictionary-
based and efficient, was a good choice in our system. ALM has been used in relational
databases for blank-padding (i.e. in Oracle) and for indexes compression. Due to its
dictionary-based nature, ALM decompresses faster than Huffman, since it outputs big-
ger portions of a string at a time, when decompressing. Moreover, ALM seamlessly
solved the problem of order-preserving dictionary compression, raised by encodings

3 Here and in the remainder of the paper, by Huffman we shall mean solely the classical Huffman
algorithm [11], thus disregarding its variants.

206 A. Arion et al.

Token Code Interval

[theaa, therd]

[therf, thezz] String Code

c

there d [there, there]
e
b

[ir, ir] their cb

............. there d

se v [se, se] these ev

Fig. 2. An example of encoding in ALM.

such as Zilch encoding, string prefix compression and composite key compression by
improving each of these. To this purpose, ALM eliminates the prefix property exhibited
by those former encodings by allowing in the dictionary more than one symbol for the
same prefix.

We now provide a short overview of how the ALM algorithm works. The fundamental
mechanics behind the algorithm tells to consider the original set of source substrings,
to split it into disjunct partitioning intervals set and to associate an interval prefix to
each partitioning interval. For example, Figure P shows the mapping from the original
source (made of the strings there, their, these) into some partitioning intervals
and associated prefixes, which clearly do not scramble the original order among the
source strings. We have implemented our own version of the algorithm, and we have
obtained encouraging results w.r.t. previous compression-aware XML processors (see
Section[3).

Workload-based choices of compression. Among the possible predicates writable in
an XQuery query, we distinguish among the inequality, equality and wildcard. The ALM
algorithm [12] allows inequality and equality predicates in the compressed domain, but
not wildcards, whereas Huffman [[L1]] supports prefix-wildcards and equality but not
inequality. Thus, the choice of the algorithm can be aided by a proper query workload,
whenever this turns to be available. In case, instead, the workload has not been provided,
XQueC uses ALM for strings and decompresses the compared values in case of wildcard
operations.

Structures for algebraic evaluation. Containers in XQueC closely resemble B+trees
on values. Moreover, a light-weight structure summary allows for accessing the structure
tree and the data containers in the query evaluation process. Data fragmentation allows
for better exploiting all the possible evaluation plans, i.e. bottom-up, top-down, hybrid or
index-based. As shown below, several queries of the XMark benchmark take advantage
of the XQueC appropriate structures and of the consequent flexibility in parsing and
querying these compressed structures.

2.2 Compressed Storage Structures

The XQueC loader/compressor parses and splits an XML document into the data struc-
tures depicted in Figure [I]

Node name dictionary. We use a dictionary to encode the element and attribute names
present in an XML document. Thus, if there are /V; distinct names, we assign to each of

Efficient Query Evaluation over Compressed XML Data 207

STRUCTURE TREE STRUCTURE SUMMARY
CONTAINERS

TS
“@ O
Hml T
0001001 “ o

\/

Fig. 3. Storage structures in the XQueC repository

them a bit string of length loga (N;). For example, the XMark documents use 92 distinct
names, which we encode on 7 bits.

Structure tree. We assign to each non-value XML node (element or attribute) an unique
integer ID. The structure tree is stored as a sequence of node records, where each record
contains: its own ID, the corresponding tag code; the IDs of its children; and (redun-
dantly) the ID of its parent. For better query performance, as an access support structure,
we construct and store a B+ search tree on top of the sequence of node records. Finally,
each node record points to all its attribute and text children in their respective containers.

Value containers. All data values found under the same root-to-leaf path expression in
the document are stored together into homogeneous containers. A container is a sequence
of container records, each one consisting of a compressed value and a pointer to parent
of this value in the structure tree. Records are not placed in the document order, but
in a lexicographic order, to enable fast binary search. Note that container generation
as done in XQueC is reminiscent of vertical partitioning of relational databases [20].
This kind of partitioning guarantees random access to the document content at different
points, i.e. the containers access points. This choice provides interesting query evaluation
strategies and leads to good query performance (see Section B). Moreover, containers,
even if kept separated, may share the same source model or, they can be compressed
with different algorithms if not involved in the same queries. This is decided by a cost
analysis which exploits the query workload and the similarities among containers, as
described in Section 3

