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Abstract Peers in a peer-to-peer data management system
often have heterogeneous schemas and no mediated global
schema. To translate queries across peers, we assume each
peer provides correspondences between its schema and a
small number of other peer schemas. We focus on query refor-
mulation in the presence of heterogeneous XML schemas,
including data–metadata conflicts. We develop an algorithm
for inferring precise mapping rules from informal schema
correspondences. We define the semantics of query answer-
ing in this setting and develop query translation algorithm.
Our translation handles an expressive fragment of XQuery
and works both along and against the direction of mapping
rules. We describe the HePToX heterogeneous P2P XML
data management system which incorporates our results. We
report the results of extensive experiments on HePToX on
both synthetic and real datasets. We demonstrate our system
utility and scalability on different P2P distributions.
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1 Introduction

A peer-to-peer data management system (PDMS) (e.g., [5,
8,12,20,28,37,44]) is an ad-hoc collection of independent
peers that have formed a network in order to map and share
their data. For example, consider a group of hospitals that
need to translate patient data as patients move back and forth
between hospitals; Figure 1 shows the schemas of two such
hospitals Montreal General Hospital (MON for
short) and Boston General Hospital (BOS for
short).1

As the network is ad-hoc and lacks an overriding authority,
peers in a PDMS typically have heterogeneous schemas, and
there is no mediated, global schema. Therefore, there must be
a way for data to be translated between the peers’ schemas.
Hence, PDMSs assume that each peer provides correspon-
dences between its schema and a small number of other peer
schemas, known as acquaintances. Creating such a mapping
is a difficult task, as the schemas may differ substantially,
even in similar domains. An example of such differences
is shown in Fig. 1, where two heterogeneous schemas are
depicted, the MON schema in Fig. 1a and the BOS schema
in Fig. 1b. Before explaining the two schemas, we briefly
introduce the notation. We use here a simple graph repre-
sentation of schemas. This representation is rich enough to
capture atomic types, sets, tuples, nested structures, keys, ref-
erential constraints, and optionality. In particular, we denote
with a solid black edge the relationship between a parent
element and a child element in the schema, the edge being
labeled with a cardinality constraint (‘*’ and ‘+’ to indicate
multiplicity) or with an optionality constraint (‘?’), or unla-
beled otherwise (to indicate ‘1–1’ cardinality). A solid black
edge labeled with ‘@’ indicates the relationship between a

1 This figure is adapted from [8,20,33].
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Fig. 1 Example of heterogeneous peer schemas for a Montreal General Hospital and b Boston General Hospital

parent element and a child attribute in the schema. A solid
gray arrow is used to represent the referential integrity con-
straint on Keys and foreign Keys and labeled with ‘(Key/Key-
Ref)’. In the MON schema, every patient is assigned a unique
ID by the hospital and has a unique Medicare number (Med-
Cr#). Symptoms of problems experienced by patients and
the treatments they are administered are all grouped under
patients. Patient admission data is maintained separately and
is captured via the Key/KeyRef link @PatRef → @ID (the
gray arrow KR1 in Fig. 1a). On the other hand, the BOS
database in Boston (Fig. 1b) is organized quite differently:
at admission time, patients are classified on the basis of their
main complaint (pulmonary and coronary, as shown in the
figure). The usual patient details, such as name, ID, etc. are
stored under this classification. Progress of patients during
their stay in the hospital is recorded: patients’ history of
health problems and the treatments administered are tracked.
All of this information is connected to the patients via the
Key/KeyRef link @PatRef → @ID (the solid gray arrow
KR2 in Fig. 1b).

When patients move between MON and BOS, their records
must move with them. However, given the differences in the
schemas, this is far from being trivial. In particular, translat-
ing queries over one source into queries over another requires
(1) creating an unambiguous mapping that precisely reflects
the transformation between the two sources and (2) building
a system that automatically does the query translation. Since
the source schema MON and the target schema BOS are to
be used interchangeably, query translation must be possible
both along and against the direction of the mappings.

Besides asking a specific peer for data, a further goal is to
permit users and applications of any peer database to access
data items of interest by simply posing a query to their local
peer, regardless of the location of the data items or the schema
under which they are organized. That is, the existence of
numerous peers and their schemas should be transparent to
the user/application.

To give a more concrete example, to answer the query
“what are the treatments administered to patients admitted
with a coronary illness?”, data from all peers should be
accessible to the original peer. Since these peers have dif-
ferent schemas, queries posed to a peer need to be trans-

lated appropriately to run on other peers; this underscores the
need for support for mapping creation and query transla-
tion.

To achieve these goals, we present the HEterogeneous
Peer TO peer Xml database system (HePToX2), a P2P Het-
erogeneous XML database system. Previous research on P2P
query reformulation systems has considered mappings
directly expressed in a run-time language, such as XQuery
in the Piazza system [21]. As opposed to such proposals,
HePToX is based on a simple visual user interface [11],
that requires that the peer administrator provides correspon-
dences between the local schema and the acquaintance
schema using an intuitive notation of arrows and boxes, such
as those shown in Fig. 2. From these simple correspondences,
HePToX will automatically derive precise mapping expres-
sions between the schemas, which are stated as Datalog-like
rules. Using these mapping expressions, HePToX allows a
peer user to query any peer’s data using its own local schema
and translates queries in a way that is consistent with the
mapping semantics. Thus, joining a PDMS becomes a light-
weight operation, though a DBA may further examine the
mapping expressions and make adjustments if desired.

