1999 Society for Design and Process Science
Printed in the United States of America

AUTOMATIC EXTRACTION OF DATABASE SCHEME
SEMANTIC PROPERTIES USING KNOWLEDGE
DISCOVERY TECHNIQUES

A. Bonifati, L. Palopoli, D. Sacca and D. Ursino
Dipartimento di Elettronica, Informatica e Sistemistica, Universita della Calabria
Via Pietro Bucci, Rende (CS), Italy

This paper deals with the derivation of complex properties relating objects belonging to a set
of database schemes and the exploitation of derived properties in query optimization and view
maintenance problems. The derivation process has an iterative nature and works by case
analysis over database schemes, in a way somehow similar to the way knowledge discovery
processes behave on database extensions: for this reason, we call it Intentional Knowledge
Discovery. Complex properties have a fuzzy nature and are represented and manipulated using
a fuzzy variant of Description Logics. The paper presents detailed descriptions of procedures
used to derive complex properties. As far as applications are concerned, the paper illustrates
several query optimization cases and a view maintenance algorithm both based on the
availability of extracted complex properties.

1. Introduction

The most appropriate exploitation of the enormous amount of data stored in electronic form poses
nowadays new and challenging problems. These include issues ranging from the physical data level (e.g.,
proper data access structure design) to the purely conceptual one (e.g., database scheme integration). In
particular, the presence, in the same operative environment, of database systems developed in different
times and circumstances often makes it difficult to properly exploit available information. In such situations,
a process must be carried out by which properties holding among objects belonging to the set of given
database schemes are singled out and used to achieve an appropriate and unified description of available
information.

The derivation of object properties from database schemes have recently attracted a growing interest
in the research community. In particular, techniques have been developed that are capable to derive
simple properties of database scheme objects, like, for instance, terminological properties (i.€., synonymies
and homonymies) (Castano and Antonellis, 1997; Palopoli et al., 1998b), , inclusion properties (Fankhauser
etal., 1991; Palopoli et al., 1998a) and meta-type mismatches (Palopoli et al., 1998c¢; Spaccapietra and
Parent, 1994).

However, simple properties are not enough to capture several interesting aspects of scheme semantics,
which are instead well represented as more complex formula denoting relationships holding between
object patterns. In (Catari and Lenzerini, 1993) a logic is proposed to represent such complex relationships
and its capabilities to properly capture scheme semantics is shown. In that paper, scheme complex
properties are assumed to.be provided by database experts. This assumption, however, is not easy to be

Transactions of the SDPS MARCH 1999, Vol. 3, No. 1, pp. 55-78

met in appllcatlon environments involving large numbers of databases. Indeed, in such contexts, there are

. .50 many scheme objects to be considered that manual analyses of scheme semantics turn out to be very
hard to carry out. This is also due to the fact that some of the properties characterizing scheme semantics

-'.'are not represented in clear” but, rather, they remain hidden within scheme structures. Therefore,
:techmques are needed to “extract”, in a fairly automatic fashion, useful relationships holding among

scheme ob_}ect pattems

The problem of deriving useful knowledge from large amounts of (extensional) data has been
successfully attacked by using Knowledge Discovery in Databases (hereafter, KDD) techniques (Fayyad,
etal., 1996). Being able to extract useful information hidden within large data bunches have made KDD
methods nowadays commonly applied with very encouraging results to many application contexts such
as economics, biology, astronomy and so forth (Fayyad et al., 1996).

In order to extract complex properties from database schemes, in this paper we propose to adapt the
knowledge discovery ideas to be applied for working on database scheme catalogues. As we focus on
deriving knowledge from scheme catalogues, rather than from extensional data, we call our approach
Intentional Knowledge Discovery (IKDD, for short).

For representing and manipulating properties about scheme object patterns, we define and use a
fuzzy variant of the language presented in (Catari and Lenzerini, 1993), that we call Plausibility
Description Logics (hereafter, PDL). In our logics, each assertion is associated with a fuzzy coefficient
stating assertion’s plausibility. In our approach, PDL is used not only for representing scheme properties,
but also for reasoning about them.

To derive complex properties, our techniques assume that simple properties about scheme objects,
like those mentioned above, are available. Therefore, a pre-processing phase must be carried out that
constructs suitable dictionaries storing such properties. Even if this paper mainly focuses on complex
property derivation, in order to make it self contained, we also give some highlights on the techniques
devoted to deriving simple properties about scheme objects; these techniques are presented in details in
(Palopoli etal., 1998a, b, c).

Extracting properties about object patterns in the form of PDL assertions have several applications in
the database context, including the development of tools for supporting the integrated access to Cooperative
Information Systems (Papazoglu et al., 1992; Catarci, 1993; Wiederhold, 1992;Ullman, 1997; Levy, 1996;
Garcia-Molina et al., 1997), query optimization (Chaudhuri et al., 1995), view materialization (Hanson,
1987) and data warehousing. In this paper, we concentrate on describing query optimization and view
materialization applications. In particular, some query optimization patterns are described for which the
availability of suitable PDL assertions allows to greatly simplify query answering. Furthermore, we
provide an algorithm able to automatically implement a view materialization policy that is based on the
availability of PDL assertions about schemes which views are defined upon.

The plan of the paper is as follows. In Section 2 we briefly overview Knowledge Discovery in
Databases and introduce the Plausibility Description Logics. Section 3 provides a general overview of
our approach. The pre-processing phase is described in Section 4. The core complex property extraction
phase is illustrated into details in Section 5. Section 6 is devoted to present the application of IKDD to
query optimization and view materialization. Finally, in Section 7, we draw our conclusions.

2. Intentional Knowledge Discovery in Databases
2.1. Knowledge Discovery in Databases

The enormous growth of data stored in database systems has probably nowadays outpaced the
capabilities of available techniques to support appropriate data analysis. In this contexts, traditional methods,

Journal of Integrated Design and Process Science MARCH 1999, Vol. 3, No. 1, 56

maj
con
alsc
tool
desi

pote
Dat,
is or
of tt
phas

step:
follc

step i
Forn

catalc
schen
which
our m
Intent
The a
Datal

22.P

In
(DL),

' Even |
tradition

Trans:

AP TRt . G A T A0 o W T

mainly based on humans dealing directly with rough data, cannot be successfully applied to extract and
comprehend useful information from huge amounts of data. Standard reporting capabilities of DBMS
also fail in supporting such complex analysis activities. Therefore, the necessity has arisen of intelligent
tools for automated knowledge extraction. The area of Knowledge Discovery in Databases deals with
designing such tools (Fayyad et al., 1996).

By “Knowledge Discovery in Databases” we mean the non-trivial process of identifying valid, novel,
potentially useful, and, ultimately, understandable patterns in data (Fayyad et al., 1996). Often the term
Data Mining is used in the place of KDD; actually the two terms are not synonyms in that Data Mining
is only one of the steps of the Knowledge Discovery Process. More in particular Data Mining is the step
of the KDD process which extracts patterns from data; the process of KDD includes also many other
phases, such as pre-processing, pattern validation etc.

The KDD process is a semi-automatic, interactive and iterative process, composed by numerous
steps; the intervention of the end user is required in many of them. More in details we can distinguish the
following steps (Fayyad, et al., 1996):

e Understanding the application domain, the existing knowledge and user goals,

e Creating a set of target data,

o Cleaning and pre-processing data for taking the possible presence of noise into account, for managing
missing data fields, etc,

e Reducing data by selection and projection operations,

e Choosing the Data Mining task,

e Choosing the Data Mining algorithms,

o Executing the Data Mining algorithms for extracting patterns of interest,

e Interpreting extracted patterns,

« Consolidating discovered knowledge incorporating it in the known data and solving potential conflicts
with previous knowledge.