Structure summary. The loader also constructs, as a redundant access support structure,
a structural summary representing all possible paths in the document. For tree-structured
XML documents, it will always have less nodes than the document (typically by several
orders of magnitude). A structural summary of the auction documents can be derived
from Figure[T] by () omitting the dashed edges, which brings it to a tree form, and (1)
storing in each non-leaf node in Figure [3, accessible in this tree by a path p, the list
of nodes reachable in the document instance by the same path. Finally, the leaf nodes
of our structure summary point to the corresponding value containers. Note that the
structure summary is very small, thus it does not affect the compression rate. Indeed, in
our experiments on the corpus of XML documents described in Section[3], the structure
summary amounts to about 19% of the original document size.

Other indexes and statistics. When loading a document, other indexes and/or statistics
can be created, either on the value containers, or on the structure tree. Our loader pro-

208 A. Arion et al.

totype currently gathers simple fan-out and cardinality statistics (e.g. number of person
elements).

To measure the occupancy of our structures, we have used a set of documents pro-
duced by means of the xmlgen generator of the XMark project and ranged from 115KB
to 46MB. They have been reduced by an average factor of 60% after compression (these
figures include all the above access structures).

Our proposed storage structure is the simplest and most compact one that fulfills the
principles listed at the beginning of Section B} there are many ways to store XML in
general [21]]. If we omit our access support structures (backward edges, B+ index, and
the structure summary), we shrink the database by a factor of 3 to 4, albeit at the price
of deteriorated query performance.

Any storage mechanism for XML can be seamlessly adopted in XQueC, as long as
it allows the presence of containers and the facilities to access container items.

2.3 Memory Issues

Data fragmentation in XQueC guarantees a wide variety of query evaluation strategies,
and not solely top-down evaluation as in homomorphic compressors [4]], [5]. Instead
of identifying at compile-time the parts of the documents necessary for query evalua-
tion, as given by an XQuery projection operator [10], in XQueC the path expressions
are hard-coded into the containers and projection is already prepared in advance when
compressing the document, without any additional effort for the loader. Consider as
examples the following query Q14 of XMark:

FOR $i IN document("auction.xml")/site//item
WHERE CONTAINS($i/description,"gold")
RETURN $i/namef/text()

This query would require prohibitive parsing times in XGrind and XPRESS, which
basically have to load into main-memory all the document and parse it entirely in order
to find the sought items. For this query, as shown in Figure @] all the XML stream has to
be parsed to find the elements <item>.

In XQueC, the compressor has already shredded the data and accessibility to these
data from the structure summary allows to save the parsing and loading times. Thus, in
XQueC the structure summary is parsed (not all the structure tree), then the involved
containers are directly accessed (or alternatively their selected single items) and loaded
into main-memory. More precisely, as shown in Figure @] once the structure summary
leads to the containers C, C'; and Cj5, only these (or part of them) need to be fetched
in memory. Finally, note that in Galax, extended with the projection operator [10], the
execution times for queries involving the descendant-or-self axis (such as XMark Q14)
are significantly increased, since additional complex computation is demanded to the
loader for those queries.

3 Compression Choices

XQueC exploits the query workload to choose the way containers are compressed. As
already highlighted, the containers are filled up with textual data, which represents a big
share of the whole documents. Thus, achieving a good trade-off between compression

Efficient Query Evaluation over Compressed XML Data 209

Structure Summar
Uncompressed XML serialization XQUEC ucture Summary

‘ <site> ‘ <rcgions>‘ <africa> ‘ <item> ‘

Cl: site/regions/africa/item
T <regions> Teitems> C2: site/regions/usafitem
o)

% T s C3: site/regions/italy/item ED\\
- - e
Compressed XML serialization Containers o .

XGRIND/XPRESS

CI*/ éf c3 L X\
Jod d

Fig.4. Accesses to containers in case of XMark’s Q14 with descendant-or-self axis in
XPress/XGrind versus XQueC.

ratio and query execution times, must necessarily imply the capability to make a good
choice for textual container compression.

First, a container may be compressed with any compression algorithm, but obviously
one would like to apply a compression algorithm with nice properties. For instance, the
decompression time for a given algorithm strongly influences the times of queries over
data compressed with that algorithm. In addition, the compression ratio achieved by a
given algorithm on a given container influences the overall compression ratio.