The visual correspondences in HePToX are arrows and
boxes, illustrated in Fig. 2, and explained in Sect. 2. Such
correspondences may be manually provided by each peer
administrator, or simply output by (semi-) automatic schema
matching tools [16]. Crucially, the input correspondences to
HePToX includes a construct (namely, the box) that allows
the inference of data–metadata correspondences. Such cor-
respondences were initially exploited in our demo proposal
[11], and have recently been studied as a useful extension
of mappings in Clio [24]. To the best of our knowledge, our
work remains the first effort toward the use of such corre-
spondences in query reformulation in a P2P scenario.

Although Sect. 7 provides a full comparison of related
work, we briefly highlight some key differences between
HePToX and previous work here. Differences in data
representation in P2P networks were addressed in [28] by
introducing mapping tables: e.g., we might specify that ID
GDB:123 in one database corresponds to all ID-values

2 Pronounced Hep Talk: heterogeneous peers talk!
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Fig. 2 Mapping schemas MON and BOS. To minimize clutter, some arrows between corresponding tags have been omitted (e.g., @ID to @ID)

but SP:456 in another database. These are aimed at map-
ping value aliases, which are orthogonal to schema map-
pings.

The lines and the mappings specified in HePToX are simi-
lar to those used in Clio [32,37]. Clio is a data exchange tool,
and focuses on how to efficiently compute a target instance
provided a source instance, source and target schemas, and
a set of mappings between them. In contrast, HePToX is
a query reformulation tool, expressly designed for PDMS
applications. In such setting, a target instance already exists,
so HePToX focuses on how to translate queries across the
peers heterogeneous schemas. While we present a thorough
comparison between the two systems in Sect. 7, it is worth
noting the following: in principle, one could translate the
data instance from every peer to the querying peer and then
answer the query there. But this is not practical, as it would
require expensive translation of every peer’s data to every
other peer’s schema.

Query rewriting over the mappings is studied in [46],
where source-to-target mappings are considered and que-
ries must be translated from the target schema to the source
schema. In contrast, HePToX focuses on translation of que-
ries from the source schema to the target schema, which is
not handled in [46] and is a more difficult problem. While we
also translate queries from the target schema to the source
schema, we handle a less general case, with flat queries and no
constraints on the target. Moreover, we can seamlessly cover
data–metadata mappings in both directions of the translation,
which was not done in [46]. We refer the reader to Sect. 7 for
a detailed discussion.

We develop a forward query translation algorithm that is
based on query answering using views [29]. To the best of our
knowledge, this is the first query translation algorithm that
deals with schema mappings, including data–metadata map-
pings along and against the direction of mappings. We also
address the consequent scalability problem, which arises in
a distributed setting, by deploying our translation algorithms
in a P2P infrastructure. However, neither Piazza [20] nor Clio

[24,46] addresses query translation across schemas involving
data-metadata interplay as illustrated in Fig. 2.

In summary, we make the following contributions:

– We propose an informal mechanism for specifying cor-
respondences using arrows and boxes.

– We develop TreeLog, a Datalog-like language used to
express the rules between source and target (Sect. 3). The
language queries and restructures semistructured data and
elegantly handles the data-metadata interplay between
schemas and schema mappings.

– We develop an algorithm for inferring mapping rules
between the schemas, and discuss the class of transfor-
mations captured by the rules (Sect. 4).

– We define the semantics of peer queries. We develop a
novel query translation algorithm that handles a simple
but significant fragment of XQuery and show that it is
correct w.r.t. the above semantics. We illustrate our algo-
rithm with examples (Sect. 5). Translation is non-trivial
even for the XQuery fragment considered and works both
along and against the direction of mapping rules. Trans-
lation along the mappings is entirely new for the class of
transformations addressed.

– We developed the HePToX system which incorporates the
ideas in this paper. We report on extensive experiments to
measure the effectiveness of our query translation algo-
rithm, as well as the scalability of our approach, with
both uniform and non-uniform schema distributions. We
discuss the results and the lessons learned (Sect. 6).

Additionally, Sect. 2 gives a motivating example. Related
work is discussed in Sect. 7, while Sect. 8 summarizes the
paper and discusses future research.

2 A motivating example—the correspondences

This section illustrates the subtleties of the problems which
HePToX considers by revisiting the example schemas in
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Fig. 1 and the mapping between them in Fig. 2. In Fig. 2,
each arrow between the schemas specify a correspondence
between a pair of elements from the two schemas. For exam-
ple, one arrow shows that DisDate in MON corresponds to
Leave in BOS. To make it easier to see the correspondences,
we use a different type of line for each correspondence.

HePToX considers both the internal structure and the leaf
elements. This means that because the schemas have shared
elements, i.e., they are DAG structured, we need to specify
correspondences between parental paths if there is more than
one option. For example, the element Desc has two parents,
Treatment andSymptom, inBOS. To relateDesc inMON
to Treatment/Desc in BOS, we use the same line type
for the edges Treat—Desc in MON, Treatment—Desc
in BOS, and the correspondence connecting them. Where
there is no ambiguity, the correspondences propagate from
the leaves up to the their parent/ancestor elements as in [16].

HePToX also allows the expression of schema to data cor-
respondences, which is novel w.r.t. previous work on schema
matching. A dashed box surrounds the schema-level concepts
that are related to data level concepts in the other schema.
For example, Admission/Problem in MON may con-
tain data items, such as ‘Pulmonary’ or ‘Coronary’, so the
Pulmonary and Coronary elements in BOS are grouped
with a (thick dashed) box and are linked by an arrow to
Admission/Problem in MON.

HePToX is geared to share data across different sources,
thus the boxes and arrows may denote correspondences
between elements of the schemas themselves, or between
elements of the schema and elements of the data instances.
The latter correspondences embody data–metadata conflicts.
Notice that there is no assumption that the set of illnesses
occurring in the two databases are the same or even overlap.
This implies that the actual knowledge of the instances is not
mandatory to the creation of such correspondences.