The KDD process can require some iterations of these steps. It appears clear that, even if the core
step is the Data Mining, the other steps are fundamental for a successful application of KDD techniques.
For more details about KDD, see (Fayyad et al., 1996).

Our approach is based on the idea of adopting the concepts of knowledge discovery to database
catalogues, in order to discover interesting properties consisting of complex relationships holding between
scheme objects. In other words, properties are extracted from database schemes applying a process
which can be looked at as a special KDD process. Contrary to traditional knowledge discovery techniques,
our methods works mainly on schemes rather than on extensional data'. We have coined the term
Intentional Data Mining to refer to this process of extracting new information from database schemes.
The associated Knowledge Discovery process is similarly called Intentional Knowledge Discovery in
Databases (IKDD).

2.2. Plausibility Description Logic: A Language for IKDD

In order to reason about properties of complex data patterns, we use a variant of Description Logics
(DL), a logic developed to represent and model complex knowledge. The variant we define and use here,

! Even if, in several application contexts, when multiple and heterogeneous data sources are involved, the sharp distinction
traditionally made in databases between schemes and data looses much of its importance (Abiteboul, 1997). ’

Transactions of the SDPS MARCH 1999, Vol. 3, No. 1, 57

based in part on the DL language of (Catari, 1993), is called Plausibility Description Logic (PDL). We
implicitly assume that our input database schemes are represented in PDL. This is not an actual limitation,
since translations to PDL exist from all datamodels (Catari, | 993). This section is devoted to the presentation
of the Plausibility Description Logic. '

2.2.1. Preliminary Definitions

In our model the universe of discourse is partitioned into an instance level and a class leve].

Basic elements of the instance level are objects; these are atomic elements and are represented
through a unique symbol identifying each of them. Generally, objects are grouped into classes; objects of
a class C form the set of instances of c.

Associations between objects are expressed by grouping them into fuples. The number of objects
composing a tuple is called the arity of the tuple. A relationship is a set of tuples of the same arity;
tuples belonging to a relationship R form the set of instances of R,

The class level, specified using a scheme, consists of a group of class symbols, called alphabet, and
by some specifications about how classes are related to each other. More precisely, an alphabet is a list
of symbols; these can be entities, relationships, roles, attributes, values and domains.

An entity is an abstraction of a class of objects; objects constitute istances of the class. Properties of
an entity are determined by its attributes and by relationships with other entities.

As previously mentioned, a relationship is a class of object tuples of the same arity; this is also the
arity of the relationship. Tuples form the set of instances of the relationship.

A role represents a component of a relationship; therefore the number of roles of a relationship is
equal to its arity. Each class participating in a relationship is associated with arole of the relationship and
is called filler of this role. For example the relationship Teaches has two roles: Teacher and Student.
Each tuple of the relationship has one component for each role of the corresponding relationship.

A domain is a set of values. Examples of domains are integers, strings, dates, reals etc. An attribute
is a named relationship linking an entity or a relationship with a domain.

2.2.2. Syntax

The language is based on an alphabet B of symbols including class names, the special symbols
T, 1,M,U, 3,V and usual parentheses.

A class expression is either an entity expression or a relationship expression. An entity expression
over the alphabet B is constructed according to the following rules:

C, F-» E|
CUF]|
ClF|
- C|
VRIUL.T:C,, . . .,T,:C, |
IRULT:C,, . . .,T,:C, |
VAD|
3JAD

where C, Fand E are entity expressions, R is a relationship symbol and T,...,T Uarerolesymbols
from B.

Journal of Integrated Design and Process Science MARCH 1999, Vol. 3, No. 1, 58

A

where

with R
An

type.

2:2.3, ;
Sen

l.a
2.a

For
to the fo

For eac
as:

where, if

and -

associated
The ser

o ifl
. ifo
ifm

An inter

Transactio

A relationship expression is a formula of the form
RIUsE o]

where R s a relationship symbol over the alphabet Band {U, U, ...,U } = rol (R) are the roles associated
with R.
An assertion is a statement of the form: L, = L, where L, and L, are class expressions of the same

type.

2.2.3. Semantics
Semantics of PDL is based on interpretations. An interpretation | = (A" ,o") consists of:

1. anon empty set A’ | called universe of I, which comprises all the objects;
2. a mapping ® | called interpretation function of 1.

i .
For each /, the interpretation function of / assigns to each entity expression a subset of A", according
to the following rules:

- T =A
— J_Igg
- (CUF)'= C'UF'
- (COF)'= C'nF
- (=O)'={aecA|aeCh
= (WRIV].IZC,; : - ,Tn:cn)l —{a| Vr R, ([U]=3) =
([T] EC,I Ao AT[T] eCnl)}
(AR[ULT:C,, . ..,T:C,) ={a] 3r eR'. (1[U]=2) A
@[T]1eC'A ... A [T,] eC.)}

(VA.D)' ={a| V (a,b)eA’.beD"}
(3A.D)' ={a|3(a,b)eA'.beD"}

For each /, the interpretation function of Jassigns a set of labelled tuples to each relationship expression

as:
(R[U,,U,, .,U])f = R
where, if R is a relationship with roles {U, U, ...,U}, R’ is a set of labelled tuples of the form
< Ur'u; e)

and u,,..,u €A’ In the following, if r is an instance of R, we shall use r[U] t© denote the object
associated to U, by r.

The semantic of the assertion L, = L, is given as follows:

: . . : C . 1 d.
e if L; and L, are entity or attribute expressions, the assertion is satisfied if L, & Ly

e ifL=R/U,..UJjand L=R[T,..T] are relationship expressions, then the assertiOI'l 15 s;t;sfied
if m = n and for each tuple <U.d, ...Ud> in R/, the tuple <T.d, ... Tn"dn> 15Ky

An interpretation / is called a model of a set of assertions ¥ if each assertion in %, isisatistied by .

Transactions of the SDPS MARCH 1999, Vol. 3, No. 1, 59

2.2.4. Plausibility Coefficients Ourr

Differently from standard DL, in our Plausibility Description Logic, assertions are associated with a 155 g:;ll}‘f;:
plausibility coefficient. Therefore, PDL assertions have a truth value measured as a real number between O
0 and 1, that m easures their plausibility . An assertion & L,, with plausibility coefficient £, will be
represented as a triplet << L, L,, f>>. Algor

Input
3. General Description of the Approach

The algorithm for extracting complex patterns from a set of database schemes takes in input a list of Outpu
database schemes § =S, ... S, a dictionary of lexicographic synonymy properties LSPD and a (possibly | |Var
empty) dictionary of supplied inclusion properties SIPD. The LSPD stores triplets of the form [4, B, 7], SP
where 4 and B are the involved objects and fis a fuzzy coefficient denoting the plausibility for a lexical IE
synonymy to hold between them. The SIPD contains triplets of the form <4,B,f >, where A is the Begin
included object, B is the including object and fis a fuzzy coefficient which expresses the strength of the FE
assertion. Triplets stored in the SIPD represent, generally, inclusion properties between objects of the EndKn'
same scheme (intrascheme properties); some further inclusion properties holding between objects
belonging to different schemes can be possibly stored in this dictionary by the DBAs. The algorithm
provides in output a dictionary CAD of assertions holding between complex object patterns. 4. Pre-p

The algorithm exploits some support dictionaries, that are: For t}

o A Synonymy Property Dictionary SPD, which stores synonymies between scheme objects. processiz
These indicate that two objects have different names but the same meaning within their schemes. Th? I
Synonymies are represented by triplets of the form | 4, B, f | , where 4 and B are the involved Zon}e mg
objects and fis a fuzzy coefficient expressing the strength of the property. '_ S:;\;e;] ¥

o An Homonymy Property Dictionary HPD, storing homonymies between scheme objects. These | property
indicate that the two objects have the same name but different meanings within their respective extractio
schemes. Homonymies are denoted by triplets of the form ||4, B, f||, where 4 and B are the into bina
involved objects and fis a fuzzy coefficient. r—

e An Inclusion Property Dictionary IPD, which stores triplets of the form < 4, B, f>, where 4 is Lexicc
the included object, B is the including object and fis a fuzzy coefficient expressing the plausibility
of the property. They differ from assertions of SIPD because (i) they are not provided by a DBA
but constructed in the Pre-processing phase of our method (see below Section 4) and, (ii) they
involve objects belonging to different schemes. var

e A Type Conflict Dictionary TCD, storing type conflicts; a type conflict between two objects HFL
denotes that they represent the same concept, yet having different types within their schemes ' ?"CE
(e.g., one is an entity and the other is a relationship, or one is an attribute and the other is an entity, Beg;:p
and so on). The Type Conflict Dictionary stores triplets of the form |_A, B,f -I , where 4 and B
are the involved objects and fis a fuzzy coefficient expressing type conflict plausibility.

