
Journal of Computer and System Sciences 108 (2020) 29–48
Contents lists available at ScienceDirect

Journal of Computer and System Sciences

www.elsevier.com/locate/jcss

A trichotomy for regular simple path queries on graphs ✩

Guillaume Bagan a,∗, Angela Bonifati a, Benoit Groz b

a Université Lyon 1, LIRIS UMR CNRS 5205, F-69622, Lyon, France
b Université Paris Sud, LRI UMR CNRS 8623, F-91405, Orsay, France

a r t i c l e i n f o a b s t r a c t

Article history:
Received 3 June 2018
Received in revised form 23 June 2019
Accepted 19 August 2019
Available online 20 September 2019

Keywords:
Graphs
Paths
Regular simple paths
Complexity
Regular languages
Automata

We focus on the computational complexity of regular simple path queries (RSPQs). We
consider the following problem RSPQ(L) for a regular language L: given an edge-labeled
digraph G and two nodes x and y, is there a simple path from x to y that forms a word
belonging to L? We fully characterize the frontier between tractability and intractability
for RSPQ(L). More precisely, we prove RSPQ(L) is either AC

0, NL-complete or NP-complete
depending on the language L. We also provide a simple characterization of the tractable
fragment in terms of regular expressions. Finally, we also discuss the complexity of
deciding whether a language L belongs to the fragment above. We consider several
alternative representations of L: DFAs, NFAs or regular expressions, and prove that this
problem is NL-complete for the first representation and PSpace-complete for the other two.

© 2019 Elsevier Inc. All rights reserved.

1. Introduction

Graph databases have been investigated starting from the late 80s and are now again in vogue due to their wide ap-
plication scenarios, ranging from social networks to biological and scientific databases (see [2] for a survey). Regular path
queries (RPQs) are one of the most notable classes of queries on graph databases. They allow to retrieve pairs of nodes
connected by a path, where the path is described through a regular expression. Such regular path queries are computable in
time polynomial in both query and data complexity (combined complexity). In this paper, we investigate the computational
complexity of regular simple path queries (RSPQs), a variant of RPQ in which the path connecting the pair has to be simple,
i.e., does not have repeated vertices. Given an edge-labeled graph G and a regular language L, an RSPQ selects pairs of
vertices connected by a simple path whose edge labels form a word in L.

The evaluation of RSPQs is NP-complete even for fixed basic languages such as (aa)∗ or a∗ba∗ [20], in sharp contrast with
RPQs. RSPQs are desirable in many application scenarios [17,23,6,15,13,30], such as transportation problems, VLSI design,
metabolic networks, DNA matching and routing in wireless networks. Additionally, regular simple paths have been recently
considered in SPARQL 1.1 queries exhibiting property paths. In particular, recent studies on the complexity of property
paths in SPARQL [3,18] have highlighted the hardness of the semantics proposed by W3C to evaluate such paths in RDF
graphs. Roughly speaking, according to the semantics considered in [18], the evaluation of expressions under Kleene-star
closure should return a simple path, whereas the evaluation of the remaining expressions allows to traverse the same
vertex multiple times. As such, the semantics studied in [18] is an hybrid between regular paths and regular simple paths
semantics. RPQs have been recently found in practice within real-world SPARQL query logs, such as DBPedia and Wikidata

✩ This article is an extended version of [5].

* Corresponding author.
E-mail addresses: guillaume.bagan@liris.cnrs.fr (G. Bagan), angela.bonifati@univ-lyon1.fr (A. Bonifati), benoit.groz@lri.fr (B. Groz).
https://doi.org/10.1016/j.jcss.2019.08.006
0022-0000/© 2019 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.jcss.2019.08.006
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jcss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jcss.2019.08.006&domain=pdf
mailto:guillaume.bagan@liris.cnrs.fr
mailto:angela.bonifati@univ-lyon1.fr
mailto:benoit.groz@lri.fr
https://doi.org/10.1016/j.jcss.2019.08.006

30 G. Bagan et al. / Journal of Computer and System Sciences 108 (2020) 29–48
query logs [8,7,9], showing thus the increasing interest of users manipulating real-world graph datasets with these queries.
In particular, the majority of RPQs analyzed in large corpuses [8,9] belong to the tractable fragment Ctract studied in this
paper, further confirming the applicability and impact of our theoretical investigation.

Contributions. In this paper, we address the long standing open question [20,6] of exactly characterizing the maximal class
of regular languages for which RSPQs are tractable. By “tractable” we mean computable in time polynomial in the size of
the graph. Precisely, we establish a comprehensive classification of the complexity of RSPQs for a fixed regular language L.
A first step towards this important issue has been made in [20]. They exhibit a tractable fragment: the class of languages
closed under taking subword. However, their fragment is not maximal.

Our contributions can be detailed as follows. We introduce a class of languages, named Ctract , for which RSPQs can be
evaluated in polynomial time (data complexity), and even in NL. We then show that RSPQ evaluation is NP-complete for
every regular language that does not belong to Ctract . Consequently, the maximal tractable fragment Ctract characterizes the
frontier between tractability and intractability for this problem, under the hypothesis NL �= NP. We further refine our results
to show the following trichotomy: the evaluation of RSPQ problem is either AC

0, NL-complete or NP-complete. We note that
we consider the language L as a fixed parameter, thus our results characterize the data complexity of RSPQ evaluation.

We also discuss the complexity of deciding, given a language L, whether the RSPQ problem for L is tractable. We
consider several alternative representations of L: DFAs, NFAs or regular expressions. We prove that this problem of deciding
tractability is NL-complete for the first representation and PSpace-complete for the two others.

Next, we give a characterization of the tractable fragment Ctract for edge-labeled graphs in terms of regular expressions.
We also show that Ctract is closed by union and intersection and show that languages in Ctract are aperiodic, i.e., can be
expressed by first-order formulas [29].

We conclude with some minor results that identify further cases where RSPQs admit efficient solutions. We thus prove
that RSPQs are FPT for the class of finite languages. Furthermore, we prove that the problem is also FPT for the class of all
regular languages when the parameter is the size of the path. Finally, we prove that the problem RSPQ is polynomial w.r.t.
combined complexity on graphs of bounded directed treewidth. This is actually a straightforward generalization of a result
of [14].

A preliminary version of the present article has appeared in [5] without proofs of the main results. Here we provide
detailed proofs.

Related work. A few papers deal with RSPQs or are related to them. Lapaugh et al. [16] prove that finding simple paths of
even length is polynomial for non directed graphs and NP-complete for directed graphs. This study has been extended in [4]
by considering paths of length i mod k. Similarly, finding k disjoint paths with extremities given as input is polynomial for
non directed graphs [26] and NP-complete for directed graphs [10]. Using these results, Mendelzon and Wood prove that
evaluating an RSPQ on an edge-labeled directed graph is NP-hard even for fixed languages [20]. However, they show that
the problem can be decided in polynomial time for subword-closed languages. They also show that the problem becomes
polynomial under some restrictions on the size of cycles of both graph and automaton. A subsequent paper [22] proves the
polynomiality for the class of outerplanar graphs. Barrett et al. [6] extend this result, proving that the regular simple path
problem is polynomial w.r.t. combined complexity for graphs of bounded treewidth. Barrett et al. [6] also show that the
problem is NP-complete for the class of grid graphs even when the language is fixed.

We already mentioned that the complexity of evaluating SPARQL property paths has been investigated in previous stud-
ies [18,3]. As highlighted above, the semantics of SPARQL property paths blends the arbitrary paths and simple paths
semantics. Losemann and Martens [18] and Arenas et al. [3] focus on the complexity of evaluating such property paths.
They show that the evaluation is NP-complete in several cases, and exhibit cases in which it is polynomial. More precisely,
Losemann and Martens [18] classify several fragments of property paths with respect to their complexity. Both the seman-
tics and the query fragments are different from the ones in our paper. Counting the number of paths that match a regular
expression (which is permitted for instance in SPARQL 1.1) is hard in many cases [18,3]. Recently, Martens and Trautner [19]
studied the decision- and enumeration problems concerning the evaluation of RPQs by considering several semantics: ar-
bitrary paths, shortest paths, and simple paths. While we prove here a trichotomy for the data complexity of the decision
problem, they focus on the data complexity of the polynomial delay enumeration problem.

Section 2 introduces and illustrates the problem. We then establish our trichotomy. We first show in section 3 why
languages outside our tractable fragment have NP-hard complexity. Section 4 discusses some properties of the tractable
fragment, and shows how those properties (about strongly connected components) lead to a polynomial evaluation algo-
rithm. And finally, Section 5 details our algorithm to deal with the tractable languages.

2. Preliminaries

Let [n] denote the set of integers {1, . . . , n} and [n, m] denote the set of integers {n, . . . , m}.

2.1. Complexity

A TM refers to a Turing Machine and a NDTM refers to a non deterministic Turing Machine. AC
0, L, NL, P, NP, PSpace

refer to the classical classes of complexity [24]. The relations AC
0 ⊆ L ⊂ NL ⊆ P ⊆ NP ⊆ PSpace between these classes are

well known.

G. Bagan et al. / Journal of Computer and System Sciences 108 (2020) 29–48 31
FL is the class of functions computable by a deterministic log-space transducer. The class L
NL is the set of decision

problems computable by a deterministic log-space algorithm with an oracle in NL. The class FL
NL is the set of functions

computable by a deterministic log-space transducer with an oracle in NL. The class FL
NL(NL) is the set of problems reducible

to a problem in NL by a function in FL
NL .

Lemma 1. [24,11] NL = L
NL = FL

NL(NL).

NL
NL is the class of decision problems computable by a non deterministic log-space algorithm with an oracle in NL. The

next lemma is true only if we make some restrictions on the oracle machine model (see [27]): the TM must write on the
oracle tape deterministically i.e. it works deterministically as soon as it starts to write on the tape until it calls the oracle.
The oracle tape is erased at the end of each call.

Lemma 2. [11] NL = NL
NL .

2.2. Graphs

In our paper, we essentially consider db-graphs. A db-graph is a tuple G = (V , �, E) where V is a set of vertices, � is a
set of labels and E ⊆ V × � × V is a set of edges labeled by symbols of �. Given a set S ⊆ V , G[S] the induced subgraph
of G by S is (S, �, E ∩ S × � × S). A path p of a db-graph G from x to y is a sequence (v1 = x, a1, . . . , vm, am, vm+1 = y)

such that for each i ∈ [m + 1], vi is a vertex in G and for each i ∈ [m], (vi, ai, vi+1) is an edge in G . A path p is simple if all
vertices vi in p are distinct. Given a language L ⊆ �∗ , p is L-labeled if a1 . . .am ∈ L. Given a subset S ⊆ V , p is S-restricted
if every intermediate vertex of p belongs to S . Given a simple path p and two vertices x and y in p, p[x, y] denotes the
subpath of p from x to y.

2.3. Languages and automata

Let L be a regular language. Given a word w and a language L, w−1 L = {w ′ : w w ′ ∈ L}. We denote by AL =
(Q L, iL, F L, �L) the minimal DFA for L, and by ML the number of states ML = |Q L | in AL . Whenever the language is
obvious from context, we drop the subscript and write M instead of ML . We assume that AL is complete i.e. �L is a total
function, so that in general AL may have a sink state. For any state q ∈ Q and word w ∈ �∗ , �L(q, w) denotes the state
obtained when reading w from q. For any state q ∈ Q and set of words S ⊆ �∗ , �L(q, S) denotes the set of states q′ such
that there exists w ∈ S with q′ = �L(q, w). Finally, Lq denotes the set of all words accepted from q. For every state q we
denote by Loop(q) the set of all non empty words that allow to loop on q: Loop(q) = {w ∈ �+ | �L(q, w) = q}. We say that
a state q′ is reachable from a state q if q′ ∈ �L(q, �∗). A (strongly connected) component of AL is a maximal set of states
that are pairwise reachable.