Arrows specify a correspondence between the identified
concepts. However, arrows and boxes by themselves do not
tell how data conforming to a schema may be transformed to
one that conforms to the other schema. For example, in the
MON schema, patients’ history (problems and dates) and the
treatments they undergo are both nested under patients. All
admission information is maintained separately and linked
to the appropriate patient via the patient’s ID. In the BOS
database, treatment and history information (symptoms) is
separated out from patients and linked to them via their ID.
Additionally, patients are represented along with the rest of
the admission data, but this data is classified based on the
type of problem/illness identified at the time of admission.
Thus, the simple input mapping must be translated into a
representation that is rich enough to adequately model these
differences. In Sect. 3 we describe the mapping language
that we use, and why it is expressive enough to transform
instances of one of the schema into instances of the other.

This transformation is closely tied to the semantics of query
answering, as we will see in Sect. 5.1.

Finally, the reader may have noted that Figs. 1 and 2 only
show 1–1 and data–metadata correspondences. We restricted
to such kinds of correspondences in this example in order to
keep the exposition simple. HePToX can handle 1–1, 1–m,
and m–n correspondences, as we shall see in the remainder
of the paper. As an example of 1–m mappings, the treatment
of unions of data is a 1–m mapping, and is considered in
more detail in Sect. 4. M–n mappings are a generalization of
such unions.

3 The mapping language

Creating the mapping language in HePToX requires facing
several challenges. In particular, it must be clean and unam-
biguous. Translate instances of one schema into instances of
another without requiring any additional user translation than
what can be inferred from the correspondences is shown in
Sect. 2. However, since the goal of HePToX is to handle as
many conversions as possible, the mapping language must
be rich enough to handle:

– Data to metadata conversions and vice versa
– Mapping non-leaf nodes
– 1–1, 1–m, and m–n correspondences (including the map-

ping of unions as discussed in Sect. 4).

To create a mapping language that was able to meet all
of these challenges, we adapted SchemaLog [4] to deal with
tree-structured data. SchemaLog is a syntactically higher-
order and semantically first-order language for querying and
restructuring inter-operable relational databases. Unlike
some other logic formalisms, SchemaLog could treat data
and schema at par. Therefore, we extended it to express
schema mappings for semi-structured data. In particular, such
an extension lends itself very naturally to represent data-
metadata conflicts, as we explain below.

Given the correspondences in Fig. 2, HePToX’s algorithm
for creating the mapping rules as in Sect. 4, will produce the
mapping expressions as shown in Fig. 3. We stress that the
rules and the mappings are not intended for physically trans-
forming data from one source’s schema to another. Rather,
as pointed out in [5], they are intended for expressing the
semantics of data exchange—if data were to be exchanged
from source 1 to 2, how would it correspond to the schema
of source 2. As shown in Fig. 3, these mapping rules are
expressed as Datalog-like rules, (〈rule head〉 ←− 〈rule
body〉), adapted for tree structured data. The tree expressions
represent indeed the counterpart of Datalog predicates.

We first give an informal glimpse of the mapping language
before providing a formal syntax and semantics. Mapping

123



Schema mapping and query translation in P2P XML

Fig. 3 Mapping rules from MON to BOS schema, shown in Fig. 2

rules are made up of atoms of the form Tag→ id, where
Tag is a tag or a tag variable and id is the id associated
with a node with this tag. Here, id may be a variable or any
term of the form f ($v1, . . . , $vn), for some variables $vi

and some Skolem function f . An example appears in the
next section. Similar to Clio [37], SchemaLog [4], and other
previous works (e.g., [25,35]), we use Skolem functions both
for creating new node ids and for grouping. Atoms can nest
inside other atoms, thus expressing XML nesting. A comma-
separated list of atoms expresses the sub-elements of a given
element. Attributes are preceded with a ‘@’.

Atoms can be further nested to form tree expressions.
Tree expressions are either atoms (t→ i) or are of the form
t→ i[T E1, . . . , T Ek], where t→ i is an atom and T Ei are
tree expressions. In Fig. 3, each rule head is a tree expression
while the rule body is a conjunction of tree expressions and
built-in predicates (=,>, etc.). We illustrate the extended
version of SchemaLog that we propose by continuing with
our hospital example.

The atom BostonGeneral→ f 1($BOS) in rule 1
says translating the unique root $BOS of MON onto the BOS
schema yields a unique root f 1($BOS) of BOS. Similarly,
there is a unique Admission node in BOS. The rule body
binds the variable $AP to a patient’s problem at admission
time. $AP/text () extracts the text value associated with
node $AP . This value is used to form the tag of a new node,
the id of which is f 3($AP/text (), $I D, $M, $AD, $DD,

$N ), i.e., it is a function of the patient’s admission time
problem ($AP/ text ()), patient id ($I D), insurance policy
(or Medicare) number ($M), admission and discharge dates
($AD, $DD), and name ($N ). f 3 illustrates a key point
of the mapping rules: the arguments of a Skolem function
are exactly the mandatory single-valued sub-elements of the
element they represent.3 In this case, the arguments of f 3
are exactly the mandatory single-valued sub-elements of the

3 i.e., They are not labeled ‘?’, ‘*’, or ‘+’.

Pulmonary and Coronary elements in BOS. We do not
assume any knowledge of integrity constraints, but we can
use primary keys and referential constraints as follows.

If we know the key of these elements (e.g., if we know
that patient ID $I D uniquely determines patients), then we
can make the node id of these elements a function of this key,
e.g., f ′($I D), for some Skolem function f ′.