The output of the algorithm is a dictionary CAD storing assertions holding between complex object
patterns. One such assertion can be represented by a triplet of the form, << 4, B, f>>, where 4 and B ‘;:;;
are DL formulae. Its meaning is that the assertion 4 ... B holds with plausibility /. Thus, complex assertions ek
are inclusion properties; they differ from properties stored in the IPD because these latter ones involve End
simple entity symbols whereas complex assertions involve object patterns represented as DL formulae
of any complexity. t In the foll

Journal of Integrated Design and Process Science MARCH 1999, Vol. 3, No. 1, 60 Transact

Our method consists of two phases: during the first phase database schemes are analyzed for extracting
synonymies, homonymies, inclusions, type conflicts and for normalizing schemes. No complex assertion
is derived during the first phase; these are instead derived in the second phase.

Our main procedure is as follows:

Algorithm for extracting complex patterns

Input: a list of database schemes S = S;, ...,S,; a dictionary LSPD of
lexicographic synonymies; a dictionary SIPD of Supplied Inclusion
Properties;

Output: a dictionary CAD of assertions between complex patterns;

Var

SPD: Synonymy Property Dictionary;

IPD: Inclusion Property Dictionary;
Begin

Pre-processing (S,LSPD,SIPD,SPD,IPD);

Knowledge Extraction (S,SPD,IPD,CAD)
End

4. Pre-processing

For the sake of completeness, in this section, we illustrate the main issues associated with the pre-
processing phase, whose detailed presentation can be found in (Palopoli, 1998a,b,c).

The procedure Preprocessing (S,LSPD,SIPD,SPD,IPD) takes in input a set of schemes, derives
some interscheme properties and then normalizes schemes. More in particular, the procedure iteratively
derives basic nominal properties first, (i.e. synonymies and homonymies); then, it derives inclusions and
some further synonymies; finally type conflicts are detected. These steps are repeated until no new valid
property is derived. A property is valid if its plausibility coefficient is large enough. After that property
extraction has taken place, schemes are normalized. In particular, non-binary relationships are converted
into binary ones and type conflicts are resolved:

Procedure Preprocessing (var S: a list of database schemes; LSPD: a
Lexicographic
Synonymy Property Dictionary; SIPD: a Supplied Inclusion Property
Dictionary; var SPD: a Synonymy Property Dictionary; wvar IPD: an
Inclusion Property Dictionary) '
var
HPD: an Homonymy Property Dictionary;
TCD: a Type Conflict Dictionary
Begin
repeat
Derive Basic Nominal Properties(S,LSPD,SPD,HPD) ;
Derive Related Syn_Inc_Properties (SIPD,SPD,IPD) ;
Derive Type Conflict(S,LSPD,SPD,HPD,TCD)
until no further valid property is derived;
NBR Normalization(S,SPD,HPD,TCD) ;
TC Normalization(S,SPD,HPD,TCD)
End

In the following subsections, we provide some highlights about the procedures listed above.

Transactions of the SDPS MARCH 1999, Vol. 3, No. 1, 61

4.1.Deriving Basic Nominal Properties

The procedure for extracting basic nominal properties derives synonymies and homonymies between
objects belonging to different schemes. For each scheme object (entity or relationship), our algorithm
considers its structure, i.e. its attributes and its context (Castano and Antonellis, 1997). The term “context”
here indicates attributes, entities, generalization hierarchies and relationships involving a given object in
the scheme. Exploiting the context is motivated by the consideration that entities having the same real
world semantics are very often characterized by the presence of common elements in their context.
Moreover, it is generally accepted that similarity techniques based on hypernimy and synonymy relationships
between concepts are more precise than techniques solely based on the attribute analysis (Castano and
Antonellis, 1997; Palopoli 1998b,c). Finally, the algorithm takes into account the relevance of attributes in
distinguishing the semantics of entities/relationships (Fankhauser et al., 199 1). For example the attribute
Surname is more relevant than the attribute Identifier for distinguishing the entity Person from the
entity Car. The procedure for deriving basic nominal properties is the following:

Procedure Derive Basic Nominal Properties(S: a list of database schemes,; LSPD:
a
Lexicographic Synonymy Property Dictionary; var SPD: a Synonymy
Property
Dictionary; var HPD: an Homonymy Property Dictionary)
Begin
Derive Rough E Syn(S,LSPD,SPD) ;
Derive R Syn(S,LSPD,SPD) ;
Deriye_Refineq_ﬁ_Syq_Hom(S,LSPD,SPD,HPD);
Select Strong(S,SPD,HPD)
End

The procedure derives first the so called rough synonymies between entities, i.e. synonymies resulting
by taking into account only their structure. Then, synonymies between relationships are derived by taking
into account both their structure and their context. Then, the so called “refined” synonymies and
homonymies between entities are derived taking into account also entity contexts. A filtering step finally
discards properties whose plausibility coefficient is under a certain threshold (since they are assumed not
to be valid). A complete description of this procedure is beyond the purpose of this paper. Interested
readers are referred to (Palopoli, 1998b) for details.

4.2. Deriving Related Synonymy and Inclusion Properties

The procedure Derive_Related Syn_Inc_Properties(SIPD,SPD,IPD) derives further synonymy
properties and inclusion ones. We call them related because they cannot be derived independently from
one another; indeed the derivation of an inclusion property leads to the derivation of a synonymy property
and vice versa.

Both synonymy and inclusion properties extracted in this second phase can be classified as always
deducible (A-properties) and conditionally deducible (C-properties). A-properties are derived
independently from the values of involved coefficients, whereas the derivability of C-properties depends
on them (Palopoli 1998a,b).

The algorithm uses an associative network (Fankhauser et al., 1991), that is, a labelled graph whose
nodes represent scheme objects and whose edges represent properties between objects. Edge labels
denote property types and strength. Properties already included in SPD and SIPD are represented as
edges in the network. New properties are then derived by constructing suitable closures over the network.

Journal of Integrated Design and Process Science MARCH 1999, Vol. 3, No. 1, 62

Inferred
This is ¢
some de
negotiat
inferenc,
further i,
tracing.]
network.