Second, a container can be compressed separately or can share the same source model
with other containers. The latter choice would be very convenient whenever for example
two containers exhibit data similarities, which will improve their common compression
ratio. Moreover, the occupancy of the source model is as relevant in the choice of the
algorithm as the occupancy of containers.

To understand the impact of compression choices, consider two binary-encoded
containers, ct1 and cto. ct; contains only strings composed of letters a and b, whereas
cts contains only strings composed of letters c and d. Suppose, as one extreme case, that
two separate source models are built for the two containers; in such a case, containers
are encoded with 1 bit per letter. As the other extreme case, a common source model is
used for both containers, thus requiring 2 bits per letter for the encoding, and increasing
the containers occupancy. This scenario may get even more complicated when we think
of an arbitrary number of encodings assigned to each container. This smallish example
already shows that compressing several containers with the same source model leads to
losses in the compression ratio.

In the sequel, we show how our system addresses these problems, by proposing a
suitable cost model, a greedy algorithm for making the right choice, and some experi-
mental results. The cost model of XQueC is based on the set of non-numerical (textual)
containers, the set of available compression algorithms A, and the query workload W.
As it is typical of optimization problems, we will characterize the search space, define
the cost function, and finally propose a simple search strategy.

3.1 Search Space: Possible Compression Configurations

Let C be the set of containers built from a set of documents D. A compression configu-
ration s for D is denoted by a tuple < P, alg > where P is a partition of C’s elements,
and the function alg : P — A associates a compression algorithm with each set p in the

210 A. Arion et al.

partition P. The configuration s dictates thus that all values of the containers in p will
be compressed using alg(p), and a single common source model. Moreover, let P be
the set of possible partitions of C. The cardinality of P is the Bell number B|c|, which
is exponential with |C|. For each possible partition P; € P, there are |.A|/7:l ways of
assigning a compression algorithm to each set in P;. Therefore, the size of the search

space is:]-ic‘ A|Fil which is exponential in |.A|.
p =1 p

3.2 Cost Function: Appreciating the Quality of a Compression Configuration

Intuitively, the cost function for a configuration s reflects the time needed to apply
the necessary data decompressions in order to evaluate the predicates involved in the
queries of WW. Reasonably, it also accounts for the compression ratios of the employed
compression algorithms, and it includes the cost of storing the source model structures.
The cost of a configuration s is an integer value computed as a weighted sum of storage
and decompression costs.

Characterization of compression algorithms. Each algorithm a € A is denoted by a tu-
ple < d¢, cs(F), ca(F), eq, ineq, wild >. The decompression cost d.. is an estimate of
the cost of decompressing a container record by using a, the storage cost cs(F') is a func-
tion estimating the cost of storing a container record compressed with a, and the storage
cost of the source model structures c,(F') is a function estimating the cost of storing
the source model structures for a container record. F' is a symmetric similarity matrix
whose generic element F'[7, j] is a real number ranging between 0 and 1, capturing the
normalized similarity between a container ct; and a container ct;. I is built on the basis
of data statistics, such as the number of overlapping values, the character distribution
within the container entries, and possibly other type information, whenever available
(e.g. the XSchema types, using results presented in [22]) i} Finally, the algorithmic
properties eq, ineq and wild are boolean values indicating whether the algorithm sup-
ports in the compressed domain: (i) equality predicates without prefix-matching (eq), (if)
inequality predicates without prefix-matching (ineq) and (iii) equality predicates with
prefix-matching (weld). For instance, Huffman will have eq = true, ineq = false and
wild = true, while ALM will have eq = true, ineq = true and wild = false. We
denote each parameter of algorithm a with an array notation, e.g., aleq].

Storage costs. The containers and source model storage costs are simply computed as
> pep (alg(p) [C(Fp)] * D ey |cdg where ¢ = ¢, for the case of container storage and

¢ = ¢, for source model storagd). Obviously, cs and ¢, need not to be evaluated on
the overall F' but solely on F), that is the projection of F over the containers of the
partition p.

* We do not delve here into the details of F" as study of similarity among data is outside the scope
of this paper.

5 We are not considering here the containers that are not involved in any query in W. Those do
not incur a cost so they can be disregarded in the cost model.