Referential integrity constraints are used to determine
equality predicates in the rules, e.g., $P R = $I D. The latter
ones, if available, lets us to simplify the rules by using the
same variable name.

Patient id, name, policy number, admission and discharge
dates are all matched to their counterparts in BOS. Rule 4
maps @PatRef attribute in MON to @PatRef attribute in
BOS. Note that@PR=@ID ensures the rule is safe and equates
the @ID, @PatRef attributes in the BOS schema.

Rule 2 maps the patient history consisting of Problems
and their Dates of occurrence (nested in MON through
Hist/-Event) to Symptom/Desc and Symptom/Date
in BOS. Note that in BOS, the Symptom elements are nested
inside aProgress element, which has as its id a function of
the patient ID (via @PatRef), i.e., f 2($P R), $P R = $I D.
Thus, there is one Progress element per patient. Conse-
quently, Symptoms are grouped by patient ID. The node
ID f 3($E P, $E D), which is used for Symptom elements,
shows that for each occurrence of a problem for a given
patient, a separate Symptom element is created.

Rule 3 maps treatment information from MON to BOS.
Progress elements are created with id f 2($P R) just as
they are in rule 2. Note that the use of the node id f 3($T Date,
$T Desc) for Treatment ensures that for every treatment
on any date administered to a given patient, the correspond-
ing Treatment element is nested inside the Progress
element associated with the patient.

Node ids play a key role: e.g., Progress elements are
created by rules 2 and 3 independently. Whenever the id of a
Progress node created by rule 2 matches the one created
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by rule 3, they refer to one and the same node. For instance,
suppose p5 is the ID value of a patient. Then the subtree
rooted at the Progress node f 2(p5) created by rule 2 and
the subtree rooted at the Progress node f 2(p5) created
by rule 3 are both glued at the node f 2(p5). More generally,
whenever subtrees are created by applications of the same
or different rules, conceptually all these subtrees are glued
together at roots having a common node id. This ensures that
the pieces “computed” by rules are correctly glued together.

3.1 Formal semantics of mapping language

This section formally describes the syntax and semantics of
TreeLog, the mapping language used for HePToX.

TreeLog has a vocabulary consisting of constants, vari-
ables, and function symbols of various arities. Terms are
defined as in standard first-order logic. Additionally, when-
ever X is a variable, we define X/text() to be a term.

An atom has the form TagTerm→ IdTerm, where: (i)
TagTerm is either a variable, a constant, or a term of the
form X/text(), where X is a variable,4 and (ii) IdTerm
is a standard first-order term made of constants, variables,
and function symbols. A tree expression has the form A or
A[T E1, . . . , T Ek], where A is an atom and T Ei are tree
expressions. The complete language is obtained by closing
the atoms w.r.t. the connectives ¬,∧,∨ and quantifiers ∃,∀.

The semantics of this logic is based on structures. A struc-
ture is a finite node-labeled unordered forest, where leaves
contain text data. More formally, a structure is a tuple M =
(U, λ, R, τ ), where U is a non-empty domain of individu-
als, consisting of nodes, data values, and labels, R is a binary
relation on U such that it forms an unordered forest of nodes,
and τ, λ are many–one binary relations on U such that τ is
defined only on the leaves of the forest and λ is defined on
every node of the forest. When R(u, v) holds in M, we say
v is a child of u. When λ(u) = l, we say l is the label of u.
When τ(u) = c, we say c is the data value at u.

Let M be a structure and ν be a variable instantiation that
maps variables to the individuals in M. Then we define sat-
isfaction of formulas as follows. For any term t , we denote
by ν(t) the result of uniformly replacing every variable X
in t with its instantiation under ν. We write M |
 F[ν] to
indicate the formula F is true in M under instantiation ν.

– For an atom T→ I , M |
 T→ I [ν] iff M contains a
node ν(I ) and a label ν(T ) such that λ(ν(I )) = ν(T ).

– For a tree expression T1→ I1[T2→ I2[T E]], where T E
is any tree expression, M |
 T1→ I1[T2→ I2[T E]][ν]
iff M |
 T1→ I1[ν], and M |
 T2→ I2[ν], and ν(I2)

is a child of ν(I1) and M |
 T2→ I2[T E][ν].

4 We use upper case letters to denote variables.

– Satisfaction w.r.t. conjunction, disjunction, negation, and
implication of formulas is defined in the standard way.

– For a tree expression A[T E1, . . . , T Ek], where A is an
atom and T Ei are tree expressions, M |
 A[T E1, ...,

T Ek][ν] iff M |
 A[T E1] ∧ · · · ∧ A[T Ek][ν].

It follows from the semantics above that a tree expression
A[B[T E]] is equivalent to the formula A[B]∧ B[T E]. Sim-
ilarly, the tree expression A[T E1, . . . , T Ek] is equivalent to
the formula A[T E1]∧ · · ·∧ A[T Ek]. As a concrete example
of the former, Book→ b[publisher→ p[name→ n]],
says node b is labeled Book, has a child p labeled pub-
lisher, which in turn has a child n labeled name.

We next define the rules used for defining mappings. Rules
are expressions of the form Head←−Body, where Head is
a tree expression and Body is a conjunction of tree expres-
sions and interpreted predicates, such as X > 5, X = Y ,
etc. We assume as for Datalog that rules are range restricted
and safe [45]. In particular, all variables appearing in Head
appear in the Body. In view of the equivalences explained
above, we can assume without loss of generality that Head
is of the form A or A[B], where A, B are atoms. More gen-
erally, we have the following:

Proposition 1 Let Head←−Body be any range restricted
safe rule in TreeLog. Let S be the set of atoms such thatHead
is equivalent to the conjunction of atoms in S. Then the above
rule is equivalent to the set of rules {A←−Body | A ∈ S}.