Procec
IPD: &

Var
Net

Begin
Dic
Com
Com
Val
Net

End

More
4.3. Deri

The pr
the same
and the of
by extract
an attribu
Conflicts
conflicts

therefore,

Proced

Begin
Comp
Comy
Comy

End

Details

i 4.4. Sche

The prc

- aset of bir

Transactic

Inferred properties must be checked for possible conflicts with old ones, so a validation phase is necessary.
This is conducted in part automatically but may also require the intervention of human experts. In particular,
some derived properties may result in contradiction with the belief of some expert, in which case a
negotiation phase takes place between the system and the expert; during this phase the system provides
inference tracing justifying the deduction of the contradictory piece of information and the expert supplies
further information either validating or modifying or rejecting the assertions included in the inference
tracing. Finally, a suitable SPD or IPD entry is created for each derived validated edge of the associative
network. More formally, the procedure is as follows:

Procedure Derive Related Syn Inc Properties(SIPD: a Supplied Inclusion
Property Dictionary; var SPD: a Synonymy Property Dictionary; wvar
IPD: an
Inclusion Property Dictionary)
Var
Net: an associative network;
Begin
Dictionaries_To_Network (Net,SPD,SIPD) ;
Compute A Properties (Net);
Compute C_Properties (Net) ;
Validation (Net) ;
Net_To Dictionaries (Net,SPD,IPD)
End

More details about this procedure can be found in (Palopoli, 1998a,b).
4.3. Deriving Type Conflicts

The procedure Derive_Type_Conflicts(S,LSPD,SPD,HPD,TCD) derives type conflicts arising when
the same concept is represented, in different schemes, by objects of different types (e.g. one is an entity
and the other is a relationship or one is an attribute and the other is an entity, etc.). The procedure starts
by extracting conflicts between an attribute of an entity and an entity. Then, it discovers conflicts between
an attribute of a relationship and an entity. Finally, conflicts between entities and relationships are derived.
Conflicts between an attribute and a relationship are not considered (Palopoli et al., 1998¢) since such
conflicts actually reduce to conflicts between an attribute and an entity linked to the relationship and,

therefore, they can be solved as such (Batini and Lenzerini, 1984). The procedure follows:

Procedure Derive Type Conflicts(S: a list of database schemes; LSPD: a
Lexicographic Synonymy Property Dictionary; SPD: a Synonymy Property
Dictionary; HPD: an Homonymy Property Dictionary; var TCD: a Type
Conflict Dictionary)

Begin

Compute_EAttribute_Entity_Confiicts(S,LSPD,SPD,HPD,TCD);

Compute_RAttribtue_Entity;Cbnfiicts(S,LSPD,SPD,HPD,TCD);

Compute Entity Relationship Conflicts(S,LSPD,SPD,HPD,TCD)
End

Details about type conflict derivation can be found in (Palopoli, 1998¢).
| 4.4. Scheme Normalizations

The procedure NBR_Normalization(S,SPD,HPD, TCD) transforms each non-binary relationship into
a set of binary ones. Each of these transformations modifies schemes and dictionaries.

Transactions of the SDPS MARCH 1999, Vol. 3, No. 1, 63

<> o>
Deparmen Subordinate Tomn
Respansibie

Fig. 1 Scheme PD: the Production Department Database.

The procedure TC_Normalization(S,SPD,HPD,TCD) normalizes a set of schemes solving type
conflicts; it implements the methodology proposed in (Batini et al., 1984).

4.5. An Example Case

Consider the schemes in Figure 1 and Figure 2, representing the Production (denoted PD) and
Administration (denoted AD) departments of an organization, respectively.
The pre-processing phase derives the following properties (Palopoli, 1998b)*:

I_Depamnent[m] , DivisionE ATy O.S?J |_Townn,DI , Birthplace{ AB[0.98_|
LBom[pD] , Born,,, 0.97] LSubordinate[PD] , Employee,, , 0.74]
l_Oper.atesﬂ,D] , Works,, 0.57] LChief[PD], Manager,, , 0.73
<Engineer,, , Subordinate,, , 0.35> <Responsibleu,m, Employee[Ay > 021>

5. Knowledge Extraction

This section is devoted to illustrating in details the steps executed within our core phase 2. The
procedure Knowledge Extraction(S,SPD,IPD,CAD) extracts properties involving, in general, complex
class expressions. The extraction of complex properties is done in two steps:

e Step 1, where most interesting classes are singled out on the basis of a weight assigned to them
by an algorithm which uses dictionaries constructed in the pre-processing phase;
e Step 2, in which new properties, involving interesting classes identified in Step 1, are derived.

The procedure is as follows:

* Here and in the following we denote by O, the object O of the scheme S.

Journal of Integrated Design and Process Science MARCH 1999, Vol. 3, No. 1, 64

Procex

Begin
Se.
CP

End

Th

- 5.1. Sele

Thist
associate
in genera
is crucial
order to s
all schemn
selection

| we have

Transaci

Management
Division

Operative

Division

<:::E%n
Strategic
Competence
4& Competence |«
Non Strategic

Warranty i Competence

Manager Employee BirthPlace

Engineer

T

| |

Italian Fareign
Engincer Engineer

Fig. 2 Scheme AD: the Administration Department Database.

Procedure Knowledge Extraction(S: a list of database schemes; SPD: a Synonymy
Property Dictionary; IPD: an Inclusion Property Dictionary; war CAD:
d
dictionary of assertions between complex patterns)
Begin
Select_Interesting Classes(S,SPD,IPD,CAD) ;
CP_Extraction (CAD)
End

The two procedures listed above are illustrated in details in the following two subsections.

| 5.1. Selecting Interesting Classes

This procedure exploits the information stored in the synonymy and inclusion dictionaries in order to
associate an interest weight to entities and relationships of each input scheme. The rationale here is that
in general, there may exist a virtually infinite number of properties which could be extracted; therefore it

| is crucial to single out most relevant objects so that only the properties regarding them are extracted. In
order to single out interesting entities, an interest threshold value is computed for each entity; therefore,
' all scheme entities with interest coefficient greater than the threshold are considered interesting. The
selection of interesting relationships is performed analogously. Using the set of interesting scheme objects
| We have selected, we obtain an initial set of assertions to include in the C4D, as explained later in this

Transactions of the SDPS MARCH 1999, Vol. 3, No. 1, 65

section. The procedure is as follows:

Procedure Select Interesting Classes(S: a list of database schemes; SPD: a

Synonymy
Property Dictionary; IPD: an Inclusion Property Dictionary; wvar

CAD: a
dictionary of assertions between complex patterns)
Var
ID: An Interest Dictionary;
Begin
ID := & ;

for each scheme S; € S do begin

for each entity E; € Sy do begin
Compute E Interest Coefficient(SPD,IPD,E;,IC);
ID := ID v (E;,IC)

end;

for each relationship R; € S5 do begin
Compute R Interest Coefficient (SPD,IPD,R;,IC);
ID := ID U (Ry,IC)
end
end;
Discard Weak E(ID);
Discard Weak R(ID);
Populate CAD(ID,IPD,CAD)
End

In Select Interesting Classes(S,SPD,IPD,CAD), several procedures are called, which are presented
in the following subsections.

5.1.1. Computing an interest coefficient for entities and relationships

The procedure Compute_E_Interest_Coefficient(SPD,IPD,E,IC) computes an interest coefficient
IC for the entity E. The interest coefficient associated with the entity is computed as e Val(Rj) where
the R “s represent relationships directly connected to £ and Val(R,) takes into account how many times
Rj is involved in interscheme properties and what is the plausibility coefficient value of these properties.

More precisely, Compute_E_Interest_Coefficient(SPD,IPD,E,IC) is implemented as follows:

Procedure Compute E Interest Coefficient(SPD: a Synonymy Property Dictionary;
IPD: an Inclusion Property Dictionary; E;: an entity; var IC: Real)
Var
Ry : a relationship;
Begin
IC := 0 ;
for each relationship R, directly connected to E; do begin
Compute R Val(SPD,IPD,Ry,Val);
IC := IC + Val
end
End

The procedure Compute R Val (SPD,IPD,R,,Val) returns a value encoding a “local” interest

Journal of Integrated Design and Process Science MARCH 1999, Vol. 3, No. 1, 66

of the
prope;
will b

Pro

Var

The
IC t
Compn

1

f_; threshc

| 5.1.2.