The run of L (or AL) over a path p = (v1, a1, . . . , am, vm+1) is the mapping ρ : {v1, . . . , vm+1} → Q L such that: ρ(v1) = iL

and ρ(vi+1) = �L(iL, a1 . . .ai) for every i ∈ [m]. There are many characterizations of aperiodic languages [29]. A language L
is aperiodic if and only if it satisfies �L(q, w M+1) = �L(q, w M) for every state q and word w . Intuitively, that means that
for any state q0 and a word w , in the infinite sequence (q0, q1, q2, . . .) with qi+1 = �L(q, w) for any integer i, there is an
integer M such that qM+1 = qM .

2.4. Regular simple paths

Given a regular language L, we define the following problem:

RSPQ(L)

Input: A db-graph G = (V , �, E), and two vertices x, y ∈ V
Question: Is there a simple L-labeled path from x to y?

For this problem, L is fixed, so we focus on data complexity. Notice that the representation of L does not matter here.
Although we consider the Boolean version of the problem, namely deciding the existence of a path, our algorithms actually
also return a simple L-labeled path.

The main problem that we address in this paper is to distinguish cases when RSPQ(L) is tractable (i.e. decidable in
polynomial time) and when it is not (i.e. NP-hard).

2.5. The class of tractable languages

We recall that M refers to the size of Q L , here and henceforth. We next introduce the class Ctract of languages. We will
prove that it is exactly the class of regular languages for which RSPQ(L) is tractable.

32 G. Bagan et al. / Journal of Computer and System Sciences 108 (2020) 29–48
Definition 1. A regular language L belongs to the class Ctract if the following property is satisfied: for all pairs of states
q1, q2 ∈ Q L and all words w with Loop(q1) �= ∅, Loop(q2) �= ∅, q2 ∈ �L(q1, �∗) and w ∈ Loop(q2), it holds that w MLq2 ⊆ Lq1 .

This definition is merely a technical definition for Ctract , but we will provide in Theorem 6 a more intuitive characteriza-
tions of the class.

Example 1. As an introductory example, consider the language L = a∗(bb+ + ε)c∗ . We observe that this language belongs
to our class Ctract . We wish to decide RSPQ(L), i.e., whether there exists a simple path from x to y labeled by L, given two
vertices x, y of a db-graph G . It is not absolutely trivial that RSPQ(L) can be solved efficiently: RSPQ(a∗bc∗) has indeed been
proved NP-complete. Yet we outline below a polynomial algorithm for L.

We distinguish two cases: there is a simple L-labeled path from x to y if and only if one of the following cases holds:

1: there exists a simple a∗bkc∗-labeled path from x to y for some k ∈ {0, 2, 3}
2: case 1 does not hold and there exists a simple a∗b4b∗c∗-labeled path from x to y.

The first case is the easiest to check. We first check whether y can be reached from x by a (non-necessarily simple)
a∗c∗-labeled path. If we find one, we obtain a simple a∗c∗-labeled path by eliminating its loops. Assume now there is no
a∗c∗-labeled path from x to y. We then check as follows if there exists a simple a∗bkc∗-labeled path from x to y for some
k ∈ {2, 3}: we try every possible assignment for the k middle b-edges. For each combination of k b-edges, we check if the
initial b-edge can be reached from x through an a∗-labeled path (avoiding the vertices of the other b edges), and check if the
final b-edge can lead to y through some c∗-labeled path (avoiding the vertices of the other b edges). In the resulting a∗bkc∗-
labeled path the a∗-labeled prefix and c∗-labeled suffix cannot intersect (we assumed there is no a∗c∗ path). Consequently
we obtain a simple a∗bkc∗-labeled path by eliminating its loops. As the number of possible assignments for k edges (k ≤ 3)
is polynomial, we have proved that we can find out in polynomial time whether case 1 holds.

Let us now assume w.l.o.g. that there is no a∗bkc∗-labeled path from x to y for k ∈ {0, 2, 3}. We can show that in this
second case there exists a simple L-labeled path from x to y if and only if there exist six vertices v1, v2, v3, v4, v5, v6, two
integers la, lb and two sets Sa , Sb satisfying all following conditions:

• the vertices v1, . . . , v6 are all distinct except that v3 may equal v4.
• there is a b-labeled edge from v1 to v2, from v2 to v3, from v4 to v5, and from v5 to v6.
• there is an a∗-labeled path from x to v1 avoiding all other vi s (i > 1). The shortest possible such path has length la .
• Sa is the set of all vertices reachable from x through an a∗-labeled path of length at most la that avoids all vi s (i > 1).
• there is a b∗-labeled path from v3 to v4 of which all vertices (but the first and last) avoid Sa and the vi s. The shortest

possible such path has length lb .
• Sb is the set of all vertices reachable from v3 through any b∗-labeled path of length at most lb that avoids Sa and all

other vi s (i �= 4).
• there is a c∗-labeled path from v6 to y of which all vertices (but the first) avoid Sa and Sb and all other vi s (i < 6).

The figure below summarizes all these conditions.

These conditions can clearly be verified in time polynomial in G . It is relatively clear also that the path constructed above
is an L-labeled simple path from x to y, so the conditions are sufficient to obtain an L-labeled simple path. To prove that
our procedure is correct, we only have to prove that reciprocally, if there exists a simple L-labeled path we can find one
satisfying our restrictions (the conditions above involving the vi , Sa , Sb).

For every shortest L-labeled simple path p from x to y, let v1, . . . , v6 denote the vertices that delimit the first and last
two b-edges of p. We next show that those vertices satisfy the conditions above. The last vertex of p that belongs to Sa
cannot occur after v3 in p. Otherwise, we could obtain a simple path p′ by replacing the prefix of p up to v with a shorter
path through Sa . This resulting path p′ would still be L-labeled by definition of the vi , which contradicts the minimality
of p. A similar argument shows that the last occurrence of a vertex from Sb cannot occur after v6. We conclude that the
paths connecting v3 to v4 in p (resp. v6 to y) exclude respectively all vertices from Sa (resp. Sa ∪ Sb). As a consequence,
the path from x to v1 will only feature vertices from Sa by minimality of p, which proves that vertices v1, . . . , v6 satisfy
the conditions above.

The crux of our approach is to construct the a∗, b∗ and c∗ subpaths independently, lest we enumerate exponentially
many paths. This is why we require that the b∗ subpath avoids Sa: this condition is stronger than necessary to guarantee
the first two subpaths do not intersect, but the stronger requirement allows us to build the two subpaths independently, as
Sa is a superset of the vertices on the subpath from x to v1. Our algorithm for tractable instances will generalize this idea.

G. Bagan et al. / Journal of Computer and System Sciences 108 (2020) 29–48 33
3. Hard languages for RSPQ

This section is devoted to the proof of a hardness result: RSPQ(L) is NP-hard for every regular language L that does not
belong to Ctract . The first step toward that proof lies in the following characterization of Ctract .

Definition 2 (Witness of hardness). Let L be a regular language. A witness for hardness of L is a tuple (wl, wm, wr, w1, w2)

where wl, wr ∈ �∗ and wm, w1, w2 ∈ �+ satisfying

• wl w∗
1 wm w∗

2 wr ⊆ L
• wl(w1 + w2)

∗wr ∩ L = ∅.

Lemma 3. Let L be a regular language that does not belong to Ctract. Then, L admits a witness for hardness.

Proof. Let L be a regular language that does not belong to Ctract . For commodity, we distinguish two cases, depending
on whether L satisfies or not the following property: Lq2 ⊆ Lq1 for every q1, q2 ∈ Q L such that q2 ∈ �L(q1, �∗) and
Loop(q1) ∩ Loop(q2) �= ∅ (Property P).

Let L be a language that does not satisfy Property P , there exist q, q2, wm, w, wr such that �L(q, wm) = q2, w ∈ Loop(q) ∩
Loop(q2), and wr ∈ Lq2 \ Lq . Let wl such that �(iL, wl) = q. Then wl, wm, wr, w1 = w2 = w is a witness for hardness.

We next plan to exhibit a witness for hardness for the case where L satisfies Property P , but we first prove that every
language satisfying property P (whether in Ctract or not) is aperiodic. Let L be a language satisfying Property P , q ∈ Q L

and w a word in �+ . Let also q′ denote the state q′ = �L(q, w M). We denote by q′′ the state �L(q′, w). We want to prove
that q′ = q′′ . By the pigeonhole principle there exists some k0 < k1 ≤ M such that �L(q, wk0) = �L(q, wk1). We then have
�L(q′, wk) = q′ for k = k1 − k0. Then q′ and q′′ both loop on wk , so that Lq′ = Lq′′ by definition of P , hence q′ = q′′ by
minimality. Consequently, L is aperiodic.

Let L be a language that satisfies Property P (and so in particular is aperiodic), but that does not belong to Ctract .
By definition of Ctract there exist states q, q2 and words wl, w1, w2, wm, w ′

r such that �(iL, wl) = q, w1 ∈ Loop(q), w2 ∈
Loop(q2), �L(q, wm) = q2, w ′

r ∈ Lq2 and w M
2 w ′

r /∈ Lq . W.l.o.g. we can suppose that w1 = (w ′
1)

M for some word w ′
1. We

then claim that Lq′ ⊆ Lq for every q′ in �L(q, �∗w1). Indeed, for every q′ ∈ �L(q, �∗w1), there exists some k > 0 such
that �L(q′, wk

1) = q′ , hence q′ loops over w1 by aperiodicity of L. We thus have w1 ∈ Loop(q) ∩ Loop(q′) and therefore
Lq′ ⊆ Lq due to Property P .

Let wr = w M
2 w ′

r . By definition, wm w∗
2 wr ⊆ Lq because wr ∈ Lq2 . We now prove that (w1 + w2)

∗wr ∩ Lq = ∅, because
any word in (w1 + w2)

∗wr can be decomposed into uv with u ∈ ε + (w1 + w2)
∗w1 and v ∈ (w2)

∗wr . We recall that
wr = w M

2 w ′
r /∈ Lq and L is aperiodic, so that v /∈ Lq . Furthermore, we have just proved that q′ = �L(q, u) satisfies Lq′ ⊆ Lq .

Consequently, v /∈ Lq′ and uv /∈ Lq . Thus, wl , wm , wr , w1, and w2 provide a witness for hardness, which concludes the
proof of Lemma 3. �

We can now prove our hardness result, by reduction from Vertex-Disjoint-Path, a problem also used in [20] to prove
hardness in the particular case of a∗ba∗ .

Vertex-Disjoint-Path

Input: A directed graph G = (V , E), four vertices x1, y1, x2, y2 ∈ V
Question: Are there two disjoint paths, one from x1 to y1 and the other from x2 to y2?

Lemma 4. Let L be a regular language that does not belong to Ctract. Then, RSPQ(L) is NP-hard.

Proof. Let L /∈ Ctract . We exhibit a reduction from the Vertex-Disjoint-Path problem to RSPQ(L). According to Lemma 3, L
admits a witness for hardness wl, wm, wr, w1, w2. By definition we get wl(w1 + w2)

∗wr ∩ L = ∅ and wl w∗
1 wm w∗

2 wr ⊆ L.
We build from G a db-graph G ′ whose edges are labeled by non empty words. This is actually a generalization of db-

graphs. Nevertheless, by adding intermediate vertices, an edge labeled by a word w can be replaced with a path whose
edges form the word w .