Efficient Query Evaluation over Compressed XML Data 211

Decompression cost. In order to evaluate the decompression cost associated with a given
compression configuration s, we define three square matrices, F, I and D, having size
(IC] + 1) x (|C| + 1). These matrices reflect the comparisons (equality, inequality and
prefix-matching equality comparisons, respectively) made in JV among container values
or between container values and constants. More formally, the generic element F; ;, with
i #|C| +1and j # |C| + 1, is the number of equality predicates in WV between ct;
and ct; not involving prefix-matching, whereas with i = [C| +1orj = |C| + 1, it is
the number of equality predicates in WV between ct; and a constant (if j = |C| + 1), or
between ct; and a constant (if ¢ = |C| + 1), not involving prefix-matching. Matrices I
and D have the same structure but refer to inequality and prefix-matching comparisons,
respectively. Obviously, E, I and D are symmetric.

Considering the generic element of the three matrices, say Mi, j], the associated
decompression cost is obviously zero if ct; and ct; share the same source model and
the algorithm they are compressed with supports the corresponding predicate in the
compressed domain. A decompression cost occurs in three cases: (i) ct; and ct; are
compressed using different algorithms; (ii) ct; and ct; are compressed using the same
algorithm but different source models; (iii) ct; and ct; share the same source model
but the algorithm does not support the needed comparison (equality in the case of F,
inequality for I and prefix-matching for D) in the compressed domain. For instance, for
a generic element I[¢, j], in the case of i # j, ¢ # |C| + 1 and j # |C| + 1, the cost
would be:

- zero, if ct; € p, ctj € p, alg(p)lineq] = true;

= |eti| *alg(p’)[dc] + |ct;| * alg(p”)[dc], if ct; € p', ct; € p”', p’ # p” (cases (i) and
(i));

= (leti| + |et;]) = alg(p)[de], if ct; € p, ct; € p, alg(p)[ineq] = false (case (iii)).

The decompression cost is calculated by summing up the costs associated with each
element of the matrices F, I, and D. However, note that (i) for the cases of £ and D,
we consider alg(p)[eq| and alg(p)[wild], respectively, and that (ii) the term referring
to the cardinality of the containers to be decompressed is adjusted in the cases of self-
comparisons (i.e. ¢ = j) and comparisons with constants (i = |C| + 1 or j = |C| + 1).

3.3 Devising a Suitable Search Strategy

XQueC currently uses a greedy strategy for moving into the search space. The search
starts with an initial configuration s =< Py, algg >, where F is a partition of C having
sets of exactly one container, and algg blindly assigns to each set a generic compression
algorithm (e.g. bzip) and a separate source model. Next, s is gradually improved by a
sequence of configuration moves.

Let Pred be the set of value comparison predicates appearing in JV. A move from
sk =< Pg,algy > to sp41 =< Piy1,algi+1 > is done by first randomly extracting
a predicate pred from Pred. Let ct; and ct; be the containers involved in pred (for
instance pred makes an equality comparison, such as ct; = ct;, or an inequality one,
suchas ct; > ct;). Let p’ and p” the sets in P, to which ct; and ct; belong, respectively. If
p’ = p”, we build a new configuration s’ where alg1(p’) is such that the evaluation of

212 A. Arion et al.

pred is enabled on compressed values, and algy+1 has the greatest number of algorithmic
properties holding ¢true. Then, we evaluate the costs of si, and s, and let i1 be the one
with the minimum cost. In the case of p’ # p”, we build two new configurations s’ and
s”. s' is obtained by dropping ct; and ct; from p’ and p”, respectively, and adding the set
{ct;, ct;} to Pyyq. s” is obtained by replacing p’ and p” with their union. For both s’ and
s, algr+1 associates to the new sets in P11 an algorithm enabling the evaluation of
pred in the compressed domain and having the greatest number of algorithmic properties
holding true. Finally, we evaluate the costs of s, s’ and s”, and let s, 1 be the one
with the minimum cost.