The

i consid

Proc

Cons
L

Var

End

Intl
the mc

Transa

of the relationship R, . The underlying assumption here is that the more a relationship is involved in
properties appearing in dictionaries associated with high factors, the more probable it is that this relationship
P will be used to extract new interesting properties from schemes:

Procedure Compute R Val(SPD: a Synonymy Property Dictionary; IPD: an Inclusion
Property Dictionary; R, : a relationship; war Val: Real)
Var

t: a tuple in SPD;
t’: a tuple in IPD;
Begin
Val := 0 ;
for each t € SPD do
if t =|R,, 0, fl or t =l0, R,, £l then

if <Ry, O, g> € IPD or <0, Ry, g> € IFD then
Val := Val + Max(f,qg)
else

Val := Val + £f;
for each t’ € IPD do
if t/ = <R, O, g > or t/ = <O, R,, g > then
if IRy, 0, £] & sPpand lo, Ry, £] & SPD then
Val := Val + g

i The procedure Compute R Interest Coejf cient(SPD,IPD,R,IC) computes an interest coefficient
IC for the relationship R, a way that IS very similar to the way
Compute_E_Interest Coeffi caent(SPD IPDE ,IC) proceeds and, therefore, it is not further illustrated.

| 5.1.2. Discarding Uninteresting Entities and Relationships

The procedure Discard_Weak_E(ID) discards all uninteresting entities. To this purpose, an interest
f threshold value is computed. All entities associated with interest coefficients lesser than the threshold are
| considered uninteresting. The procedure follows:

Procedure Discard Weak E (var ID: an Interest Dictionary)

Const
Dy = 3;
Var
Thg: Real;
Epyaxr Emin: Real;
Begin

Compute E Max (ID,Ey,,) ;

Compute E Min (ID,Ey;,) ;

Thg := (Epgx + Eyin)/Dg;

for each tuple (E;,Val;) €ID such that E; is an entity and Val; < Thgy do

ID := ID - {(E;,Val;)}
End

i Inthis procedure, D, is a normalization factor used to tune up the threshold: the smaller its value is,
the more selective the threshold will be. The procedure Compute E_Max(ID, E) (resp.,

Transactions of the SDPS MARCH 1999, Vol. 3, No. 1, 67

Compute_E_Min(ID,E, ;) returns the maximum (resp., the minimum) coefficient associated to entities
in the ID. The procedure Discard Weak R(ID) is analogous to this one, and will not be, therefore,
presented in details.

5.1.3. Populating the CAD with an initial set of assertions

The procedure Populate CAD(ID,IPD,CAD) populates the CAD with an initial set of assertions.
These assertions consist essentially in:

o the most interesting properties of the /PD,

e some new assertions between complex patterns involving objects of a single scheme.

In order to associate the new assertions with proper inclusion coefficients, we proceed by first asking
the database expert to state which of these assertions are meaningful and then by submitting a suitable
aggregate query to compute the coefficients associated to meaningful assertions (note that both the left-
hand and the right-hand sides of PDL assertions correspond to simple queries relative to a single database).
Procedure Populate CAD(ID,IPD,CAD)is implemented as follows:

Procedure Populate CAD (ID: an Interest Dictionary; IPD: an Inclusion Property
Dictionary; wvar CAD: a dictionary of assertions between complex

patterns)
Var

TCAD: a (temporary) dictionary of assertions between complex patterns;
Begin

CAD := &;

TCAD := &;

for each tuple (0;,Val;) €ID do begin
if O0; is an entity then
for each tuple t€IPD such that t=<0;,0;,f> or t=<0;,0;,f> then
CAD := CAD U t;

if 0; is a relationship then begin
Let T,,...,T, be the roles of R; and C;,...,C, be the entities connected

to

R;:

TCAD := TCAD U << FR;[T;].T3:C3, .., Th:Cnh,Ci,f3 >> U
<< VR [T;]-T3:Cop v, TpiCnsCi,Ey >> U
<< FR;[Th] . T1:CiseeesTnyiCrysCnsfzy >> U
€< VR ITll B2 Cr v s w o v ez 8 Cho g Crir vy 25

end
end

Validate TCAD(TCAD);

CAD := CAD U TCAD
End

Initially, values f3,, f,,..., f5,» fy, are undefined. The procedure Validate TCAD(TCAD) is an
interactive procedure allowing the database expert to specify which of the assertions currently stored in
TCAD are meaningful’ . In addition, for each validated assertion, Validate TCAD(TCAD) submits suitable
aggregate queries on the associated databases in order to compute the proper plausibility coefficient. An
example will help in clarifying this issue.

Journal of Integrated Design and Process Science MARCH 1999, Vol. 3, No. 1, 68

5.14.

Co.
Select
Opera
Engine
Emplo

For
does nc
subset
thus, w
this pu
simplici

The

| the total
e Howeve
it

| 5.2. Pat

The

b discover
L COITespe
Descript
L are simp
L expressi
' derived,

. 3
i Note that |
¥ simple quer

Transac!

5.1.4. Example

Consider again the schemes reported inFigureland in Figure 2. The procedure
Select_Interesting_Classes singles out as interesting the relationships Works,,,, Born,,, Born,,
Operates ,,, Produces,,, and Manages,, and the entities ForeignEngineer,, , ItalianEngineer

(ADF
I Engineer ? s OperanveDmszon{ o7 varsmn[op Competence Responsrb!em}, Subordinate

[pDp
Employee upy 1Wo of the assertions tentatively selected to populate ‘the dictionary are:

<< JBorn o IN].NL :Birthplace,, oF

<< ElBornl, oyl NL].IN:Employee

Employee,, oy

Birthplace,,,, f>>

g>>

[AD}

For instance, the former assertion denotes the subset of employees born in at least one birthplace; it
does not appear meaningful and will be probably discarded by the DBA. The latter assertion denotes the
subset of birthplaces where at least an employee was born and appears semantically meaningful, and,
thus, will not be discarded. Therefore, a plausibility factor must be associated to the latter assertion. To
this purpose, the following aggregate intrascheme queries can be executed (SQL has been used for

simplicity) :

SELECT COUNT (DISTINCT E.BIRTHPLACE CODE) AS A ATT
INTO A REL
FROM EMPLOYEE E

SELECT COUNT (DISTINCT E.BIRTHPLACE CODE) AS B_ATT
INTO B REL
FROM BIRTHPLACE B

SELECT A_ATT/B_ATT
FROM A_REL,B REL

The query returns the ratio of the number of birthplaces where at least an employee was born over
| the total number of birthplaces. This ratio could be assumed as the plausibility factor of the assertion.
. However, since the plausibility factor has a fuzzy measure, the DBA is asked to validate or possibly tune
b it.

¢ 5.2. Pattern Extraction

The procedure CP_Extraction(CAD) implements the second step of the intentional knowledge
- discovery process. As already stated, the general form of PDL assertions extracted by our method
b correspond to formulae L,E L, to which a plausibility factor fis associated. Here, both L, and L, are
' Description Logic class expressrons The pre-processing phase extracts properties where both L and L,
 are simple entity symbols. The method we are presenting next derives properties involving more comp lex
. expressions. The procedure works by case analysis and is iterated until to no new valid assertion is
f derived, as follows:

"Note that these are intrascheme queries and that both the left-hand and the right-hand sides of the assertions above correspond to
simple queries.

| Transactions of the SDPS MARCH 1999, Vol. 3, No. 1, 69

Procedure CP Extraction (var CAD: a dictionary of assertions between complex
patterns)
TCAD: a (temporary) dictionary of assertions between complex patterns;
Begin
Repeat
TCAD:=
Derive Intersection (CAD,TCAD) ;
Derive Union (CAD,TCAD) ;
Derive Forall (CAD,TCAD) ;
Derive Exists (CAD,TCAD);
Derive Complex (CAD,TCAD) ;
Derive Negation (CAD,TCAD) ;
Discard Weak (TCAD) ;
Discard Repeated (CAD,TCAD) ;

CAD := CAD U TCAD;

In the next subsections we will describe in details the procedures called within CP_Extraction(CAD).