G ′ is constructed as follows. The vertices of G ′ are the same as the vertices of G . For each edge (v1, v2) in G , we add two
edges (v1, w1, v2) and (v1, w2, v2). Moreover, we add two new vertices x, y and three edges (x, wl, x1), (y1, wm, x2) and
(y2, wr, y). We next prove that RSPQ(L) returns True for (G ′, x, y) iff Vertex-Disjoint-Path returns True for (G, x1, y1, x2, y2).

Assume there is a simple L-labeled path p from x to y in G ′ . By definition of G ′ , this path necessarily goes through
the edge (y1, wm, x2) since wl(w1 + w2)

∗wr ∩ L = ∅. Since p is simple, the subpaths from x1 to y1 and x2 to y2 are
disjoint, hence Vertex-Disjoint-Path returns True for (G, x1, y1, x2, y2). Reciprocally, if Vertex-Disjoint-Path returns True for
(G, x1, y1, x2, y2), there exist disjoint paths from x1 to y1 and from x2 to y2. By definition these two paths match a word
in (w1 + w2)

∗ . We can then obtain two disjoint simple paths, one from x1 to y1 matching a word in w∗
1 and one from

x2 to y2 matching a word in w∗ . To obtain those paths we keep the vertices as the original paths, eliminate the loops if
2

34 G. Bagan et al. / Journal of Computer and System Sciences 108 (2020) 29–48
Fig. 1. Reduction for L = a∗b(cc)∗d.

there are any, and switch w1 and w2 edges where needed: we can always replace a w1 edge with a w2 by construction
of G since every pair of vertices is connected by both types of edges or none. Concatenating the edge (x, wl, x1) with the
first path, the edge (y1, wm, x2), the second path and the edge (y2, wr, y) provides a simple L-labeled path p from x to y,
which concludes our proof. We illustrate in Fig. 1 the reduction for L = a∗b(cc)∗d, on an instance (G, x1, y1, x2, y2), choosing
wl = w1 = a, wm = b, w2 = cc, and wr = d. �

This concludes our proof that languages outside Ctract are intractable. After this negative result, we now focus on the
positive result, namely that languages in Ctract admit efficient algorithms.

4. Properties of languages in Ctract

The main result of this paper is that for every L ∈ Ctract , RSPQ(L) ∈ NL. The algorithm to evaluate efficiently RSPQ(L)

exploits a particular kind of pumping argument between strongly connected components of the automaton. This pumping
argument proves that if we build carefully a path using the usual reachability algorithm inside the strongly connected
components, then we need not care about possible intersections between subpaths corresponding to different components.
In this section, we introduce and prove this pumping argument in Lemma 11 through a serie of technical lemmas about the
structure of automata that recognize Ctract languages.

4.1. Alternative characterization of Ctract

To begin with, we prove that every language from Ctract is aperiodic and deduce an alternative characterization of Ctract .

Lemma 5. Let L be a regular language in Ctract . Then L is aperiodic.

Proof. In the proof of Lemma 3 we defined a property P and showed that languages satisfying property P are aperiodic. We
show that every L ∈ Ctract satisfies property P . Let L ∈ Ctract , q1, q2 ∈ Q L and w satisfy q2 ∈ �L(q1, �∗) and w ∈ Loop(q1) ∩
Loop(q2). By definition of Ctract , w MLq2 ⊆ Lq1 , hence Lq2 ⊆ Lq1 because w ∈ Loop(q1). �

We then exploit this aperiodicity property to establish the following characterization of Ctract , which strengthens the
requirements from Definition 1 on the loops of AL .

Lemma 6. Let L be a regular language. Then, L belongs to Ctract iff for every pair of states q1, q2 ∈ Q L such that Loop(q1) �= ∅,
Loop(q2) �= ∅ and q2 ∈ �L(q1, �∗), the following statement holds: (Loop(q2))

MLq2 ⊆ Lq1 .

Proof. The (if) implication is immediate by Definition 1. Let us now prove the (only if) implication. Assume L ∈ Ctract .
Let q′

1, q
′
2 ∈ Q L satisfy Loop(q′

1) �= ∅, Loop(q′
2) �= ∅, q′

2 ∈ �L(q′
1, �

∗), and let w ∈ Loop(q′
2). Let also q3 denote the state

�L(q′
1, w

M). Then Definition 1 implies w MLq′
2
⊆ Lq′

1
. Thus, Lq′

2
⊆ Lq3 . The crux of the proof is to choose carefully q′

1, q′
2

and w to exploit the constraints on Lq3 .
Let q1, q2 be two states such that Loop(q1) �= ∅, Loop(q2) �= ∅ and q2 ∈ �L(q1, �∗). Let (v1, . . . , v M) be a sequence of

words in (Loop(q2))
M and q3 = �L(q1, v1 . . . v M). We wish to prove Lq2 ⊆ Lq3 .

For some i, j, 0 ≤ i < j ≤ M , we get �L(q1, v1 . . . vi) = �L(q1, v1 . . . v j), using the convention �L(q1, v1 . . . vi) = q1 for
i = 0. Let u1 = v1 . . . vi , u2 = vi+1 . . . v j and u3 = v j+1 . . . v M . Let q4 = �L(q1, u1). We claim that Lq2 ⊆ Lq4 . The result then
follows from Lq2 = u−1

3 Lq2 ⊆ u−1
3 Lq4 = Lq3 . To prove the claim, let w = u1uM

2 and q5 = �L(q1, w M). As �L(q1, w M) =
q5 and w ∈ Loop(q2), we get Lq2 ⊆ Lq5 through Definition 1 with q1, q2 and w . Furthermore, u2 belongs to Loop(q5)

because L is aperiodic. To conclude the proof, we observe that Lq5 ⊆ Lq4 , by Definition 1 with q5, q4 and u2, and because
�L(q4, uM

2) = q4 and u2 ∈ Loop(q5).1 �
1 This last application of Definition 1 corresponds actually to observing that every language in Ctract satisfies property P from Lemma 3.

G. Bagan et al. / Journal of Computer and System Sciences 108 (2020) 29–48 35
4.2. Technical lemmas on the components of AL

In this section, we show properties about the components of Ctract languages. Notice that states in a component are
mutually reachable, but not reachable from states in other components that they can reach themselves. From now on,
and until the end of the section, we fix a language L ∈ Ctract . We introduce in Lemmas 9 and 11 the pumping argument
that we exploit in the algorithm to compute a simple path. In the other lemmas we prove auxiliary results, based on the
decomposition of the automaton in strongly connected components. We prove that components of languages in Ctract are
very particular, in the sense that every word staying long enough in the component is synchronizing. A preliminary lemma
shows that two distinct states q1 and q2 in the same component cannot loop on the same word.

Lemma 7. Let q1 and q2 be two states belonging to the same component of AL. If Loop(q1) ∩ Loop(q2) �= ∅, then q1 = q2 .

Proof. Let q1, q2 as above, and let w a word in Loop(q1) ∩ Loop(q2). According to Definition 1, w MLq2 ⊆ Lq1 , hence Lq2 ⊆
Lq1 since w ∈ Loop(q1). By symmetry, Lq2 = Lq1 , which implies q2 = q1. �

The next two lemmas characterize the internal language of a component.

Lemma 8. Let C be a component of AL , q1, q2 ∈ C and a ∈ �. Then �L(q1, a) ∈ C iff �L(q2, a) ∈ C.

Proof. Let q1 �= q2 two states in the same component C . Let a satisfy �L(q1, a) ∈ C . Let also w ∈ Loop(q1) ∩ a�∗ and
q3 = �L(q2, w M): a and w necessarily exist because C is the strongly connected component of q1 and q2. We next prove
that q3 belongs to C : by our definition of C , this implies �L(q2, a) ∈ C . As L is aperiodic, w ∈ Loop(q3), and consequently,
w MLq3 ⊆ Lq1 by Definition 1. Furthermore, w MLq1 ⊆ Lq2 also by Definition 1. Hence Lq3 ⊆ Lq1 and Lq1 ⊆ (w M)−1Lq2 =
Lq3 . Thus, Lq1 = Lq3 and, by minimality of AL , q1 = q3, so that q3 ∈ C . �
Notation 1. We denote the internal alphabet of a component C of AL by �C = {a ∈ � : ∃q1, q2 ∈ C .�L(q1, a) = q2}.

As a direct consequence of Lemma 8 we get:

Lemma 9. Let C be a component of AL , q ∈ C and w ∈ �∗ . Then �L(q, w) ∈ C iff w ∈ (�C)∗ .

Finally, we prove that inside a component, every word with length at least M2 is synchronizing. This result is the core
of our pumping argument between strongly connected components as exposed in Lemma 11.

Lemma 10. Let C be a component of AL , �C be the internal alphabet of C , q1, q2 be two states of C and w ∈ (�C)M2
. Then,

�L(q1, w) = �L(q2, w).

Proof. Assume that w = a1 . . .aM2 . For each i from 0 to M2 and α = 1, 2, let qα,i = �L(qα, a1 . . .ai). Since there are at
most M2 distinct pairs (q1,i, q2,i), there exist i, j, with i < j such that q1,i = q1, j and q2,i = q2, j . By Lemma 9, q1,i, q2,i ∈ C .
Let w ′ = ai+1 . . .a j . We have w ′ ∈ Loop(q1,i) ∩ Loop(q2,i), hence q1,i = q2,i by Lemma 7. As a consequence, �L(q1, w) =
�L(q2, w). �

Notice that the above lemma still holds for w ∈ (�C)M2
�∗

C . Here and thereafter, we fix the constant N = 2M2.

Lemma 11. Let q1, q2 be two states such that Loop(q1) �= ∅, Loop(q2) �= ∅, and q2 ∈ �L(q1, �∗). Let C be the component that contains
q2 and �C be the internal alphabet of C. Then, Lq2 ∩ (�C)N�∗ ⊆ Lq1 .

Proof. Let w ∈ Lq2 ∩ (�C)N�∗ . There are some words u, v ∈ (�C)M2
, w ′ ∈ �∗ such that w = uv w ′ . By Lemma 9 and

the Pigeonhole Principle, there exist a state q3 ∈ C and M + 1 non-empty words v1, . . . , v M+1 such that v = v1 . . . v M+1
and �L(q2, uv1 . . . vi) = q3 for every i ∈ [M]. Therefore, w ∈ uv1(Loop(q3))

M−1 v M+1 w ′ . By Lemma 10, �L(q3, uv1) =
�L(q2, uv1) = q3. Thus, w belongs to both (Loop(q3))

M v M+1 w ′ and Lq3 . By Lemma 6, w ∈ Lq1 . �
Or main result focuses on data complexity and therefore assumes the language (hence N) is constant. Yet the complexity

will be exponential in N therefore we next prove, for the sake of efficiency, that we can take N = M in Lemma 11.

Lemma 12. Let q1, q2 be two states such that Loop(q1) �= ∅, Loop(q2) �= ∅, and q2 ∈ �L(q1, �∗). Let C be the component that contains
q2 and �C be the internal alphabet of C. Then, Lq2 ∩ (�C)M�∗ ⊆ Lq1 .

36 G. Bagan et al. / Journal of Computer and System Sciences 108 (2020) 29–48
Proof. Lemma 10 shows that all words of length at least M2 are synchronizing inside a component. A straightforward
partition-refinement argument [25] shows that for every k, k′ and every k-states DFA, if words of length k′ are synchronizing,
then words of length k are already synchronizing. This shows that words of length |C | are synchronizing inside a component
of AL , hence it is enough to assume w ∈ (�C)|C | in Lemma 10.