Example. To give a flavor of the savings gained with partitioning the set of containers,
consider an initial configuration, which has five containers on an XMark document, all
of them sized about 6MB, which we initially (naively) choose to compress with ALM
only; let us call this configuration NaiveConf. The workload is made of XQuery queries
with inequality predicates over the path expressions leading to the above containers.
The first three containers are filled with Shakespeare’s sentences, the fourth is filled
with person names and the fifth with dates. Using the above workload, we obtain the
best partitioning, which has three partitions, one with the first three containers and a
distinct partition for the fourth and fifth, let us call it GoodConf. The compression factor
shifts from 56.14% for the NaiveConf to 67.14%, 71.75% and 65.15% respectively for
the three partitions of GoodConf. While in such a case the source models sizes do not
vary significantly, the decompression cost in Good Conf is clearly advantageous w.r.t.
NaiveConf, leading to gain 21.42% for shakespearian text, 28.57% for person names
and to loose only 6% for dates. g

Note that, for each predicate in Pred, the strategy explores a fixed subset of possible
configuration moves, so its complexity is linear in | Pred|. Of course, due to this partial
exploration, the search yields a locally optimal solution. Moreover, containers not in-
volved in W are not considered by the cost model, and a reasonable choice could be to
compress them using order-unaware algorithms offering good compression ratios, e.g.
bzip2 [23]. Finally, note also that the choice of a suitable compression configuration is
orthogonal with respect to the choosing of an optimal XML storage model [22]; we can
combine both for an automatic storage-and-compression design.

4 Evaluating XML Queries over Compressed Data

The XQueC query processor consists of a query parser, an optimizer, and a query eval-
uation engine. The set of physical operators used by the query evaluation engine can be
divided in three classes:

— data access operators, retrieving information from the compressed storage struc-
tures;

— regular data combination operators (joins, outer joins, selections etc.);

— compression and decompression operators.

Efficient Query Evaluation over Compressed XML Data 213

XMLSerialize

decompress(person name, item name)
TextContent(name)
TextContent(item)
Child(item —> name)
Child(person —> name)
LeftOuterJoin(@id=@person)

Implem: merge

ContainerScan("/site/people/person/@id")
MergeJoin(buyer/@=item/ @id)

ContainerScan("/site/closed_auctions/
/closed_auction/buyer/@person")

Child(closed_juction —> buyer)

Parent(item_ref —> closed_auction)

MergeJoin(@id=@person)

ContainerScan("/site/regions/europe/item/ @id")

ContainerScan("/site/closed auctions/closed auction/item ref/@item)

Fig. 5. Query execution plan for XMark’s Q9.

Among our data access operators, there are ContScan and ContAccess, which allow,
respectively, to scan all (elementID, compressed value) pairs from a container, and to
access only some of them, according to an interval search criteria. StructureSummary-
Access provide direct access to the identifiers of all elements reachable through a given
path. Parent and Child allow to fetch the parent, respectively, the children (all children,
or just those with a specific tag) for a given set of elements. Finally, TextContent pairs
element IDs with all their immediate text children, retrieved from their respective con-
tainers. TextContent is implemented as a hash join pairing the element IDs with the
content obtained from a ContScan.

Due to the storage model chosen in XQueC (Section2.2), the StructureSummaryAc-
cess operator provides the identifiers of the required elements in the correct document
order. Furthermore, the Parent and Child operator preserve the order of the elements
with respect to which they are applied. Also, if the Child operator returns more than one
child for a given node, these children are returned in correct order. The order-preserving
behavior allow us to perform many path computations through comparatively inexpen-
sive 1-pass merge joins; furthermore, many simple queries can be answered without
requiring a sort to re-constitute document order.

While these operators respect document order, ContScan and ContAccess respect
data order, provides fast access to elements (and values) according to a given value
search criteria. Also, as soon as predicates on container values are given in the query, it
is often profitable to start query evaluation by scanning (and perhaps merge-joining) a
few containers.

214 A. Arion et al.

As an example of QEP, consider query Q9 from XMark:

FOR $p IN document("auction.xml")/site/people/person
LET $a :=
FOR $t IN document("auction.xml")/site/
closed_auctions/closed_auction
LET $n =
FOR $t2 IN document("auction.xml")/site/
regions/europe/item
WHERE $t/itemref/@item = $t2/@id
RETURN $t2
WHERE $p/@id = $t/buyer/@person
RETURN <item> $n/name/text() </item>
RETURN <person name=$p/name/text()> $a </person>