Note that all of them derive properties of the form << L, L,, £, , >

5.2.1. Computing object intersections and unions

The procedure Derive_Intersection(CAD,TCAD) derives assertions where L, is an intersection
expression of two class expressions which are both subsets of a third one. More in detalls suppose that
the CAD stores << 4, C, f,.>> and << B, C, f, . >> ; the procedure derives the inclusion coefficient
of the assertion << 4 B, C f >>. To this purpose, two extreme situations are considered: (i) 4 and
B are included either ways into one another (best case), and (i) 4 and B have minimal intersection (worst
case). The general coefficient is then obtained as the mean value between those associated to the two

extreme situations. The procedure is, therefore, as follows:

Procedure Derive Intersection (CAD: a dictionary of assertions between complex
patterns; var TCAD: a (temporary) dictionary of assertions between
complex patterns)

Var

fﬂorstr fBest : Real € [0; 1]
Begin
for each tuple << A, C, fac >> € CAD do

for each tuple << B, C, Fy. >> € CAD with A#B do

fuorst = max (0, fae+fpc-1);

foest 1= min (£, fpc)

TCAD := TCAD U << A = B, C, (fuorsttfaest) /2 >>
end

End

The procedure Derive_Union(CAD, TCAD) considers the case in which L, is obtained as the union
of two class expressions. It is analogous to Derive_Intersection(CAD, TCAD) and, therefore, we will

not illustrate its details.

Journal of Integrated Design and Process Science MARCH 1999, Vol. 3, No. 1, 70

5.2,

inl
rela
role

B

Va

3.2.2. Computing expressions containing Y and 3

The procedure Derﬁe_Forall (CAD, TCAD) derives expressions where the leftmost operator appearing
in L, is V. It considers all assertions of the form << VR[U].7}:C,, E, f .,z belonging to the C4D and

relative to a relationship R connected to the entity C, through the role T, and to the entity E through the
role U. The algorithm works by case analysis, as follows:

Procedure Derive Forall (CAD: a dictionary of assertions between complex
patterns;
var TCAD: a (temporary) dictionary of assertions between complex
patterns)
Begin
for each tuple t = <<VR[U].T; :C;, E, fcve »>> ~/ CAD do begin
Compute_ Subset (t,CAD,TCAD) ;
Compute_ Superset (t,CAD,TCAD) ;
Compute Further Roles(t,CAD,TCAD)
end
End

The procedure Compute Subset(t,CAD,TCAD) verifies if a subset property between any expression
E’ and the entity C, is known to hold; in the affirmative case, the procedure derives a new property and

stores it in the TCAD.

In more details, suppose the assertion << E ,C,, f, r¢, >> is stored in the CAD, where E” is any DL
expression. From this, we infer << VR[U].T: E LE f ovp > - For deriving Sy We observe that (i)
say f, cve is the plausibility for an instance of E connected to R to be associated, through role »only to

instances of C; (i) say f ., is the plausibility for an instance of £ connected to the relationship R to be
associated, through the role T, only to instances of E; (iii) if 4 is the average number of instances
associated to the role 7, in R, then all # instances of C, must belong to £’ *; the probability for this to

happen is (f.s'c,)p; therefore we can conclude that f; = feyr X (fc)" . The procedure is

implemented as follows:

Procedure Compute Subset (t: a Complex Pattern; CAD: a dictionary of assertions
between complex patterns; var TCAD: a (temporary) dictionary of
assertions between complex patterns)

Var

friyg ¢ Real;

u: Integer;
Begin
Let t = <<VR[U].T; :C;, E, fcpg >> belong to CAD;

for each tuple t’'=<<E’,C,,f;..;>> € CAD do begin
Compute Average Fillers(T;,R,u);
ferve = ferve X (fgec)®
TCAD:=TCAD U <<VR[U].T;:E’ ,E,ferye>>
end
End

 p can be easily provided by database administrators.

Transactions of the SDPS MARCH 1999, Vol. 3, No. 1, 71

The procedure Compute_Average Fillers(T ,R,m) considers the role T, of the relationship R and
determines the average number of fillers it has.

The procedure Compute_Superset (1,CAD,TCAD) verifies if an entity F exists including the entity E,
according to assertions currently stored in the CAD; in the affirmative case, the procedure inserts a new
assertion in the 7CAD. The procedure is realized as follows:

Procedure Compute Superset (t: a Complex Pattern; CAD: a dictionary of
assertions
between complex patterns; var TCAD: a (temporary) dictionary of
assertions between complex patterns)
Begin
Let t=<<WVR[U].T, :C;, E, fejvz >> belong to the CAD;
for each tuple t'=<<E,F,fy >> € CAD do

TCAD:=TCAD U <<VR[U].Ty:C;,F,feivg X Fgr >>
End

The procedure Compute_Further Roles(t,CAD,TCAD) searches the CAD for the presence of an
assertion of the form << VR[U].T7,:C,,F, Jewe >>, where T, and T, are two different roles of the same
relationship R. If one such assertion exists the procedure determines the inclusion coefficient associated
to the assertion << VR[U]. 1:C),1,: Gy, E, fry, >>. Note that PDL expressions where two roles occur in
the selection part are equivalent to intersection expressions. Therefore, fgw is computed in analogy to
the intersection case. The procedure is as follows:

Procedure Compute Further Roles (t: a Complex Pattern; CAD: a dictionary of
Assertions between complex patterns; wvar TCAD: a (temporary)
dictionary

of assertions between complex patterns)
Var

fhorsts frest @ Real;
Begin
Let t = <<VR[U].T;:C;,E, fc;ps >> belong to the CAD;
for each tuple t; = <<VR(U].T;:C;,E,fcsye >> / CAD such that T; # T, do begin

Luworse = max (0, foyvetfeove-1) 7

fpest = min(feve, foove) 7

TCAD:=TCAD U <<VR([U].Ty:C1,T5:Cs,E, (frorst+fpese) /2 >>
end

End

This procedure is extended in the obvious way to derive expressions with any number of roles. The
procedure Derive_Exists(CAD,TCAD) derives expressions whose leftmost operator is $ and behaves
analogously to Derive_Forall(CAD,TCAD).

3.2.3. Computing complex expressions

The procedure Derive_Complex(CAD,TCAD) is activated when two assertions of the form << 4,
C fie>>and <<E C, f,.>> arederived. If f,.<f, . the plausibility coefficient £, to be associated
with the assertion << 4, E, f,.>> can be evaluated. Again, two extreme situations must be considered:

Journal of Integrated Design and Process Science MARCH 1999, Vol. 3, No. 1, 72

(1) 4
way
and

Pa

Va

Be

Bex

Enc

Itisv
deriv

54.1]

those

Tl
CcoITe!
assert

5.5.