With the assumptions of Lemma 11, let w = uv ∈ Lq2 such that u ∈ (�C)M . As u synchronizes C , �(q2, uM+1 v) =
�(q2, uv) ∈ F . If �(q1, u) ∈ C then �(q1, uM+1 v) ∈ F since L ∈ Ctract . Furthermore, �(q1, uv) = �(q1, uM+1 v) as u synchro-
nizes C . As a consequence, �(q1, uv) ∈ F .

Otherwise the automaton avoids C while reading u from q1 and as a consequence there exist C ′, u1, u2, u3 sat-
isfying the following 4 conditions: u = u1u2u3, �(q, u1) ∈ C ′ , u2 ∈ (�C ′)|C ′| and |u3| ≥ |C |. Then �(q2, u1uN

2 u3 v) =
�(q2, uv) ∈ F because u3 synchronizes C . By Lemma 11, this implies �(q1, u1uN

2 u3 v) ∈ F . As u2 synchronizes C ′ ,
�(q1, uv) = �(q1, u1uN

2 u3 v) and therefore belongs to F . In both cases, w ∈ Lq1 , which concludes our proof. �
5. Computing RSPQ(L) for L in Ctract

In this section, we describe a polynomial algorithm that computes RSPQ(L) when L belongs to Ctract . A (non-necessarily
simple) L-labeled path between two points could be computed incrementally using dynamic programming: we only need
to record the last vertex in the (partial) path together with the corresponding state. But this approach is not adequate to
build a simple path, as we need to memorize all the vertices in the path to check the absence of loops. The approach may
thus lead to consider an exponential number of paths.

Nevertheless, we will show that in the case where L belongs to Ctract , we can identify a constant number of vertices that
suffice to check if the path is (or can be transformed into) a simple path labeled with L. Section 5.1 defines path summaries
that record these “critical” vertices, while Section 5.2 explains how we can restore any shortest simple L-labeled path from
its summary. Finally, Section 5 presents our algorithm for RSPQ, which enumerates all candidate summaries in logarithmic
space, until it finds a candidate summary from which it can restore a simple L-labeled path.

5.1. Defining summaries

Roughly speaking, the idea of a summary is to keep only a bounded number of vertices of p, that depends only on L.
Notice that in a run of AL over p, states of the same component appear consecutively. Indeed, if one leaves a component
of AL , one cannot re-enter it later. Inspired by Lemma 12, we will only record the first and the M last vertices having their
state in C , for each component C of AL . When the number of such vertices is greater than M + 1, we replace the path
between the first vertex and the M last ones by a cut symbol cutC . This symbol intuitively represents a �∗

C -labeled path
that has been cut from the path. More formally, a summary is defined as follows.

Definition 3 (Long run components). Let p = (v1, a1, . . . , am, vm+1) be a path and let ρ be the run of L over p. A long run
component of p is a component C of AL such that there are at least M + 2 vertices v in p such that ρ(v) ∈ C . We denote
by C1, . . . , Cl the long run components of p (the sequence is sorted by order of appearance in p). For each integer i ∈ [l],
�Ci is the internal alphabet of Ci , lefti is the first vertex v j of p such that ρ(v j) ∈ Ci and righti is the last vertex v j of p
such that ρ(v j), . . . , ρ(v j+M) ∈ Ci .

Definition 4 (Cut symbols and summary). We introduce a new “cut” symbol cutC for each component C of AL . The set of all
cut symbols is denoted by Cuts. Let p = (v1, a1, . . . , am, vm+1), ρ a run over p, and (Ci, �Ci , lefti, righti)i∈[l] be as stated in
Definition 3. The summary S of the path p (w.r.t. AL) is the sequence obtained from p by replacing, for each i ∈ [l] the
subpath p[lefti, righti] by the sequence (lefti, cutCi , righti).

Example 2 depicts a path together with its summary.

Example 2. Fig. 2a represents the minimal DFA for L = a(c≥2 + ε)(a + b)∗(ac)?a∗ (we did not represent the sink state). This
automaton can loop in three strongly connected components: C1 = {q4}, C2 = {q5, q6}, and C3 = {q7}. The accepting states
are q2, q4, q5, q6, and q7. For this automaton, we observe that Lemma 12 still holds after replacing exponent M with 2.
Consequently, we shall pretend that M = 2 when defining the long run components and summary in our example. This
means we only store the first and last 3 (instead of 8) vertices of each component, which will simplify our illustrative
example.

Let us consider the path p1 illustrated in Fig. 2b with thick edges. Fig. 2c details the run over this path.
We observe that p1 is a simple L-labeled path. The summary S of p1 is obtained by removing the second (resp. second

and third) vertex with state in C1 (resp. C2). The vertices on a white background in Fig. 2c are thus eliminated from the
summary and replaced with their respective cut symbol cutC1 and cutC2 :

S =(v1,a, v2, c, v3, c, v4, cutC1 , v7, c, v8, c, v9,

a, v10, cutC2 , v13,a, v14,a, v15).

G. Bagan et al. / Journal of Computer and System Sciences 108 (2020) 29–48 37
Fig. 2. Components, summaries and safe completions.

We also observe that in a summary, all cut symbols are clearly distinct by definition of strongly connected components.
A summary therefore contains at most M(M + 2) = O (M2) elements (vertices, labels and cut symbols), which is constant if
L is fixed. As a consequence, each summary can be represented with a logarithmic number of bits.

We next define a candidate summary as an alternative sequence of vertices and symbols or cut symbols of the form
above.

Definition 5 (Candidate summary). We define as a candidate summary S any sequence of vertices and labels of the form
above; S = (v1, α1, . . . , αm, vm+1) where αi ∈ � ∪ Cuts for every i ∈ [m], all cut symbols are distinct, and m ≤ M . Similarly
to Definition 3, we denote by cutC1 , . . . , cutCl the sequence of cut symbols appearing in S . Furthermore we define, for each
i ∈ [l], lefti (resp. righti) as the vertex at left (resp. right) of cutCi in p.

Every summary is clearly a candidate summary but a candidate summary needs not be the summary of any L-labeled
path, let alone a simple one.

Definition 6. A path p obtained by replacing each subsequence (lefti, cutCi , righti) with a simple �∗
Ci

-labeled path from lefti

to righti is called a completion of the candidate summary S .

By definition, completion and summary are inverse operations in the following sense:

Lemma 13. Let S be the summary of an L-labeled path p and let p′ be a completion of S. Then, p′ is an L-labeled path with summary S.

38 G. Bagan et al. / Journal of Computer and System Sciences 108 (2020) 29–48
For each candidate summary S that happens to be a summary, we could compute in NL a completion of S . For instance,
this can be done by repeatedly using a reachability oracle. By definition, this completion p is an L-labeled path from a
summary S . However, the path p is not necessarily simple, even if S is the summary of a simple path. The reason is that
the paths (pi)i∈[l] we have built between each lefti and righti are not necessarily disjoint.

5.2. Safe completions

The completion of a summary needs not be a simple path. We therefore define in this section safe completions such
that safe completions are always simple L-labeled paths, and reciprocally every shortest simple L-labeled paths is a safe
completion of its summary.

For that purpose, we will define local domains Set1, . . . , Setl which are disjoint sets of vertices from G . For each i ∈ [l],
the safe completions require the path pi between lefti and righti to be Seti -restricted. Consequently, these paths will be
disjoint. To guarantee that reciprocally we can find a safe completion for the summary of a shortest simple L-labeled path,
we define Seti to the set of vertices that might occur on a shortest �∗

Ci
-labeled path from lefti to righti that avoids all Set j

(j < i):

Definition 7 (Local domains). Let S be a candidate summary. We denote by (Ci, lefti, righti)i∈[l] its components as stated in
Definition 5, and denote by V (S) the set of vertices appearing in S . We define the local domains Seti recursively for each
i from 1 to l. The set Seti is defined as a subset of V i = V \ (V (S) ∪ ⋃

j<i Set j), as follows. If there is no V i -restricted
�∗

Ci
-labeled simple path p from lefti to righti , then Seti = ∅. Otherwise, we denote by ki the length of the shortest such

path and define Seti as the set of vertices y in V i that can be reached from lefti by a V i -restricted �∗
Ci

-labeled path p of
length at most ki − 1.

The following lemma is a direct consequence of Definition 7.

Lemma 14. Let S be a candidate summary. Then all sets V (S), (Seti)i∈[l] from Definition 7 are disjoint.

Definition 8 (Safe completion). Let p be a path with label in L and summary S . We qualify p as safe completion of summary
S if the following two conditions are satisfied: (a) all vertices appearing in S are distinct and (b) for every i ∈ [l], the path
p[lefti, righti] is simple and Seti -restricted.

By the definition and Lemma 14, a safe completion is necessarily simple.

Lemma 15. Let S be a candidate summary. Every safe completion of S is a simple L-labeled path.

Example 3. The path p1 defined in Example 2 is a safe completion, since Set1 = {v5, v6} and Set2 = {v11, v12}, as illustrated
in Fig. 2b. The definition of safe completions guarantees the paths replacing cutC1 and cutC2 are disjoint. Indeed we can
check that {v5} ∩ {v11, v12} = ∅.

Being a safe completion is clearly more restrictive than being a simple path. However, it turns out that shortest simple
paths are safe completions, as shown below. That means that the existence of a simple path is equivalent to the existence
of a safe completion.

Lemma 16. Let (G, x, y) be a RSPQ(L) instance. Every shortest simple L-labeled path from x to y is a safe completion of its summary.

Proof. Let p = (v1, a1, . . . , am, vm+1) be a shortest simple L-labeled path from x to y. Assume that p is not a safe comple-
tion. That means there is some i0 and vertex v between lefti0

and righti0
such that v /∈ Seti0 . Equivalently, if p is not a safe

completion, then there exists some i and some vertex v on the path that satisfy one of the following two properties P1(i)
or P2(i): (1) v satisfies P1(i) if there is j > i such that v is visited between left j and right j , and v ∈ Seti (2) v satisfies
P2(i) if no vertex v ′ satisfies P1(i), v is visited between lefti and righti , and v /∈ Seti . Intuitively, case (2) covers the case
where the path between lefti and righti stays within V i but fails to stay within Seti .

We choose a minimal such i. For each of the two cases, we will construct a path p′ shorter than p from x to y. We then
prove that p′ is an L-labeled simple path, which contradicts our assumption that p is the shortest such path.

Case (1): let v be a vertex satisfying property P1(i). Then, by definition of Seti , there is a Seti -restricted �∗
Ci

-labeled
simple path sp from lefti to v that is shorter than the subpath p[lefti, righti] and, consequently, shorter than p[lefti, v]. Let
p′ be the path obtained from p by replacing p[lefti, v] with sp. This path p′ is shorter than p. For the remainder of the
proof we assume that v is the last visited vertex in p satisfying property P1(i) and we define p′ accordingly.

Case (2): let v ′ be a vertex satisfying property P2(i). There is a Seti -restricted L-labeled simple path sp between lefti
and righti that is shorter than p[lefti, righti]. We choose p′ as the path obtained from p by replacing p[lefti, righti] with sp.
Furthermore, for homogeneity of the proof, we define j = i and v = righti (v is not the vertex satisfying property P2(i)).