Figure[B]shows a possible XQueC execution plan for Q9 (this is indeed the plan used
in the experiments). Based on this example, we make several remarks. First, note that we
only decompress the necessary pieces of information (person name and item name), only
at the very end of the query execution (the decompress operators shown in bold fonts). All
the way down in the QEP, we were able to compute the three-ways join between persons,
buyers, and items, using directly the compressed attributes person/@id, buyer/ @ person,
and item_ref/@item. Second, due to the order of data obtained from ContainerScans,
we are able to make extensive use of MergeJoins, without the need for sorting. Third,
this plan mixes Parent and Child operators, alternating judiciously between top-down
and bottom-up strategy, in order to minimize the number of tuples manipulated at any
particular moment. This feature is made possible by the usage of a full set of algebraic
evaluation choices, which XQueC has, but is not available to the XGrind or XPress query
processors.

Finally, note that for instance in query Q9 also an XM LSerialize operator is employed
in order to correctly construct the new XML which the query outputs. To this purpose, we
recall that XML construction plays a minor role within the XML algebraic evaluation,
and, being not crucial, it can be disregarded in the whole query execution time [24]]. This
has been confirmed by our experiments.

5 Implementation and Experimental Evaluation

XQueC is being implemented entirely in Java, using as back-end an embedded database,
Berkeley DB [25]. We have performed some interesting comparative measures, that show
that XQueC is a competitor of both query-aware compressors, and of early XQuery
prototypes.

In the following, we want to illustrate both XQueC good compression ratios and
query execution times. To this purpose, we have done two kinds of experiments:

Compression Factors. We have performed experiments on both synthetic data (XMark
documents) and on real-life data sets (in particular, we considered the ones chosen
in [3] for the purpose of cross-comparison with it).

Query Execution Times. We show how our system performs on some XML benchmark
queries [8] and cross-compare them with the query execution times of optimized
Galax [10], an open-source XQuery prototype.

All the experiments have been executed on a DELL Latitude C820 laptop equipped
with a 2,20GHz CPU and 512MB RAM.

Efficient Query Evaluation over Compressed XML Data 215

Table 1. Data Sets used in the experiments (XMark11 is used in QETSs measures.)

Document Size(MB)|Containers|Distinct tags |Tree nodes
Shakespeare 15.0 39 22 65621
Baseball 16.8 41 46 27181
Washington-course|| 12.1 12 18 99729
XMark11 11.3 432 77 76726

XMill XPress XQueC

XMill XGrind XPress XQueC

Fig. 6. Average CF for Shakespeare, WashingtonCourse and Baseball data sets (left); and for
XMark synthetic data sets (right).

Compression Factors. We have compared the obtained compression factors (defined as
1—(cs/0s)), where cs and os are the sizes of the compressed and original documents, re-
spectively) with the corresponding factors of XMill, XGrind and XPRESS. Figure[6l(left)
shows the average compression factor obtained for a corpus of documents composed
of Shakespeare.xml, Washington-Course.xml and Baseball.xml, whose main character-
istics are shown in Table [Il Note that, on average, XQueC closely tracks XPRESS. It is
interesting to notice that some limitations affect some of the XML compressors that we
tested - for example, the documents decompressed by XPRESS have lost all their white
spaces. Thus, the XQueC compression factor could be further improved if blanks were
not considered.

Moreover, we have also tested the compression factors on different-sized XMark
synthetic data sets (we considered documents ranging from 1MB to 25MB), generated
by means of xmlgen [8]. As Figure [f] (right) shows, we have obtained again good com-
pression factors w.r.t XPRESS and XMill.

Note also that XGrind does not appear in these experiments. Indeed, due to repetitive
crashes, we were not able to upload in the XGrind system (the version available through
the site http://sourceforge.net) any XMark document except for one sized 100KB, whose
compression factor however is very low and not representative of the system (precisely
equal to 17.36%).