(i) A and E have minimal intersection (worst case) and (i) A and E are included into one another in either
ways (best case). The procedure determines the plausibility coefficient of the worst and the best case,
and takes the mean bétween the two values above as the value for f, .-

Procedure Derive Complex (CAD: a dictionary of assertions between complex
patterns;
var TCAD: a (temporary) dictionary of assertions between complex
patterns)
Var
fuorstr Lpest : Real;
Begin
for each pair of tuples << A,C,fpe >>,<<E,C,fgc >> - CAD such that A # E do
if f,. < fz then begin '

Fuorst = max (0, fpctfpc=1)/max (fac, Fec) 7

frese = min(fac,fec) /max (£ac, Frc) 7

TCAD := TCAD U <<A,E, (fuyorst + Lpest) /2 >>
end

End

5.3. Computing Negation

The procedure Derive Negation(CAD,TCAD) computes class negations. In Description Logics,
the negation of a class represents all instances of the domain which are not instances of that class. In
order to preserve safety, before the negation of a class is evaluated, the class itself must be intersected
with one of its superset classes. Thus, deriving plausibility coefficient for a class negation is possible only
if there exists an inclusion property relative to that class. The procedure for computing negation is as
follows:

Procedure Derive Negation (CAD: a dictionary of as sertions between complex
patterns; var TCAD: a (temporary) dictionary of assertions between
complex patterns)

Begin
for each tuple << B, A, fzy, >> € CAD do

TCAD:=TCADU<<—B,A, (1-fga) >>
End

It is worth pointing out that the negation of an object is itself an object. Therefore it can be exploited for
deriving further complex properties.

5.4. Discarding weak or repeated patterns

The procedure Discard Weak(TCAD) examines TCAD assertions and discards the weak ones, i.e.
those having a plausibility coefficient under a given threshold.

The procedure Discard Repeated(CAD,TCAD) checks, for each assertion in TCAD, if a
corresponding assertion is already stored in CAD. In the affirmative case, the procedure discards that
assertion having the weakest plausibility coefficient from the corresponding dictionary (CAD or TCAD).

5.5. Example

Consider, again, our example schemes reported in Figure 1 and in Figure 2. Suppose the following
properties have been stored in the /PD:

Transactions of the SDPS MARCH 1999, Vol. 3, No. 1, 73

<<V Works MD][DL].IL:Engineer! (57
<<V Works,, D} [DL].IL:Subordinate
<<V Works f AD][DL].IL.'(E’IgEHEer{ o1 Employee /» Division

Dzv:s:onmw 0.4>>

[PDP D:v:s:onmw 0.5>>

upp 0-4>>

<<V Works,,, [DL].LC: (StrategicalCompetence upf 1 Competence,,), Division,,, y 0.7>>

then, the following assertions can be derived:
<<V Works,,, [DL J.IL:(Engineer, o1 talianEngineer), Division,,,, 0.2916>>
<<V Works upfPL]IL: (Engineer, o)1 J’:‘a;"1'f.n'z.ef—f,'n,q_?;r'rreer!r py» Department 0.277>>

[PDp
<<V Works,,,,[DL].LC: (SrrategicaICompetencemmJ‘I Competence,,,),

IL:(Engineerm}rlEmp!oyee{w’), Division,,, [, 0.25>>

<<V Works,,, [DL].IL: (Engineer ,, MEmployee,),
Y Works,,, [DL].LC:(StrategicalCompetence,, 1 Competence oy 0.357>>

14D}
For instance, the last assertion says that the set of divisions in which all workers are engineers and
employees is a subset of the set of divisions managing only strategic competencies, the plausibility coefficient
being 0.357.

6. Applications of IKDD

PDL assertions describing intentional knowledge about sets of database schemes have many
applications, and all of them can profitably exploit assertions between complex patterns as the ones we
have presented in this paper. Applications include: :

o the design of information integration layers on the top of existing database systems, such as
mediators (Wiederhold, 1992; Ullman, 1997; Levy et al.,1996; Garcia-Molina et al., 1997) and,
more in general, the development of tools for supporting the integrated access to Cooperative
Information Systems (Papazoglou et al.,1992; Catarci and Lenzerini, 1993; Palopoli et al.,
1998a,b,c), -

e query optimization (Chaudhuri et al., 1995) and view materialization (Hanson, 1987);
e structuring and materialization of warehouses and constraints (Gupta et al., 1995).

In the following, we describe some examples of applications of complex pattern assertions to query
optimization and view materialization.

6.1. Query Optimization

Complex assertions discovered by our IKDD algorithm can be exploited for the query optimization
purposes. The key idea here is that queries can be expressed as Description Logic class expressions and
that some relationships, in the form of PDL assertions, can be found to hold between the class expression
denoting a certain query and other ones. These expressions can be exploited for solving some queries in
a simpler, optimized way. There are also situations where the result of a query is predictable without
executing it. In the following, some example cases are presented to illustrate these ideas more precisely.

6.1.1. Case 1

Assume we want to retrieve all the objects belonging to either the class 4 or to the class B or to the
class C, i.e., we want to execute the query

Journal of Integrated Design and Process Science MARCH 1999, Vol. 3, No. 1, 74

T T ————

T

=

Su

wl

to

6. 1

fol

Ift

the

Sup

and

denc

CIf)
retri

Trar

Q=A4AUBUC
where classes 4, B.and C denote complex expressions. Suppose, moreover, that the assertion
<<B,CW,>>, with W,. very high, has been derived and stored in the CAD. In this case, the query O
can be reduced to ALIC
Example
Assume the following query must be executed:
Italian | Engineer || Employee
suppose, moreover, that the CAD stores
<<Engineer, Employee, 0.95>>
then, the previous query can be reduced to the following simpler form:
Italian U Employee

6.1.2. Case 2

This case is analogous to the previous one. Consider the following query
Q=4AnBnC
where classes 4, B and C denote complex expressions. Suppose that an assertion of the form
<<B,C,W,.>> has been derived, where W, .is very high. In this case the previous query can be reduced
to AnB.

6.1.3. Case 3

The extraction of assertions may allow to remove redundant constraints. As an example suppose the
following constraints have been defined for a database:
ACB AcC
Moreover, suppose that the CAD stores <<B, C, W, >> where W, is high. Then the constraint 4=C
can be removed, since it is redundant.

Example

Assume that the following constraints have been stored for a query:

Engineer < Italian Engineer = EuropeanUnionCitizen
If the CAD stores:

<<ltalian, EuropeanUnionCitizen, 1>>
the constraint Engineer = EuropeanUnionCitizen is redundant.

6.1.4. Case 4
Suppose the process of Intentional Knowledge Discovery extracted the following assertions:
<<3R[U}.T::C, A, W, >> <<3R[U].T,:C,, B, Wy, >>
Suppose the following query must be executed:
Q=R L) Lol 76
and suppose that also the following assertions have been previously derived:
<<4,C W, >> <<B,~C,W, >
denoting that 4 is a subset of C with plausibility 7, .and that B is a subset of C with plausibility Wj_.

IfW,.and Wy_.. are high, we can conclude that the result of Q is empty, without any need to actually

retrieve data.

Transactions of the SDPS MARCH 1999, Vol. 3, No. 1, 75

Example
Suppose the foHowing assertions belong to the CAD:

<<3JWorks[DL].IL:Engineer, ManagementDivision, 0.7>>
<<3Works[DL].IS:LowSalary, SecondaryDivision, 0.8 >>
the first one indicates that divisions in which at least an engineer works is a subset of management
divisions with plausibility 0.7; the latter one denotes that divisions in which at least one person earns a low
salary form a subset of Secondary Divisions with plausibility 0.8.
Suppose that the CAD also stores: _
<<ManagementDivision, StrategicalDivision, 0.98>>
<<SecondaryDivision, — StrategicalDivision, 0.95>>
Finally, assume that the following query is to be executed:
Q = 3Works[DL].IL: Engineer, IS: LowSalary,
i.e., we look for divisions where at least an engineer earning a low salary works. Then, we can conclude,
with high plausibility, that the result of the query is the empty set without actually executing it.