G. Bagan et al. / Journal of Computer and System Sciences 108 (2020) 29–48 39
The remainder of the proof is common to the two cases. We need to prove that p′ is a simple L-labeled path. We first
prove that p′ is an L-labeled path. Let ρ ′ be the run of L over p′ . Let w be the word formed by the labels of the subpath
p[v, y]. We know that w ∈ Lρ(v) since p is an L-labeled path. We will show using Lemma 11 that w ∈ Lρ ′(v) . By definition,
ρ ′(lefti) belongs to the component Ci and the path s = p′[lefti, v] is �∗

Ci
-labeled, hence ρ ′(v) ∈ Ci by Lemma 9. Furthermore

ρ(v) ∈ C j and C j is reachable from Ci . In addition, by definition of a summary, there are at least M + 1 vertices v ′′ of p
after v (including v) such that ρ(v ′′) ∈ C j , and therefore the M labels following vertex v in p belong to �C j by Lemma 9
again. The definition of components Ci, C j guarantees that q1, q2 admit loops. We have thus proved that q1 = ρ ′(v) and
q2 = ρ(v) meet all requirements for Lemma 12, which implies w ∈ Lρ ′(v) . Consequently, p′ is an L-labeled path.

We now prove that p′ is simple. Since p is simple, it suffices to prove that the vertices in sp (between lefti and v) are
disjoint with other vertices in p′ . Notice that all intermediate vertices of sp belong to Seti . By minimality of i, for all i′ < i,
the vertices between lefti′ and righti′ belong to Seti′ and, since Seti′ and Seti are disjoint (Lemma 14), do not belong to Seti .
Consequently, there is no vertex v ′ before lefti such that v ′ belong to Seti . By construction, in the two cases (1) and (2),
there is no vertex v ′ after v such that v ′ belongs to Seti . This concludes the proof. �

We observe that many of our summary and completion definitions were actually tailored for this Lemma 16: our proof
by contradiction explains for instance why our definition of Seti guarantees the existence of a safe completion. And our
application of Lemma 12 in that proof explains why our summaries feature M + 2 vertices of each component.

We next show how a summary admitting a safe completion can be completed in logarithmic space into a simple path.

5.3. An algorithm for RSPQ via safe completions

We next introduce Algorithm 1, show that it computes simple L-labeled path from x to y, and analyze its complexity.

Algorithm 1 Algorithm for RSPQ(L).
(* Fixed parameter: AL . Input: graph G , vertices x, y. *)

1: for all candidate summary S do
2: if Safe-completion(S) �= ∅ then
3: return Safe-completion(S)

4: procedure Safe-completion(S)
(* Denoting by (Ci , �Ci , lefti , righti)i∈[l] the components of S *)

5: if the vertices of S are not distinct then
6: return ∅
7: for all i ∈ [l] do
8: Compute a shortest Seti -restricted �∗

Ci
-labeled path from lefti to righti

9: if there is such a path then
10: replace in S the sequence (lefti , cutCi , righti) by that path
11: else return ∅
12: if the resulting path p is L-labeled and has summary S then
13: return p
14: else return ∅

Theorem 1. Algorithm 1 returns a simple L-labeled path from x to y if there is one. The algorithm can be implemented in NL.

We first prove that local domains Seti can be computed in logarithmic space.

Lemma 17. Let L be a fixed language in Ctract . The following problem PSet is in NL. Given an instance (G, x, y) of RSPQ(L), a candidate
summary S, a vertex z and an integer i, decide whether z ∈ Seti .

Proof. For each k ≥ 0, let Pk
Set be the decision problem PSet with the restriction i ≤ k: (G, x, y, S, z, i) ∈ Pk

Set iff
(G, x, y, S, z, i) ∈ PSet and i ≤ k.

Clearly, the number l of cuts in a summary S as in Definition 4, is bounded by the number K of strongly connected
components of L. Consequently, PSet = P K

Set . Notice that K is a constant that does not depend on the instance. Let us prove,
that Pk

Set ∈ NL for each k ∈ [0, K]. The proof is by induction on k. If k = 0, P 0
Set always returns False because Seti is not

defined for i = 0. So P 0
Set is trivially in NL. Assume, by induction, that P k

Set ∈ NL. It suffices to show that there is an NL-

algorithm for Pk+1
Set using Pk

Set as oracle. Since NL
NL = NL (Lemma 2), this implies that Pk+1

Set ∈ NL. Let (G, x, y, S, z, i) be an
instance of Pk+1

Set . If i ≤ k, we return the same answer as the oracle P k
Set . If i = k + 1, using the definition and notations

of Setk+1, the problem essentially boils down to computing the distances between the vertices leftk+1 and z on one hand,
leftk+1 and rightk+1 on the other hand in the graph G ′ = (V ′, E ′) where V ′ = Vk+1 ∪ {leftk+1, rightk+1} and E ′ is the set
of �Ck+1 -labeled edges of G[V ′]. In order to remain within logarithmic space, the graph G ′ is not stored in memory but
simulated. The distance computation can thus clearly be performed in non deterministic log-space using the oracle P k . �
Set

40 G. Bagan et al. / Journal of Computer and System Sciences 108 (2020) 29–48
Lemma 18. Let L be a fixed language in Ctract , (G, x, y) an instance of RSPQ(L) and S a summary. Procedure Safe-completion(S)
from Algorithm 1 returns in NL a safe completion p from x to y if there is any, and returns ∅ otherwise.

Proof. The correctness of the procedure is immediate as it matches the definition of safe completions. We still have to
check the complexity. To achieve logarithmic space, we do not store the Seti in memory: we only need to check on-the-fly
if a given vertex belongs those sets, using Lemma 17. This proves the algorithm can easily be implemented in NL. �

We can now prove Theorem 1. By Lemmas 15 and 16, there exists a safe completion from x to y if and only if there is
a simple path from x to y. Lemma 16 implies that Algorithm 1 identifies a safe completion if there is one, so the algorithm
is correct. The complexity is in NL as candidate summaries have constant size and therefore can be enumerated in NL,
whereas completions are computed in NL according to Lemma 16. This concludes the proof of Theorem 1.

Notice that we can easily adapt Algorithm 1 so that it outputs a shortest path for positive instances. The main theorem
summarizes our results, combining Lemma 4 with Theorem 1.

Theorem 2. Let L be a regular language. Then, RSPQ(L) is in NL if L ∈ Ctract and is NP-complete otherwise.

5.4. Towards a complete classification

We have partitioned RSPQ(L) problems into NL and NP-complete problems. We next refine the classification within the
class of NL problems.

Lemma 19. For every regular language L, RSPQ(L) ∈ AC
0 if L is finite, otherwise RSPQ(L) is NL-hard.

The proof is based on a reduction from the following NL-complete problem [24].

Reachability

Input: A directed graph G and two vertices x, y in G
Question: Is there a path from x to y?

Proof. (Membership) For a finite language L, RSPQ(L) can easily be defined by a first-order formula, more precisely a
disjunction of conjunctive formulas. Consequently, RSPQ(L) ∈ AC

0 [12].
(Hardness) We exhibit a reduction from Reachability. Let L be an infinite regular language. By the Pumping Lemma, there

exist non empty words u, v, w such that uv∗w ⊆ L. We build a db-graph G ′ from G by first labeling every edge of G with
v , and then adding two vertices x′ and y′ with edges (x′, u, x) and (y, w, y′). There is a (not necessarily simple) path from
x to y in G iff there is an L-labeled simple path from x′ to y′ in G ′ . Consequently, RSPQ(L) is NL-hard. �

Our results so far can be summarized in the following trichotomy which refines Theorem 2.

Theorem 3. Let L be a regular language. The complexity of RSPQ(L) can be determined as follows.

1. L is finite: RSPQ(L) ∈ AC
0;

2. L ∈ Ctract and L is infinite: RSPQ(L) is NL-complete;
3. L /∈ Ctract : RSPQ(L) is NP-complete.

6. Variations

In this Section, we analyze the computational complexity of variations of the main problem: allowing ε-edges, finding
shortest paths in weighted graphs and finding paths that minimize repetitions of vertices.

6.1. Db-graphs with ε-edges

We observed in Lemma 4 that RSPQ(L) does not become harder if we allow edges labeled by non empty words. However,
we have not discussed yet the complexity of RSPQ(L) when we allow edges labeled by ε . We name RSPQε(L) this variation
of RSPQ(L). We show that the class of tractable languages RSPQε(L) corresponds to the languages closed under subwords,
and consequently is a strict subset of Ctract .

Theorem 4. Let L be a regular language. The complexity of RSPQε(L) can be determined as follows.

1. L is empty: RSPQε(L) is trivial i.e. does not contain positive instances;

G. Bagan et al. / Journal of Computer and System Sciences 108 (2020) 29–48 41
2. L is non empty and closed under subwords: RSPQε(L) is NL-complete;
3. L is not closed under subwords: RSPQε(L) is NP-complete.

Proof. 1) is straightforward.
2) The membership in NL is straightforward: for any subword closed language L, there exists a simple L-labeled path

from x to y in G if and only if there exists an L-labeled path (simple or not) from x to y in G . This can obviously be checked
in NL. We next prove that RSPQε(L) is NL-hard. Since L is not empty, let w be a word in L. The reduction is identical to
the reduction of Lemma 19. We choose u = v = ε and w as defined above.

3) Since L is not closed under subwords, there exist words u, v, w such that uv w ∈ L and uw /∈ L. The reduction is
identical to the reduction of Lemma 4. We choose w1 = w2 = ε , wl = u, wm = v and wr = w . �
6.2. Shortest path in weighted graphs

In this section, we consider the following problem:

weighted-RPQ(L, C)

Input: A db-graph G , two vertices x and y and a positive weight function W over the edges of G
Objective: Find a simple path L-labeled path p from x to y with minimal weight W (p) if such a path exists

The problem can be solved with a straightforward generalization of Algorithm 1. Edges of weight 0 are the only ones
that require special care. Indeed, in the proof of Lemma 16, we start from a shortest path p and build a path p′ shorter
than p with the goal of showing a contradiction. When both p and p′ can have weight 0, there may be no contradiction.
To overcome this problem, one can for instance define weights over a product order to count the number of edges with
weight 0: if the weights are originally defined over some ordered set W , we assign to each edge e the weight (w, 0) if e
has weight w > 0, and (w, 1) otherwise. The weights of the edges along a path are summed componentwise, and paths are
compared based on a lexicographic order. This means that the number of edges with weight 0 along a path is solely used
to break ties.

6.3. Paths that minimize repetitions of vertices

We next show that our technique and results extend to generalizations of the simple path problem that do not forbid
but only limit repetitions of vertices along the path.

Definition 9. Let p be a path and v1, . . . , vm be the sequence of vertices appearing in p. We define rep(p) as the multiset
keeping only vertices vi for which there is v j , j < i such that vi = v j . We denote by nbrep(p) the cardinality of rep(p).

Clearly p is a simple path if and only if nbrep(p) = 0. We consider the following problem:

rep-RPQ(L)

Input: A db-graph G , two vertices x and y and an integer k ≥ 0
Question: Is there an L-labeled path p from x to y such that nbrep(p) ≤ k?

Lemma 20. Let L ∈ Ctract . Then there is a constant K L such that for every db-graph G and L-labeled path p from x to y in G, there
exists an L-labeled path p′ from x to y with nbrep(p′) ≤ K L .

Proof. Let p be an L-labeled path from x to y that minimizes nbrep(p). We will prove that all occurrences of a given vertex
v appear in the summary S except at most one. This is sufficient for the proof since the size of the summary S is bounded
by a constant. Assume, for the sake of contradiction, that p is of the form (v1, a1, . . .al, vl+1) and contains two occurrences
vi, v j of the same vertex such that vi and v j are not in the summary of p. Let p′ = (v1, . . . vi, a j, v j+1, . . . , vl+1). Then,
nbrep(p′) < nbrep(p), and p′ is an L-labeled path by Lemma 11. �
Theorem 5. Let L ∈ Ctract . Then, rep-RPQ(L) ∈ NL.