The proof is trivial and is omitted. As an example, con-
sider a rule of the form A[B[C], D[E[F]]]←−Body. The
semantics of a rule is that the body implies the head. Under
this semantics, the above rule is equivalent to the set of rules:

A[B]←−Body,

A[D]←−Body,

B[C]←−Body,

D[E]←−Body,

E[F]←−Body.

3.1.1 Tree transformations

TreeLog rules can express transformations over forests. We
formalize this below. The notions of ground terms and atoms
of Herbrand base are defined analogously to first-order logic.
A tree expression is said to be ground if all atoms in it are
ground. Let P be a set of rules in TreeLog, where each rule
has a head of the form A or A[B]. Then the Herbrand base
HP associated with P is the set of ground atoms as well as
ground tree expressions of the form A[B]. In what follows,
we refer to a ground atom as well as a ground tree expression
of the form A[B] (where A and B are atoms) as a fact. Thus,
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the Herbrand base of P is the set of all ground facts formed
using the symbols appearing in P .

P then defines a transformation T that maps subsets of
HP to subsets of HP as follows. Let S ⊆ HP . The set of
ground facts implied by P ∪ S was denoted by T̃ (S). Then
we define T (S) to be the set of ground facts not in S that are
implied by P ∪ S, i.e., T (S) = T̃ (S)− S.

Given any set of ground facts, G, we can obtain the graph
represented by G as follows. (1) For each fact t→ i appear-
ing in G, create a unique node i with tag t . (2) For each fact
t→ i[t ′ → i ′] in G, make i ′ a child of i .

For example, consider the following set of rules:

r1: Publisher→ f (P/text())[name→ P/text()]←−
Publisher→ P .

r2: Publisher→ f (P/text())[Book→ f (B)]←−
Book→ B[Publisher→ P].

r3: Book→ f (B)[T→ f (N )]←−
Book→ B[T→ N ], T �= ‘Publisher′.

Consider an input forest consisting of books with sub-
elements corresponding to title, authors, and publisher.
Figure 4a and b show an example forest of book trees. Rule r1

creates a new node f (P/text()) with label Publisher,
for every publisher node P in the input. The node is created
as a function of the data value of the input publisher node P .
Thus, for every distinct publisher, one node is created. Further
it creates a node labeled name, makes it a child of the pub-
lisher node created and associates the value P/text() to this
node. Rule r2 creates a new node f (B) for every input book
node B. Whenever B has a publisher child P in the input, this
rule makes f (B) a child of the node f (P/text()). Finally,
rule r3, whenever the input contains a book node B with a
child N whose label T is different than ‘Publisher’, cre-
ates a node f (N ) and makes it a child of the book node f (B)

in the output. The transformation expressed by these rules is
illustrated in Fig. 4c. It can be seen that the mapping rules
above transform a forest of book trees into an output forest
of publisher trees, where books are grouped by publisher.

A natural question is whether an arbitrary set of rules is
guaranteed to transform a forest into a forest. This ques-
tion is important since our approach for interoperability in
HePToX is to derive mapping rules automatically from cor-
respondences. Thus, we need the assurance that the derived
rules always map forests to forests. As we show below, not
all rules (or sets of rules) transform forests to forests. We give
two examples. Consider the single rule t→ i[t→ i]←− (i.e.,
it has an empty body). This has the effect of making a node
its own “child”, effectively creating a cycle. As a less trivial
example, revisit the set of rules {r1, r2, r3} above. Suppose
in r1, r2, the term f (P/text()) is changed to f (P) and the

(a)

(c)

(b)

Fig. 4 An example of transformation from a forest of trees (a) and (b)
into a forest (c)

condition T �= ‘Publisher′ is removed from the body of
r3. Then it is easy to see that when the rules are applied to
an input forest of book trees, such as in Fig. 4a, then in the
output, publisher nodes will be both a parent and child of
book nodes, i.e., the output contains cycles.

Fortunately, a simple syntactic condition guarantees that
a set of rules always transforms a forest into a forest:

Lemma 1 Let P be a set of TreeLog rules of the form T1→ I1

[T2→ I2]←−Body, such that the id term I2 is a function of
the id term I1 and possibly other terms. Then P always trans-
forms a forest into a forest.

Proof First, notice that no self-loops will be ever created by
P , since the id of a child is always a function of its parent,
and thus is necessarily different from it. Suppose a node u in
the output has two parents v1, v2. However, the id of u would
have to be a function of v1 and v2, which is only possible if
v1, v2 are the same node. Suppose the output contains a cycle
(v1, v2, . . . , vk, vk+1 = v1). We have already shown the case
k = 1 is impossible. A routine induction shows a cycle of
any length which leads to a contradiction. ��

Thus we have shown that HePToX’s mapping language,
TreeLog, is capable of supporting the complex relation-
ships between schemas. Schema mapping systems, such as
Clio [24,37] express mappings as source-to-target tuple-
generating dependencies (s–t tgds), i.e., first-order formulas
that formalize data exchange between a source and a tar-
get database. To enable the exchange, such dependencies are
reformulated as executable mapping statements, i.e., in SQL
or in XQuery. Our TreeLog mapping rules, although higher
order, are semantically reducible to first order. In this sense,
they are similar in spirit to the tgds employed in Clio. How-
ever, the higher order syntax of TreeLog permits it to express
rules that map data elements to elements of schema and vice
versa, unlike mappings expressed using s–t tgds. In addition,
we use TreeLog mapping rules to enable query reformula-
tion among heterogeneous peers, rather than data exchange,
as highlighted before.
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4 Inferring mapping rules from arrows

Given a pair of schemas, represented as graphs, and a set
of arrows/boxes relating nodes across the graphs, HePToX
must automatically infer a set of rules for mapping instances
of one schema into instances of the other. In this section,
we illustrate the HePToX automatic mapping rule inference
algorithm, using the running example of transforming the
representation in Fig. 2 into the rules in Fig. 3.