Query Execution Times. We have tested our system against the optimized version of
Galax by running XMark queries and other queries. Due to space limits, we select here a
set of significant XMark queries. Indeed, XMark queries left out stress language features,
on which compression will likely have no significant impact whatsoever, e.g., support
for functions, deep nesting etc. The reasons why we chose Galax is that it is open-source
and has an optimizer. Note that the XQueC optimizer is not finalized yet (and was indeed

216 A. Arion et al.

W Galax @ XQueC

Query execution time (sec)

0

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q15 | Q16 | Q17
‘lGaIax 5156 | 2.5 |3.295)|2.687 | 1.637 | 3.453 | 3.814 | 1.51 | 1.64 | 2.22
mXQueC| 0.111 | 3.666 | 4907 | 0.42 | 0.17 | 0.851 | 3.074 | 0.14 | 3.545 | 1.9228

Fig. 7. Comparative execution times between us and Optimized Galax.

not used in these measures), thus our results are only due to the compression ratio, data
structures, and efficient execution engine.

Figure[7 shows the executions of XQueC queries on the document XMark11, sized
11.3MB. For the sake of better readability, in Figure [7, we have omitted Q9, and Q8.
These queries measured in our system 2.133 sec. and 2.142 sec. respectively, whereas
in Galax Q9 could not be measured on our machine E and Q8 took 126.33 sec. Note
also that on Q2, Q3, Q16, the QET is a little worse than the Galax one, because in the
current implementation we use simple unique IDs, given that our data model imposes
a large number of parent-child joins. However, even with this limitation, we are still
reasonably close to Galax, and we expect much better once XQueC will migrate to 3-
valued IDs, as already started in the spirit of [26]], [27], [28]. Most importantly, note
that the previous XQueC QETs are to be intended as the times taken to both execute the
queries in the compressed and decompress the obtained results. Thus, those measures
show that there is no performance penalty in XQueC w.r.t. Galax due to compression.
Thus, with comparable times w.r.t. an XQuery engine over uncompressed data, XQueC
exhibits the advantage of compression.

As a general remark, note that our system is implemented in Java and can be made
faster by using a native code compiler, which also we plan to plug in the immediate
future.

Finally, it is worth noting that comparison of XQueC with XGrind and XPress query
times could not be done due to the fact that fully working versions of the latters are
not publicly available. Nevertheless, that comparison would have been less meaningful,
since those systems cover a limited fragment of XPath, and not full XQuery, as discussed
in Section[1.2]

® The same query has been tested on a more powerful machine in the paper [[10] and results in a
rather lengthy computation.

Efficient Query Evaluation over Compressed XML Data 217

6 Conclusions and Future Work

We have presented XQueC, a compression-aware XQuery processor. We have shown that
our system exhibits a good trade-off between compression factors over different XML
data sets and query evaluation times on XMark queries. XQueC works on compressed
XML documents, which can be a huge advantage when query results must be shipped
around a network.

In the very near future, our system will be improved in several ways: by moving to
three-valued IDs for XML elements, in the spirit of [26], [27], [28] and by incorporating
further storage techniques that lead to additionally reduce the occupancy of structures.
The implementation of an XQuery [29] optimizer for querying XML compressed data
is ongoing. Moreover, we are testing the suitability of our system w.r.t. the full-text
queries [30]], which are being defined for the XQuery language at W3C. Another impor-
tant extension we have devised is needed for uploading in our system larger documents
than currently (e.g. SwissProt, measuring about S00MB). To this purpose, we plan to
access the containers during the parsing phase directly on secondary storage rather than
in memory.