Proof. Given a db-graph G and a multiset A of vertices in G , we define the graph c(G, A) as follows. We start from G and
for each vertex x in A we add a new vertex in G which is a copy of x i.e. has the same incoming and outgoing edges as x
has.

By construction, we have the following property: there exists an L-labeled simple path from x to y in c(G, A) iff there
exists an L-labeled path p from x to y in G such that rep(p) ⊆ A. Consequently, it suffices to enumerate all multisets A of

42 G. Bagan et al. / Journal of Computer and System Sciences 108 (2020) 29–48
Table 1
A family of regular expressions for Ctract .

�seq ::= w + ε | A≥k + ε | �seq�seq

�tr ::= w�seq w ′ | �tr + �tr

where w, w ′ ∈ �∗, A ⊆ �

at most k vertices and check if, for one of them, c(G, A), x, y is a positive instance of RSPQ(L). Thanks to Lemma 20, we do
not have to consider multisets of more than K L vertices.

Moreover, it is easily seen that c is a function in FL. Thus, we obtain the following algorithm for rep-RPQ(L).

Algorithm 2 Algorithm for rep-RPQ(L).
1: for each multiset A of min(k, KL) vertices do
2: if c(G, A), x, y is a positive instance of RSPQ(L) then
3: return true
4: return false

�
Other constraints on repetitions may be worth mentioning. It is obvious that Lemma 20 and therefore also Theorem 5

still hold if we define nbrep(p) as the maximal number of occurrences of a vertex in p. Or if we define nbrep(p) as the
number of distinct vertices that are repeated (one or several times) in p.

7. Characterization by regular expressions

In this section, we propose two characterizations of Ctract languages. The first in terms of regular expressions and the
second in terms of a pumping property. Unlike the other properties discussed before on the minimal DFA of L, the pumping
property is expressed directly on the language L. The languages in Ctract are exactly those that can be expressed with an ex-
pression in the fragment �tr defined in Table 1. This fragment enforces restrictions on the concatenation of subexpressions:
roughly speaking, only expressions of the form e + ε can be concatenated.

Example 4. For instance, the expression a∗(b≥2 +ε)c∗ investigated in Example 1 belongs to the fragment �tr (using notation
c∗ = c≥0). Expression a∗ba∗ + (a + b)∗ , on the opposite, does not, but is clearly equivalent to (a + b)≥0, which does. The
following theorem, however, implies that a∗ba∗ is not equivalent to any expression from �tr .

Theorem 6. Let L be a regular language. The three following statements are equivalent:

1. A language L belongs to Ctract .
2. L is recognized by a regular expression in �tr .
3. There is an integer i ≥ 0 such that for all words wl, wm, wr ∈ �∗ and all non empty words w1, w2 ∈ �+ , wl w

i
1 wm wi

2 wr ∈ L
implies wl w

i
1 wi

2 wr ∈ L.

Proof. 1 ⇒ 2) We next outline an algorithm to build the regular expression e from AL . Let C1, . . . , Cl be the strongly
connected components of L in some topological order. For every k ∈ {0, . . . , l} and every sequence 1 ≤ j1 < · · · < jk ≤ l, we
denote by L[j1, . . . , jk] the set of all words from L that stay for at least 2M steps in each component C j1 , . . . , C jk , and stay
for at most 2M − 1 steps after entering in each other component.

Clearly, L is the union of all L[j1, . . . , jk] over all sequences j1, . . . , jk . We next show how to build an expression for
L[j1, . . . , jk]. We denote by S1, . . . , Sk the components C j1 , . . . , C jk and by �1, . . . , �k their alphabet. For any component Si
and state q in Si , we can easily build an expression Hq with language: L(Hq) = {w ∈ (�i)

M | ∃q0 ∈ Si, �L(q0, w) = q}. The
rationale for this definition is that words of (�i)

M are synchronizing within Si according to Lemma 12: for all q, q1 ∈ Si and
w ∈ L(Hq), we have �L(q1, w) = q.

Let i < k and q ∈ Si . We build an expression Wq for the set of all words w that lead from q to some state of Si+1 while
respecting the sequence of components. In other words, a word w = a1 . . .am belongs to L(Wq) iff when we denote by q j

the state �L(q, a1 . . .a j), the sequence q1 . . .qm satisfies the following properties2:

• q1 /∈ Si
• qm is the first state of the sequence that belongs to Si+1

2 We require somewhat arbitrarily that the first letter of w lets quit Si , while the last letter of w lets enter Si+1 (i.e., is not in �i+1).

G. Bagan et al. / Journal of Computer and System Sciences 108 (2020) 29–48 43
• there are at most 2M states q j in the same component of AL .

Similarly, for i = k, we build for any state q ∈ Sk an expression Wq for the set of all words w that lead from q to some
final state while respecting the sequence of components, i.e., satisfying conditions similar to the above ones except that qm

belongs to F L instead of Si+1. L(Wq) is a finite set of words having length at most 2M2.
If iL belongs to S1, we define the expression einit as ε , otherwise einit is the set of all words that lead from iL to some

state in S1 while respecting the sequence of components. Rephrased differently, a word w = a1 . . .am belongs to L(einit) iff,
when we denote by q j the state �L(iL, a1 . . .a j), the sequence q1 . . .qm satisfies the following properties:

• qm is the first state of the sequence that belongs to S1,
• there are at most 2M states q j in the same component of AL .

einit is a finite set of words having length at most 2M2.
Claim 1: The expression e′

0 defined by the following equations represents the language L[j1, . . . , jk]

e′
k = (�k)

≥M · (
⋃

q∈Sk

Hq · Wq)

e′
i = (�i)

≥M · (
⋃

q∈Si

Hq · Wq) · e′
i+1 for all 1 ≤ i < k

e′
0 = einit · (�1)

≥M · (
⋃

q∈S1

Hq · Wq) · e′
1

The language of e′
0 clearly contains L[j1, . . . , jk]. The converse inclusion follows from Lemma 12, which concludes the proof

of Claim 1. We now define the expressions e0, . . . , ek recursively as follows (with i ranging from 1 to k − 1 included, in the
second equation):

ek = ((�k)
≥M + ε) · (

⋃

q∈Sk

Hq · Wq)

ei = ((�i)
≥M + ε) · (

⋃

q∈Si

Hq · Wq + ε) · ei+1

e0 = einit · ((�1)
≥M + ε) · (

⋃

q∈S1

Hq · Wq + ε) · e1

Claim 2: The language of e0 contains L[j1, . . . , jk] and is contained in L.
The language of e0 clearly contains the language of e′

0, hence L[j1, . . . , jk] by Claim 1. Let w ∈ L(e0). There exist
u0, v0, u1, v1 . . . , un , and vn such that

• w = u0 v0u1 v1 . . . un vn

• u0 ∈ L(einit · ((�1)
≥M + ε))

• vn ∈ L(
⋃

q∈Sk
Hq · Wq)

• for each 0 ≤ i ≤ n − 1, vi ∈ L(
⋃

q∈Si
Hq · Wq + ε)

• for each 1 ≤ i ≤ n, ui ∈ L((�i)
≥M + ε).

Let w ′ be the word obtained from w by replacing every vi equal to ε with an arbitrary word from L(
⋃

q∈Si
Hq · Wq), and

every e′
i equal to ε with an arbitrary word from L((�i)

≥M). Then w ′ belongs to L(e′
0) and in particular to L. Consequently,

w also belongs to L by repeated applications of Lemma 12. As L(Wq) and L(Hq) are finite sets of words for every state q,
e0 belongs to the fragment, which concludes the proof of Claim 2.

2 ⇒ 3) It is easily seen that languages that satisfy Statement (3) are closed by union. Consequently, we consider a regular
expression ϕ ∈ �tr of the form ϕ1 · . . . · ϕl where ϕ1 and ϕl are words and ϕi is a �seq-term for every i ∈ {2, . . . , l − 1}.
For each i ∈ [l], we denote by Li the language recognized by ϕi . Let M be the size of ϕ , defined as the number of states
in its Glushkov automaton (i.e., the number of symbols in the expressions when terms of the form A≥k are expanded). Let
u, v, w, w1, w2 be words with w1 and w2 non empty such that uw M

1 v w M
2 w ∈ L. We want to prove that uw M

1 w M
2 w ∈ L.

Using the usual pumping argument for automata, applied to the Glushkov automaton of the expression, one shows easily
that there is some term ϕi of the form A≥n + ε such that uw M

1 ∈ L1 . . . Li (and w M
1 v w M

2 w ∈ A≥n · Li+1 . . . Ll). Notice that
ϕi cannot be of the form w + ε because w M

1 necessarily “ends” inside a Kleene-star subexpression by definition of M .
Similarly, there is some term ϕ j , j ≥ i of the form B≥m + ε such that uw M v w M ∈ L1 . . . L j and w M w ∈ L j . . . Ll . Thus,
1 2 2

44 G. Bagan et al. / Journal of Computer and System Sciences 108 (2020) 29–48
uw M
1 w M

2 w ∈ L1 . . . Li · L j . . . Ll . Furthermore, L1 . . . Li · L j . . . Ll ⊆ L: if i = j, then Li L j ⊆ L j due to the form of Li , and if i < j,
then ε ∈ Li+1L j−1 because every intermediate term can be skipped. As a consequence, uw M

1 w M
2 w ∈ L.

3 ⇒ 1) Assume that L satisfies Statement (3). Let i be as stated in (3). Let q1, q2 ∈ Q L such that Loop(q1) �= ∅, Loop(q2) �= ∅
and q2 ∈ �L(q1, �∗). Let w1, w2, wl, wm, wr ∈ �∗ such that w1 ∈ Loop(q1), w2 ∈ Loop(q2), �L(iL, wl) = q1, �L(q1, wm) = q2
and wr ∈ Lq2 . We need to prove that w M

2 wr ∈ Lq1 . Let w = wl w M
1 wm w M

2 wr ∈ L. We consider two cases: i ≤ M and i > M .

Case i ≤ M: w = wl w
M−i
1 wi

1 wm wi
2 w M−i

2 wr . By hypothesis, we then have wl w M−i
1 wi

1 wi
2 w M−i

2 wr = wl w M
1 w M

2 wr ∈ L. Con-
sequently, w M

2 wr ∈ Lq1 .
Case i > M: By the classical pumping lemma, there exist integers k, k′ > 0 such that for every j, j′ ≥ 0, the word
wl w

M+kj
1 wm w M+k′ j′

2 wr belongs to L. Consequently, for every i1, i2 ≥ 0, we can find a word w ′ ∈ w∗
1 wm w∗

2 such that
wl w

i+i1
1 w ′wi+i2

2 wr ∈ L, which by hypothesis implies wl w
i+i1
1 wi+i2

2 wr ∈ L. Observe that �(iL, wl w
i+i1
1) = q1, so that

wi+i2
2 wr ∈ Lq1 for every i2 ≥ 0. By the usual pumping argument, w M

2 wr ∈ Lq1 . �
The two characterizations of Ctract in Theorem 6 imply the following results.

Corollary 1. Ctract is closed under intersection, union and word reversal.

The closure under intersection and union of Ctract is a consequence of the second statement of Theorem 6 and the closure
under word reversal is a consequence of the third statement of the same theorem.

An NFA A is pseudo-acyclic if every loop in A is a self-loop (i.e. a transition from a state to itself). Since in the third
characterization of Ctract in Theorem 6 expressions under a Kleene star are unions of symbols, we obtain the following
result.

Corollary 2. Let L ∈ Ctract . Then, A is recognizable by a pseudo-acyclic NFA.