Suppose HePToX needs to infer mapping rules from a
schema ∆1 (call it source) to another ∆2 (call it target) based
on given correspondences (as in Fig. 2); the algorithm con-
sists of the following main modules. (1) Determine groups
of nodes in the two schemas such that each group intuitively
captures some “unit” of information that should be consid-
ered separately. For example, consider the patient element
in Fig. 1a. Since the hospital has many patients, and each
patient has several characteristics, a “patient” is a good unit
to consider as the origin or destination of a mapping rule. (2)
For each source group, construct a tree expression describing
the unit of information following the hierarchical structure of
the group. Continuing our example: what information needs
to be considered as part of the “patient” group? (3) For each
target group, identify all minimal sets of source groups nec-
essary to populate information into the target tree expression
structure and construct the rules.

To appreciate the need for groups, consider mapping
instances of Fig. 2a to those of Fig. 2b. Suppose we write
a rule of the form: “〈whatever〉 ←− MonGenHosp→
$Mon[Patient→ $P[...], Admission→ $A[...]]”.
Then we create the objects as per rule head, for each combi-
nation of patient and admission. Thus, the multiplicity of the
elements in the original database will not be preserved by this
rule. This problem will be solved if we write mappings for
the following groups of nodes separately: {MonGenHosp,

Patient, @ID, MedCr#,Name} and {MonGenHosp,
Admission, Problem, AdmDate, DisDate,
@PatRef}.

Sections 4.1, 4.2, and 4.3 show how HePToX automati-
cally completes these steps. Section 4.4 shows how HePToX
creates union mappings.

4.1 Identifying groups

As described earlier, the first step is defining which groups
need to be mapped where. To do so, we first introduce the
group node. The group node is the primary element under
consideration, e.g., the “patient” in Fig. 1. Each group node
induces a primitive group. This primitive group defines the
characteristics that must be defined to describe the group
node. Primitive groups model basic relationships that exist
between different data items in a given schema and are thus
similar to the primary paths of [37]. A main difference is

Fig. 5 The primitive groups from MON as shown in Figure 2

that primitive groups account for nodes with boxes and thus
facilitate mappings between data and schema. For example,
the patient in Fig. 1 may be described as being a patient at
MonGenHosp, and having an ID, MedCr#, and a Name.

The algorithm to find group nodes and primitive groups
is described formally in Fig. 6, and informally works as fol-
lows. The root of a schema is a group node. Any node which
has an incoming arrow labeled ‘?’, ‘+’, or ‘*’, or is an ances-
tor of such a node is a group node. For example, in Fig. 1a,
in the MON schema, all non-leaf nodes are group nodes. For
the purpose of group formation, we turn the DAG into a tree
by replicating nodes with multiple parents, if necessary. For
example, in Fig. 1a, the Problem node would be replicated
twice—once for Admission and once for Event. Note
that the set of nodes inside a box is treated as a single node
for the creation of group nodes. Let T be the resulting tree.
Let u be a group node in T and suppose v1, . . . , vk are all its
non-group children. Then the primitive group induced by u
consists of u, all its ancestors in T , the children v1, . . . , vk ,
and their descendants. The primitive groups corresponding
to the MON schema of Fig. 1a are shown in Fig. 5. Note that
since MonGenHosp has no non-group children, the group
induced by it is just {MonGenHosp}.

To minimize mapping rules without losing expressive-
ness, primitive groups can be merged under some conditions,
formalized below. Intuitively, these correspond to when two
primitive groups are guaranteed to have the same cardinali-
ties. Formally, let v be any node in the schema tree T above
and u an ancestor of v. v is mandatory relative to u if no
edge on the path from u to v is labeled ‘?’ or ‘*’. Call v

single-valued relative to u if no edge on the path from u to v

is labeled ‘*’ or ‘+’. Let g and h be two primitive groups. Let
u be the least common ancestor of nodes in g and h. Then
g and h can be merged provided: (i) all descendants of u in
g are mandatory single-valued relative to the root; or (ii) all
descendants of u in g are mandatory single-valued relative to
u and all descendants of u in h are mandatory relative to u.
In our example, we can merge g1 with any one of the other
primitive groups since condition (i) holds vacuously. Also,
g6 and g5 have Admission as their least common ancestor,
relative to which Admdate, Disdate, @Patref are mandatory
single-valued, and Problem is mandatory. So, by (ii), g6, g5

can be merged. The resulting groups for the MON schema are
shown in Figure 7, which also shows the groups for the BOS
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Fig. 6 Algorithm for detecting groups in schemas

(target) schema. Note that groups always induce connected
subgraphs of the schema graph.

Figure 7 shows the groups created for the example in
Fig. 2. HePToX’s group detection algorithm (Fig. 6) handles
disjunction in schemas. Disjunctions are treated as usual, by
yielding alternative groups for each element which is or-ed
in the disjunction. Since they do not affect the computation
of groups, we do not discuss them further. Moreover, we do
not consider cyclic schemas or ordered XML.