References

1. Westmann, T., Kossmann, D., Helmer, S., Moerkotte, G.: The Implementation and Perfor-
mance of Compressed Databases. ACM SIGMOD Record 29 (2000) 55-67
2. Chen, Z., Gehrke, J., Korn, F.: Query Optimization In Compressed Database Systems. In:
Proc. of ACM SIGMOD. (2000)
3. Chen, Z., Seshadri, P.: An Algebraic Compression Framework for Query Results. In: Proc.
of the ICDE Conf. (2000)
4. Tolani, P., Haritsa, J.: XGRIND: A query-friendly XML compressor. In: Proc. of the ICDE
Conf. (2002)
5. Min, J.K., Park, M., Chung, C.: XPRESS: A queriable compression for XML data. In: Proc.
of ACM SIGMOD. (2003)
6. Arion, A., Bonifati, A., Costa, G., D’Aguanno, S., Manolescu, L., Pugliese, A.: XQueC:
Pushing XML Queries to Compressed XML Data (demo). Proc. of the VLDB Conf. (2003)
7. Liefke, H., Suciu, D.: XMILL: An efficient compressor for XML data. In: Proc. of ACM
SIGMOD. (2000)
8. Schmidt, A., Waas, F., Kersten, M., Carey, M., Manolescu, ., Busse, R.: XMark: A benchmark
for XML data management. In: Proc. of the VLDB Conf. (2002)
9. Buneman, P., Grohe, M., Koch, C.: Path Queries on Compressed XML. In: Proc. of the
VLDB Conf. (2003)
10. Marian, A., Simeon, J.: Projecting XML Documents. In: Proc. of the VLDB Conf. (2003)
11. Huffman, D.A.: A Method for Construction of Minimum-Redundancy Codes. In: Proc. of
the IRE. (1952)
12. Antoshenkov, G.: Dictionary-Based Order-Preserving String Compression. VLDB Journal 6
(1997) 26-39
13. Goldstein, J., Ramakrishnan, R., Shaft, U.: Compressing Relations and Indexes. In: Proc. of
the ICDE Conf. (1998) 370-379
14. Poess, M., Potapov, D.: Data Compression in Oracle. In: Proc. of the VLDB Conf. (2003)
15. Moura, E.D., Navarro, G., Ziviani, N., Baeza-Yates, R.: Fast and Flexible Word Searching
on Compressed Text. ACM Transactions on Information Systems 18 (2000) 113-139

218

16.
17.

18.

19.

20.
21.

22.
23.
24.

25.
26.

27.
28.

29.
30.

A. Arion et al.

Witten, I.H.: Arithmetic Coding For Data Compression. Communications of ACM (1987)
Hu, T.C., Tucker, A.C.: Optimal Computer Search Trees And Variable-Length Alphabetical
Codes. SIAM J. APPL. MATH 21 (1971) 514-532

Moffat, A., Zobel, J.: Coding for Compression in Full-Text Retrieval Systems. In: Proc. of
the Data Compression Conference (DCC). (1992) 72-81

Antoshenkov, G., Lomet, D., Murray, J.: Order preserving string compression. In: Proc. of
the ICDE Conf. (1996) 655-663

Ozsu, M.T., Valduriez, P.: Principles of Distributed Database Systems. Prentice-Hall (1999)
Amer-Yahia, S.: Storage Techniques and Mapping Schemas for XML. SIGMOD Record
(2003)

Bohannon, P., Freire, J., Roy, P., Simeon, J.: From XML Schema to Relations: A Cost-based
Approach to XML Storage. In: Proc. of the ICDE Conf. (2002)

Website: The bzip2 and libbzip2 Official Home Page (2002) http://sources.redhat.com/bzip2/.
Shanmugasundaram, J., Shekita, E., Barr, R., Carey, M., Lindsay, B., Pirahesh, H., Reinwald,
B.: Efficiently Publishing Relational Data as XML Documents. In: Proc. of the VLDB Conf.
(2000)

Website: Berkeley DB Data Store (2003) http://www.sleepycat.com/pro-ducts/data.shtml.
Paparizos, S., Al-Khalifa, S., Chapman, A., Jagadish, H.V., Lakshmanan, L.V.S., Nierman,
A., Patel, J.M., Srivastava, D., Wiwatwattana, N., Wu, Y., Yu, C.: TIMBER:A Native System
for Querying XML. In: Proc. of ACM SIGMOD. (2003) 672

T.Grust: Accelerating XPath location steps. In: Proc. of ACM SIGMOD. (2002) 109-120
Srivastava, D., Al-Khalifa, S., Jagadish, H.V., Koudas, N., Patel, J.M., Wu, Y.: Structural
Joins: A Primitive for Efficient XML Query Pattern Matching. In: Proc. of the ICDE Conf.
(2002)

Website: The XML Query Language (2003) http://www.w3.org/XML/Query.

Website: XQuery and XPath Full-text Use Cases (2003) http://www.w3.org/TR/xmlquery-
full-text-use-cases.

	Introduction
	The XQueC System
	Related Work
	Organization

	Compressing XML Documents in a Queryable Format
	Compression Principles
	Compressed Storage Structures
	Memory Issues

	Compression Choices
	Search Space: Possible Compression Configurations
	Cost Function: Appreciating the Quality of a Compression Configuration
	Devising a Suitable Search Strategy

	Evaluating XML Queries over Compressed Data
	Implementation and Experimental Evaluation
	Conclusions and Future Work