The converse is not true since a∗ba∗ is not in Ctract but recognizable by a pseudo-acyclic NFA.

8. Recognition of tractable languages

The following theorem establishes the complexity of deciding if RSPQ(L) is tractable (i.e. deciding if RSPQ(L) can be
computed in polynomial time). We consider different representations of L (DFAs, NFAs and regular expressions).

Theorem 7. Testing whether a regular language L belongs to Ctract is:

1. NL-complete if L is given by a DFA;
2. PSpace-complete if L is given by an NFA (resp. a regular expression).

Before proving this theorem, we need some useful lemmas.

Lemma 21 (Folklore). There is an L transducer that, given two DFAs A1 and A2 that respectively recognize the languages L1 and L2 ,
returns a DFA that recognizes the language L1 ∩ L2 (resp. L1 ∪ L2 , L1 \ L2).

Proof. The classical construction by product of the two DFAs can be done by an L transducer. �
The next lemma permits to consider only minimal DFAs.

Lemma 22. Let L be a class of regular languages, such that we can test in NL whether a minimal DFA recognizes a language in L.

1. testing whether a DFA recognizes a language in L is in NL;
2. testing whether an NFA recognizes a language in L is in PSpace.

Proof. 1) We will exhibit an NL transducer t that given a DFA AL returns a minimal DFA A′
L equivalent to AL . We construct

t as the composition of two transducers t1 and t2, where t1 removes from AL all states non reachable from the initial state
and t2 merges all Nerode-equivalent states. This composition of two NL transducers is an NL transducer [24].

The log-space algorithm for t1 uses an oracle for the problem Reachability and the log-space algorithm for t2 uses an
oracle for state equivalence. This problem of deciding given q1 and q2, whether Lq1 = Lq2 , is actually in NL since it can be
reduced to Emptiness using L transducers of Lemma 21.

G. Bagan et al. / Journal of Computer and System Sciences 108 (2020) 29–48 45
2) We determinize the automaton and then apply an NL algorithm A to recognize L on the deterministic automaton
thus obtained. To achieve the polynomial bound on space, the deterministic automaton is actually simulated on the fly
instead of stored in memory. �
Lemma 23. There is an L transducer that given a minimal DFA AL and a state q of AL computes a DFA that recognizes the language
Loop(q)MLq.

Proof. Let L′ = Loop(q)MLq . We construct a DFA AL′ = (Q L′ , iL′ , F L′ , �L′) as follows. This construction can clearly be com-
puted by an L transducer.

• Q L′ = Q L × [0, M];
• iL′ = (q, 0);
• F L′ = F L × {M};
• Let (q1, i) ∈ Q L′ and a ∈ �. Then �L′((q1, i), a) = (�L(q1, a), i + 1) if q1 = q and i < M . Otherwise, �L′((q1, i), a) =

(�L(q1, a), i).

Let us prove that AL′ recognizes the language L′ . Let w ∈ L′ = Loop(q)MLq . We decompose w as w = w1 w2 where
w1 ∈ Loop(q)M and w2 is accepted by AL starting from q. By construction �L′ ((q, 0), w1) = (q, M) and w2 is accepted by
AL′ starting from (q, M). Thus, w is accepted by AL′ .

Let w be a word accepted by AL′ . By construction, we easily see that w is accepted by AL starting from q. Additionally,
the run of w over AL contains at least M + 1 occurrences of the state q. Consequently, w = w1 w2 where w1 ∈ Loop(q)M

and w2 is accepted by AL starting from q. Thus w ∈ L′ . �
Lemma 24. We can decide in NL whether Loop(q2)

MLq2 ⊆ Lq1 given a minimal DFA together with two states q1 and q2 .

Proof. Combining Lemmas 21 and 23, we obtain an L transducer that, given a minimal DFA AL and two states q1, q2, returns
a DFA that recognizes the language Loop(q2)

MLq2 \ Lq1 . We thus reduce our problem to the Emptiness problem that is in
NL. �

With the help of those lemmas we finally prove Theorem 7.

Proof. 1) Membership: let AL be a minimal DFA. The proof is based on the characterization of Lemma 6: for each pair of
states q1, q2, we check in NL if they admit a loop and if q2 is accessible from q1. Then we check Loop(q2)

MLq2 ⊆ Lq1 , still
in NL according to Lemma 24. We thus check in NL whether L ∈ Ctract when L is given by a minimal DFA which, together
with Lemma 22, concludes our proof.

Hardness: we exhibit a reduction from Emptiness. Let L ⊆ �∗ and L′ = 1+L1+ where 1 /∈ �. Moreover, we assume that
ε /∈ L. Emptiness clearly remains NL-complete with this restriction. Our reduction maps a DFA AL that recognizes L to a DFA
AL′ that recognizes L′ . First, we prove that L = ∅ iff L′ ∈ Ctract . If L = ∅ then L′ = ∅ ∈ Ctract . Conversely, assume that L′ ∈ Ctract ,
and let w ∈ �+ . By construction, 1i1i /∈ L′ for every i ≥ 0. As a consequence, Theorem 6 (using wl = wr = ε) yields some
i ≥ 0 such that 1i w1i /∈ L′ . Thus, w /∈ L, hence L is empty.

It remains to prove that the reduction can be computed with an L transducer. We construct AL′ from AL as follows.
We add a state iL′ that will be the initial state of AL′ and a state f L′ that will be the unique final state of AL′ . �L′ is the
extension of �L defined as follows:

• �L′(iL′ , 1) = iL′ and �L′ (iL′ , a) = iL for every symbol a ∈ �.
• For every final state q ∈ F L , �L′(q, 1) = f L′ , and �L′ (f L′ , 1) = f L′ .

2) The membership is a direct consequence of (1) and Lemma 22. To prove the hardness result we will exhibit a reduction
from Universality. Consider the alphabet � = {0, 1, a, b} and two languages L ⊆ {0, 1}∗ and L′ = (0 + 1)∗a∗ba∗ + La∗ . Let us
prove that L = {0, 1}∗ iff L′ ∈ Ctract . Assume that L = {0, 1}∗ . Then L′ = (0 +1)∗a∗ba∗ + (0 +1)∗a∗ = (0 +1)∗a∗(b +ε)a∗ ∈ Ctract

according to Theorem 6. Conversely, assume L′ ∈ Ctract . Let us prove that every word w ∈ {0, 1}∗ belongs to L. By definition
of L′ , waMbaM ∈ L′ for every M ≥ 0. Consequently, waMaM ∈ L′ for some M ≥ 0 since L′ ∈ Ctract . Thus w ∈ L. �
9. Other minor results

9.1. Parametrized complexity

The next section focuses on the parametrized complexity of the RSPQ problem.

46 G. Bagan et al. / Journal of Computer and System Sciences 108 (2020) 29–48
para-RSPQ

Input: a db-graph graph G = (V , �, E),
a regular language L given by an NFA AL with q states
two vertices x and y
Parameter: q
Question: Is there a simple L-path from x to y in G?

Our initial goal was to determine the parametrized complexity para-RSPQ(Ctract) when L is restricted to Ctract . Unfortu-
nately, we could only partially reach this goal. We first address the parametrized complexity of RSPQs when the parameter
is the size of the path.

k-RSPQ

Input: a db-graph graph G = (V , �, E),
a regular language L given by an NFA AL with q states,
two vertices x and y
an integer k ≥ 0
Parameter: k
Question: Is there a simple L-labeled path of size at most k from x to y in G?

Theorem 8. k-RSPQ is FPT. More precisely, the problem is solvable in time 2O (k)q · |G| · log |G|.

The proof is based on the Color Coding method [1]. Let V be a finite set. A k-coloring of V is a function c : V → [k]. A
set S ⊆ V is colorful for c if c(x) = c(y) ⇒ x = y for every x, y ∈ S . The crux of our proof is the following result by Alon et
al.:

Theorem 9 ([1]). Given k, n ≥ 0 and a set V of n elements, one can compute in time 2O (k)|V | log |V | a set of l ∈ 2O (k) log |V | k-coloring
functions c1, . . . cl such that every set S of V of size k is colorful for at least one ci (i ∈ [l]).

To exploit this result when building incrementally a simple path from x to y we shall record for each coloring the subset
of colors used so far, instead of recording the set of nodes visited. This reduces the number of combinations considered to
2O (k) log |V |.

Proof of Theorem 8. Let G, AL, k be an instance of k-RSPQ. We compute l k-coloring functions c1, . . . cl as stated in Theo-
rem 9. Let c be one of these functions. We will show how to decide if there is a colorful L-labeled path from x to y in G
for c. To this purpose, we define a function f : V × Q L ×P([k]) → {0, 1} such that f (v, q, S) = 1 if and only if there exists
a colorful path p starting from x that uses only colors of S and such that �L(i Q , w) = q where w is the label of p. The
function can be computed by dynamic programming using the following equation.

• f (x, i Q , {c(x)}) = 1
• f (v, q, S) = 1 if there is a subset S ′ � S such that f (v, q, S ′) = 1;
• f (v, q, S) = 1 if c(v) ∈ S and there is a vertex v ′ , a state q′ and a label a such that f (v ′, q′, S \ c(v)) = 1, (v ′, a, v) ∈ E

and q ∈ �L(q′, a);
• f (v, q, S) = 0 otherwise.

This function can be computed in time O (2k · |AL | · |G|). We compute f for every function ci , i ∈ [l] where l ∈ 2O (k) log |V |.
Clearly there is a simple path of length at most k from x to y if and only if there are i ∈ [l], S ⊆ [k] and q ∈ F L such that
f (y, q, S) = 1 for coloring function ci . Consequently, k-RSPQ can be solved in time 2O (k)|AL | · |G| · log |G|. �

As a consequence of this theorem we get:

Corollary 3. para-RSPQ restricted to finite languages is FPT.

9.2. Directed treewidth

Directed treewidth is a notion introduced in [14]. It measures in some sense how close a digraph is to a directed
acyclic graph and is based on the notion of arboreal decomposition. Johnson et al. [14] present a general method to design
polynomial algorithms on graphs of bounded directed treewidth. Like most algorithms exploiting treewidth, this method
leverages a dynamic programming approach on the decomposition tree. They apply this method to show that testing the

G. Bagan et al. / Journal of Computer and System Sciences 108 (2020) 29–48 47
existence of a Hamiltonian path is polynomial on such classes of graphs. Here, we extend this result to show that the regular
simple path problem is also computable in polynomial time for the same classes.

It has been observed in the literature that RSPQ has polynomial combined complexity on two interesting classes of
graphs: graphs of bounded treewidth [6], and DAGs [20]. The result for DAGs is immediate indeed, as every path in a DAG
is simple. The next theorem generalizes both these two results.

Theorem 10. Let L be a regular language, k ≥ 0 and G be a class of db-graphs with directed treewidth at most k. Then, RSPQ(L)

restricted to the class G is polynomial if an arboreal decomposition of the graph is given as input. Furthermore, it is also polynomial if
L is a part of the problem.

Proof. The proof is a straightforward adaptation of the proof proposed in [14] for the Hamiltonian Path problem. Since they
use a dynamic approach, they consider a more general problem: given a digraph G and a sequence of k tuples (vi, ni, v ′

i)i∈[k] ,
are there k disjoint simple paths p1, . . . pk such that pi is a path of size ni from vi to v ′

i for every i ∈ [k]?
We extend the problem as follows: given a db-graph G , a regular language L and a sequence of k tuples (vi, ni, v ′

i, qi,

q′
i)i∈[k] , are there k words w1, . . . wk and k disjoint simple paths p1, . . . pk such that pi is a wi -labeled path of size ni from

vi to v ′
i and �L(qi, wi) = q′

i for every i ∈ [k]? Therefore, their proof can easily be adapted to this new problem. �
10. Future work

We now pinpoint some directions for future work.