6.1.5. Case 5

Suppose that the following complex assertion has been derived:
<< JR/U].T:C, 1, W >3
and assume the following query must be executed:
Q= VR[ULT,C,
By noting that, clearly, the followin g assertion is valid:
<<VR[U].T.C, IR[U]T:C, 1 >>
ifw £ 18 VeTy high, we can conclude that the empty set is the query answer. This result also holds for
any query Q such that an assertion of the form <<Q, 3R[U].T:C »W,>> has been derived and W, is
high.

Example
Suppose that the assertion

LT Works[DL].IL: Engineer, 1, 0.95 >>

has been obtained, indicating that there is no division where at least one engineer works.
If the query

V Works[DL].IL: Engineer

is to be executed asking for divisions in which the personnel consists of engineers only, the empty set can
be immediately yielded as the query result.

6.2. View Materialization

The availability of assertions about complex object patterns can be used to decide a criterion guiding
view materialization. For deriving a view materialization criterion the following reasoning can be drawn:
suppose a complex query B, involving a great number of objects, must be executed; the result of its
execution can be considered as a virtual view. Suppose, now, that another complex query 4 must be
executed. As usual 4 and B can be looked at as PDL class expressions. Suppose that the assertion <<4,
B, W ,>> has been derived applying IKDD techniques and that 5 18 large. Then, the view B can be

Journal of Integrated Design and Process Science MARCH 1999, Vol. 3, No. 1, 76

tl

™ O

C

conveniently materialized and the query 4 can be efficiently executed on the materialized view
corresponding to B.

Obviously we cannot materialize all possible views, therefore the necessity arises of a criterion for
determining which views are to be materialized. The problem is difficult because it is hard to figure out
which queries are going to be executed in the future. However, we argue that the greater the number of
inclusion properties in which a given expression E appears as a superset is, the higher the probability of
answering queries exploiting the view corresponding to E is. For a fixed given number of inclusion
properties in which E appears, the greater the values of inclusion coefficients associated to E are, the
most convenient the materialization of views corresponding to E is.

The algorithm for view materialization is, therefore, the following:

Algorithm for view materialization
Input: a dictionary CAD of assertions between complex patterns;

Output: a set MV of views to be materialized;
Const

Dy := 1.5;
Var
TMVD: a (temporary) materialized view dictionary;
Presence Number: Integer;
Sum, Interest Coefficient, Vy.x, Vuia: Real;
Begin
MV = [;
TMVD := [;

for each tuple <<CE;, CE;, f;,>> € CAD do
if not Belong(CE,, TMVD) then begin
Presence Number:=0;
Sum:=0;
for each tuple <<CE;, CE;, fj;>> do begin
Inc(Presence Number);

Sum := Sum + fjy
end
Interest Coefficient := 8 x Presence Number + Sum;
TMVD := TMVD U (CE,;, Interest Coefficient)

end;
Compute Max (TMVD, Vyax) ;
Compute Min (TMVD, Vy;n) ;
Thy := (Viax + Viin) /Dy
for each tuple (CE;,IC;) € TMVD such that IC; 2 thy do
MV ;= MV U CE;
End

Here D,, is a constant used for tuning up the threshold of interest: the higher D, is, the lower the
threshold will be. TMVD is a temporary support dictionary storing tuples of the form (7,C), where 7' is
a view and C. is an associated interest coefficient. The function Belong(E,TMVD) yields TRUE if
onetuple of the form (E,C) belongs to TMVD, FALSE otherwise. The procedure
Compute_Max(TMVD,V,,_) (Compute_Min(TMVD,V .)) computes the maximum (minimum)
coefficient in TMVD and stores itin V, (V).

Transactions of the SDPS MARCH 1999, Vol. 3, No. 1, 77

7. Conclusions

In this paper we have illustrated techniques for deriving complex assertions relating objects belonging
to database schemes. Our techniques are explicitly designed to work on large numbers of input scheme
objects.

The main idea underlying our approach is that of adapting the principle of Knowledge Discovery in
Databases to extracting knowledge from database scheme catalogues. We have called the resulting
approach Intentional Knowledge Discovery (IKDD).

IKDD uses a fuzzy variant of Description Logic, called PDL, for representing and reasoning about
scheme properties. We have illustrated also the application of derived assertions to query optimization
and view materialization problems.

The methods we have presented here have been implemented as part of a more general design
support tool, called D.I.K.E. (Database Intentional Knowledge Extractor) we are constructing at University
of Calabria.

References

Abiteboul, S., 1997,“Querying Semi-Structured Data”, Proc. ICDT ‘97, 1-18, Delphi, Greece.

Batini, C., Lenzerini, M., 1984, “A methodology for data schema integration in the entity relationship,” model,
IEEE TSE 10(6), 650-664.

Castano, S., De Antonellis, V., 1997, “Semantic Dictionary Design for Database Interoperability,” Proc. of ICDE’97,
Birmingham, United Kingdom.

Catarci, T., Lenzerini, M., 1993, “Representing and using interschema knowledge in cooperative information
systems,” Journal of Intelligent and Cooperative Information Systems, 2(4), 375-398.

Chaudhuri, S., Krishnamurthy, R., Potamianos,S., Shim,K., 1995, “Optimizing queries with materialized views,”
Proceedings of ICDE ‘95, 190-200, Taipei, Taiwan.

Fankhauser, P., Kracker, M., Neuhold,E.J., 1991,“ Semantic vs. Structural Resemblance of Classes,” SIGMOD
RECORD,20(4), 59-63.

Fayyad, U.,Piatetsky-Shapiro, G., Smyth, P., Uthurusamy, R., 1996, Advances in Knowledge Discovery and
Data Mining, The AAAI - The MIT press.

Garcia-Molina, H., Papakonstantinou, Y., Quass, D., Rajaraman, A., Sagiv, Y., Ullman, J., Vassalos, V.,Widom, J.,
1997, “The TSIMMIS Approach to Mediation: Data Models and Languages,” Journal of Intelligent Information
Systems 8,117-132.

Gupta, A., Mumick, LS., Ross, K.A., 1995, “Adapting materialized views after redefinitions,” Proc. ACM SIGMOD.

Hanson, E.H., 1987, “A Performance Analysis of View Materialization Strategies,” Proc. SIGMOD '87, 440-453,
San Francisco (California), USA.

Levy, A., Rajaraman, A., Ordille, J., 1996, “Querying heterogeneous information sources using source
descriptions,” Proc. VLDB ‘96,251-262, Bombay, India.

Palopoli, L., Sacca, D., Ursino, D., 1998a ,“Semi-automatic, semantic discovery of properties from database
schemes,” Proc. IDEAS’98,244-253, IEEE Press, Cardiff, United Kingdom.

Palopol, L., Sacca, D.,Ursino, D., 1998b,“Automatic Derivation of Terminological Properties from Database
Schemes,” Proc. DEXA’98, LNCS, Springer Verlag, 90-99, Wien, Austria.

Palopoli,L., Sacca, D., Ursino, D., 1998c, “An Automatic Technique for Detecting Type Conflicts in Database
Schemes,” Pror: ACM CIKM’98, 306 313, Bethesda (Maryland), USA.

Papazoglou, M.P., Laufmann, S.C., Sellis, T.K., 1992, “An organizational framework for cooperatwe information
systems,”Journal of Intelligent and Cooperative Informat:on Systems, 1(1).

Spaccapietra, S., Parent, C., 1994, “View Integration: A Step Forward in Solving Structural Conflicts,” JEEE
TKDE 6(2),258-274. '

Ullman, J.D., 1997, “Information integration using logical views,” Proc. ICDT ‘97, Delphi, Greece, 19-40.

Wiederhold, G., 1992, “Mediators in the architecture of future information systems,”/EEE Computer, 25, 38-49.

Journal of Integrated Design and Process Science MARCH 1999, Vol. 3, No. 1, 78