The group detection algorithm in Fig. 6 is applied to the
MON schema in Fig. 1a as follows:

Step 1 The algorithm marks MonGenHosp as P (it has mul-
tiple outgoing edges).
Step 2 The algorithm visits Patient and (eventually)
Admi-ssion, and marks them as stop nodes (since the edge
labels are ∗). Patient is again (recursively) marked as P
(>1 outgoing edge) and its associated stop nodes Event
and Treat are found, each of which are again recursively
marked as P .
Step 3 Since there are no stop nodes reachable from
Event, the algorithm groups all descendants of Event,
adds all nodes on the path from MonGenHosp (root) to
Event and creates the group sg1 in Fig. 7. The shared ele-
ments have been renamed (i.e., Problem and Date have
become EProblem and EDate) to distinguish them from

admission problem and admission date. In a similar fashion,
the algorithm forms the groups sg2 and sg3.
Step 4 The algorithm forms the group sg4, since@ID, Med-
Cr#, Name are the left-over attributes and elements for the
recursive call on Patient marked as a P node. Similarly,
the algorithm will form tg1, tg2, tg3 and tg4 (as shown in
Fig. 7) on the BOS schema in Fig. 2b.

Figure 7 shows the pairs of groups connected by arrows
in our example. As will be shown in the remainder of this
section, each target group corresponds to one mapping
rule.

4.2 Generating tree expressions

At this point, HePToX knows what groups are formed based
on the schema and how they are coupled based on the map-
pings. Having mapped the groups, the next step is to gen-
erate tree expressions—the building blocks of the mapping
rules. For each group, g, we examine the subgraph of the
original schema graph induced by the nodes in the group
(not counting Key→KeyRef(s) edges). If the subgraph of
the schema graph induced by g is a tree, we are ready to
write the tree expression for that group. As in group forma-
tion, if the subgraph is a DAG, then we replicate each shared
node (recursively) as many times as necessary to create a
tree structure. An exception is when the DAG structure is
the result of multiple nodes in a box which have the same
substructure. For example, in the schema BOS, Pulmonary,
Coronary, etc., are in the same box, and they have the same
relationships with the same children. In this case, HePToX
does not replicate the shared elements. Note that in our exam-
ple, all source and target groups happen to induce trees.

For each source group, the tree expression is written by
essentially following the recursive tree structure, using
brackets—[]—to capture the nesting. For every node in the
group, we write the expression Tag→ $var , where Tag is
the tag name of the node and $var is a new variable. For
example, for group sg1, we can write its tree expression
as MonGenHosp → $BOS[Patient→ $P[Hist→ $H
[Event→ $E[Pro−blem→ $E P,Date→ $E D]]]]. If
the node is inside a box (e.g., like Pulmonary in the BOS
schema), then we use a tag variable and write $T ag→ $var .

For target groups, HePToX follows the same procedure.
However, there is a major difference w.r.t. source groups,
i.e., we do not know the node ids needed in the generated
tree expressions, since those have not yet been determined.
Instead, we write the tree expression as a skeleton, leaving the
node ids as ‘??’ for now. As an example, the tree expression
for tg1 would be BostonGeneral→ ?? [Admission
→ ?? [$T ag→ ?? [@ID→ ?? , . . . , Patient → ??]]].
The ‘??’ will be filled in when we write the mapping rules
in Sect. 4.3. We drop a leaf node from consideration if there
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Fig. 7 Example of group determination for Fig. 2

Fig. 8 Rule construction algorithm

is no counterpart in the source schema. For example, Doc is
one such node. The module for creating trees and for writing
tree expressions is straightforward and is omitted for brevity.

4.3 Generating mapping rules

At this point, the groups that should be mapped together in a
single mapping rule have been decided, and the basic format
of each rule has been decided. The last step is writing the map-
ping rules. Figure 8 shows the formal algorithm specification.
To make the algorithm clearer, we now show how to create
the rule for T E(tg2)←−T E(sg1), which is Rule 2 in Fig. 3.
Consider each target group tg. Let {sgi , . . . , sg j } be the set of
source groups connected by arrows to tg. Let T E(g) denote
the tree expression for group g. Applying step 1, we start with
the rule skeleton T E(tg)←−T E(sgi ), . . . , T E(sg j ). Based
on the arrows incident on the leaf elements of tg, we fill in
the variables corresponding to leaf positions in T E(tg), i.e.,

the right-hand-side of atoms corresponding to leaf nodes. For
example, for tg2, we start with T E(tg2)←− T E(sg1). The
rule body only contains T E(sg1) since that is the only source
group connected to tg2 by arrows (see Fig. 7). Based on the
arrows, we can fill in the right-hand-sides ofDate andDesc
in the rule head as $E D and $E P , respectively:

Next, according to step 2, we assign as IDs for the root
BostonGeneral and its single-valued child Admission
distinct Skolem functions of the root variable in ($BOS).

Next, step 3 creates ids for each internal node. HePToX
uses a key as an ID if one is provided by the schema.
Otherwise, it is necessary to construct a key. Specifically,
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HePToX uses a distinct Skolem function of the variables
associated with all its mandatory single-valued leaf descen-
dants. Additionally, if a variable is used for the tag of v,
then this variable is also added as a Skolem argument. For
example, for the RHS of Symptom, the key is the Sko-
lem function f 3($E P, $E D), since no key is specified. For
Progress, its (only) mandatory single-valued leaf child is
@PatRef, which does not belong to tg2. By following the
arrow incident on @PatRef, we trace source group sg3,
so we introduce T E(sg3) in the rule body. Now @Pat-
Ref in the source schema points to the ID attribute @ID
of Patient, an attribute that does not belong to sg1 or
sg3. However, @ID belongs to sg4, so we also add T E(sg4)

to the above rule body. We equate the variable associated
with the @ID attribute in T E(sg4) with the variable asso-
ciated with @Pat-Ref in sg1. At this point, the rule is as
follows:

For the RHS of Progress we can assign the Skolem
function f 2($P R). We refine the rule by identifying nodes/
paths shared between two or more tree expressions in the
body. This yields rule 2 in Fig. 2. Note that the generated
rules are always safe—all variables in the head appear in the
body.