• As an extension of our work, we can consider context-free languages. It seems to be difficult to obtain useful results,
since we can easily prove that distinguishing polynomial and NP-hard instances is undecidable if P �= NP.

• What becomes tractable under restrictions to the graph such as planar digraphs or undirected graphs? Notice that both
disjoint paths and even path problems are polynomial in these cases [16,21,26,28].

• Study the parametrized complexity of RSPQ for languages L represented by NFAs, the parameter is the number of
states of the NFA (or L is represented by a regular expression and the parameter is the size of the regular expression).
Corollary 3 proves that the complexity is FPT when L is restricted to be finite.

Declaration of competing interest

The authors declare that they have no known compe5ng financial interests or personal rela5onships that could have
appeared to influence the work reported in this paper.

Acknowledgments

The authors would like to thank the anonymous reviewers and Tina Trautner for their insightful comments on the
manuscript.

References

[1] N. Alon, R. Yuster, U. Zwick, Color-coding, J. ACM 42 (4) (1995) 844–856.
[2] R. Angles, M. Arenas, P. Barceló, A. Hogan, J.L. Reutter, D. Vrgoc, Foundations of modern query languages for graph databases, ACM Comput. Surv. 50 (5)

(2017) 68:1–68:40.
[3] M. Arenas, S. Conca, J. Pérez, Counting beyond a Yottabyte, or how SPARQL 1.1 property paths will prevent adoption of the standard, in: WWW, 2012,

pp. 629–638.
[4] E.M. Arkin, C.H. Papadimitriou, M. Yannakakis, Modularity of cycles and paths in graphs, J. ACM 38 (2) (1991) 255–274.
[5] G. Bagan, A. Bonifati, B. Groz, A trichotomy for regular simple path queries on graphs, in: Proceedings of the 32nd ACM SIGMOD-SIGACT-SIGAI Sym-

posium on Principles of Database Systems, ACM, 2013, pp. 261–272.
[6] C.L. Barrett, R. Jacob, M.V. Marathe, Formal-language-constrained path problems, SIAM J. Comput. 30 (3) (2000) 809–837.
[7] A. Bielefeldt, J. Gonsior, M. Krötzsch, Practical linked data access via SPARQL: the case of Wikidata, in: Proceedings of LDOW Workshop, 2018.
[8] A. Bonifati, W. Martens, T. Timm, An analytical study of large SPARQL query logs, VLDB J. 11 (2) (2017) 149–161.
[9] A. Bonifati, W. Martens, T. Timm, Navigating the maze of Wikidata query logs, in: The World Wide Web Conference, WWW 2019, San Francisco, CA,

USA, May 13–17, 2019, 2019, pp. 127–138.
[10] M.R. Garey, D.S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness, W. H. Freeman, 1979.
[11] N. Immerman, Nondeterministic space is closed under complementation, SIAM J. Comput. 17 (5) (1988) 935–938.
[12] N. Immerman, Descriptive Complexity, Springer, 1999.
[13] R. Jin, H. Hong, H. Wang, N. Ruan, Y. Xiang, Computing label-constraint reachability in graph databases, in: SIGMOD Conference, 2010, pp. 123–134.
[14] T. Johnson, N. Robertson, P.D. Seymour, R. Thomas, Directed tree-width, J. Comb. Theory, Ser. B 82 (1) (2001) 138–154.
[15] A. Koschmieder, U. Leser, Regular path queries on large graphs, in: SSDBM, 2012, pp. 177–194.
[16] A.S. Lapaugh, C.H. Papadimitriou, The even-path problem for graphs and digraphs, Networks 14 (4) (1984) 507–513.
[17] U. Leser, A query language for biological networks, in: ECCB/JBI, 2005, p. 39.
[18] K. Losemann, W. Martens, The complexity of regular expressions and property paths in SPARQL, ACM Trans. Database Syst. (TODS) 38 (4) (2013) 24.
[19] W. Martens, T. Trautner, Evaluation and enumeration problems for regular path queries, in: ICDT, in: LIPIcs, vol. 98, Schloss Dagstuhl – Leibniz-Zentrum

fuer Informatik, 2018, pp. 19:1–19:21.

http://refhub.elsevier.com/S0022-0000(18)30531-2/bib2A522F6D9274E4E8695BDD9DF22FB571s1
http://refhub.elsevier.com/S0022-0000(18)30531-2/bib177DD178C5E418C3A5B28D725BE2F1BEs1
http://refhub.elsevier.com/S0022-0000(18)30531-2/bib177DD178C5E418C3A5B28D725BE2F1BEs1
http://refhub.elsevier.com/S0022-0000(18)30531-2/bibC9958D2F824E3C02E0FCDB14AB1A03ABs1
http://refhub.elsevier.com/S0022-0000(18)30531-2/bibC9958D2F824E3C02E0FCDB14AB1A03ABs1
http://refhub.elsevier.com/S0022-0000(18)30531-2/bibA938B80DA22E863B3ACE7204641FD5ACs1
http://refhub.elsevier.com/S0022-0000(18)30531-2/bibEB4832ECBDD9062968A28D48FE0AFA69s1
http://refhub.elsevier.com/S0022-0000(18)30531-2/bibEB4832ECBDD9062968A28D48FE0AFA69s1
http://refhub.elsevier.com/S0022-0000(18)30531-2/bib0EA0154E52A3F86A873F3F02CF504503s1
http://refhub.elsevier.com/S0022-0000(18)30531-2/bib05FBDB9E524C7AAD065CEC66A762A0CCs1
http://refhub.elsevier.com/S0022-0000(18)30531-2/bib5CF3D4EA8BE9A17899E7672768B4D59Fs1
http://refhub.elsevier.com/S0022-0000(18)30531-2/bibB3E075088CDF503C28056E85044D6FB0s1
http://refhub.elsevier.com/S0022-0000(18)30531-2/bibB3E075088CDF503C28056E85044D6FB0s1
http://refhub.elsevier.com/S0022-0000(18)30531-2/bibB2E27EF08BA354B5ECF4A9B7DD94E8E5s1
http://refhub.elsevier.com/S0022-0000(18)30531-2/bibF155F0F20D218D780604D002FB2E4B11s1
http://refhub.elsevier.com/S0022-0000(18)30531-2/bibAE6EEFFB79F2E1886A25477F6811A589s1
http://refhub.elsevier.com/S0022-0000(18)30531-2/bib631BAE310F044CC3A3F0CD713AA83A0As1
http://refhub.elsevier.com/S0022-0000(18)30531-2/bibD76C44E4A793C5612820AF33753019BBs1
http://refhub.elsevier.com/S0022-0000(18)30531-2/bib6365BEA359085A2B4D01CAB9B102DD7Fs1
http://refhub.elsevier.com/S0022-0000(18)30531-2/bib0DB16224592FB7E164E5DCA691B00622s1
http://refhub.elsevier.com/S0022-0000(18)30531-2/bib881DF1B826FC462C50DB6CD29E04C61Es1
http://refhub.elsevier.com/S0022-0000(18)30531-2/bib8A73ADDE1EAF62B8D4A07F205543A1B1s1
http://refhub.elsevier.com/S0022-0000(18)30531-2/bibC61D3A59F811A89E30A22CE4552BE35Fs1
http://refhub.elsevier.com/S0022-0000(18)30531-2/bibC61D3A59F811A89E30A22CE4552BE35Fs1

48 G. Bagan et al. / Journal of Computer and System Sciences 108 (2020) 29–48
[20] A.O. Mendelzon, P.T. Wood, Finding regular simple paths in graph databases, SIAM J. Comput. 24 (6) (1995) 1235–1258.
[21] Z.P. Nedev, Finding an even simple path in a directed planar graph, SIAM J. Comput. 29 (1999) 685–695.
[22] Z.P. Nedev, P.T. Wood, A polynomial-time algorithm for finding regular simple paths in outerplanar graphs, J. Algorithms 35 (2) (2000) 235–259.
[23] F. Olken, Graph data management for molecular biology, Omics. J. Integr. Biol. 7 (1) (2003) 75–78.
[24] C.H. Papadimitriou, Computational Complexity, Addison-Wesley, 1994.
[25] M. Perles, M. Rabin, E. Shamir, The theory of definite automata, IEEE Trans. Electron. Comput. EC-12 (3) (June 1963) 233–243.
[26] N. Robertson, P.D. Seymour, Graph minors XIII. The disjoint paths problem, J. Comb. Theory, Ser. B 63 (1) (1995) 65–110.
[27] W.L. Ruzzo, J. Simon, M. Tompa, Space-bounded hierarchies and probabilistic computations, J. Comput. Syst. Sci. 28 (2) (1984) 216–230.
[28] A. Schrijver, Finding k disjoint paths in a directed planar graph, SIAM J. Comput. 23 (4) (1994) 780–788.
[29] M.P. Schützenberger, On finite monoids having only trivial subgroups, Inf. Control 8 (2) (1965) 190–194.
[30] C.B. Ward, N.M. Wiegand, Complexity results on labeled shortest path problems from wireless routing metrics, Comput. Netw. 54 (2) (2010) 208–217.

http://refhub.elsevier.com/S0022-0000(18)30531-2/bib2F312EFDD0C2A0F0C78A91891F9C762Bs1
http://refhub.elsevier.com/S0022-0000(18)30531-2/bib9472395206BD9C246C068991F1489AC5s1
http://refhub.elsevier.com/S0022-0000(18)30531-2/bibDC4CC1607EF725914C5FDFF921C81C8Bs1
http://refhub.elsevier.com/S0022-0000(18)30531-2/bib3C96C985318D764415B75F68AB2E8230s1
http://refhub.elsevier.com/S0022-0000(18)30531-2/bibC28B082CC2C844E9C048770774661670s1
http://refhub.elsevier.com/S0022-0000(18)30531-2/bibA971B848B21E2BA2BFE3C6D83DE0C71Es1
http://refhub.elsevier.com/S0022-0000(18)30531-2/bib8F0F5E7BC68F3D5ECF08901B265D6ABAs1
http://refhub.elsevier.com/S0022-0000(18)30531-2/bib0B0703D7616DB623599DE38E3A200884s1
http://refhub.elsevier.com/S0022-0000(18)30531-2/bibA849CB0D73F1CD66C2F31980A00D53DCs1
http://refhub.elsevier.com/S0022-0000(18)30531-2/bibA032BFE2FC302908DF403BD4B2DD1AC0s1
http://refhub.elsevier.com/S0022-0000(18)30531-2/bibC6E14AB5288DCE9C65437EA1665A12E9s1

	A trichotomy for regular simple path queries on graphs
	1 Introduction
	2 Preliminaries
	2.1 Complexity
	2.2 Graphs
	2.3 Languages and automata
	2.4 Regular simple paths
	2.5 The class of tractable languages

	3 Hard languages for RSPQ
	4 Properties of languages in Ctract
	4.1 Alternative characterization of Ctract
	4.2 Technical lemmas on the components of AL

	5 Computing RSPQ(L) for L in Ctract
	5.1 Defining summaries
	5.2 Safe completions
	5.3 An algorithm for RSPQ via safe completions
	5.4 Towards a complete classification

	6 Variations
	6.1 Db-graphs with ε-edges
	6.2 Shortest path in weighted graphs
	6.3 Paths that minimize repetitions of vertices

	7 Characterization by regular expressions
	8 Recognition of tractable languages
	9 Other minor results
	9.1 Parametrized complexity
	9.2 Directed treewidth

	10 Future work
	Acknowledgments
	References