4.4 Extending HePToX to union mappings

HePToX supports union mappings. In a PDMS scenario,
unions may be expressed according to two different seman-
tics, depending on the relationships between labels; e.g.,
Fig. 9a shows correspondences between schemas src and tgt.
Here, src consists of a set of r -tuples and a set of s-tuples,
while tgt consists of a set of t-tuples. We need to map the
union of r and s in src to t in tgt. Figure 9a shows two possi-
ble alternatives. In scenario 1, r and s correspond to vehicle
and car (perhaps src was created by integrating two other
schemas) and t corresponds to automobile. Intuitively, vehi-
cle ∪ car = automobile, thus the union of the set of r -tuples
and the set of s-tuples is equal to the set of t-tuples. Note
that all of them model the make and price of vehicles. In sce-
nario 2, r corresponds to European cars (euroCar) while s to
American cars (amCar). In this case, we expect some kind of
subsumption relationship to hold, i.e., euroCar ∪ amCar �
automobile. To allow both kinds of unions, we propose the
use of a union mapping table. A union mapping table is very

similar to a mapping table [5]. It is a table with three columns
(source schema labels, op, and target schema labels). Each
row of this table states the correspondence between the union
of source schema labels (tags) and a target schema label using
one of the operators =,�.

Unions represent 1–m mappings, and, as such, can be
extended to represents m–n mappings in HePToX. By wid-
ening the example in Fig. 9a, an euroCar element in the
source can be connected via union with containment to both a
localCar element and a foreignCar element in the target, i.e.,
euroCar ∪ amCar � localCar ∪ foreignCar in Table 1. Fig-
ure 9b shows the new target schema and possible instances
in the source database and in the target database.

Notice that the semantics of m–n mappings, as a gener-
alization of 1–m union mappings, say that the same value
(FIAT) can be a localCar, e.g., with a the target schema
belonging to an Italian peer, or, alternatively, can be a foreign-
Car, e.g., with a target schema belonging to a Spanish peer.
If the containment holds, the target instance can also include
further values (e.g., Toyota). M–n unions with equality hold
in a similar fashion, by imposing that euroCar ∪ amCar =
localCar ∪ foreignCar (cfr. last row in Table 1).

4.5 Final remarks

The main contribution of this section has been the auto-
matic inference of mapping rules that transform tree database
instances of one schema into those of another. We have stud-
ied how to determine groups of information and used them to
create the mapping expressions, which constitute the compo-
nents of a rule. Moreover, we have discussed an extension of
HePToX to handle union mappings. Incidentally, our group
detection algorithm is reminiscent of the tableaux formation
in Clio mapping generation algorithm [24,37]. However, the
rest of the mapping generation algorithm is unique to HeP-
ToX, as it is guided by the higher order syntax of TreeLog
and by data-metadata correspondences.

To conclude this section, we next briefly address the ques-
tion, what is significant or fundamental about the class of
transformations that are captured by the rules? To avoid
detracting from the main point of the text, we refer the reader
to the appendix [22].

The key idea illustrated in the appendix is that the rules
capture a class of database tree transformations that are
expressible using the operators unnest/nest (similar to those
for nested relations), flip/flop (which basically change nest-
ing orders in the schema), and merge/split (which have a
flavor of grouping and “ungrouping” a set of nodes). It can
be shown that the rules capture precisely the class of trans-
formations expressible using these operators together with a
few additional operators like node addition/deletion and tag
modification, added for “completeness” purposes.
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Fig. 9 a Unions in scenarios 1
and 2; b m–n Mappings in
scenario 3.
A = C = E = G = make and
B = D = F = H = price

s: (Chrysler)
t : (FIAT) or (Chrysler)
z: (FIAT) or (Chrysler)

r: (FIAT)* *
src

r s

A        B C D

tgt

t z

E        F

* *

G        H

r is euroCar
s is amCar
t is localCar
z is foreignCar

Scenario 3 Instances

* *
src

r s

A        B C D

t

E        F

*

tgt
r is euroCar
s is amCar
t is automobile

Scenario 2Scenario 1

t is automobile
s is car
r is vehicle

(b)

(a)

5 Query translation

This section addresses two questions: (1) Suppose there are
a pair of peer XML database sources pi , with DTDs ∆i

and underlying database instances Di , i = 1, 2. Suppose
a query Q is issued against the DTD of p1 (p2). What does
it mean for Q to be answered using the database of p2 (p1)?
(2) Can Q be translated into a new query, Q′, such that (a)
Q′ is over the other peer’s DTD and (b) Q′(D2) yields the
correct answers w.r.t. the semantics captured by the answer
to question (1)? Further, can this translation be done effi-
ciently?

5.1 Query translation semantics

Suppose mapping rules µ map instances of schema ∆1 of
one peer to those of schema ∆2 of another peer, i.e., µ :
∆1→∆2; e.g., Fig. 3 shows MON → BOS. Let inst(∆)

denote the set of instances of ∆. We begin by discussing
query translation semantics where only 1–1 mappings are
considered; we talk about extending this to union mappings
in Sect. 4.4.

Definition 1 (Semantics) Suppose Qi is a query posed
against ∆i , i = 1, 2. Let Qt

i denote a translation of Qi against
∆ j , j �= i . Then Qt

2 is correct provided ∀D1 ∈ inst(∆1) :
Qt

2(D1) = Q2(µ(D1)). The translation Qt
1 is correct pro-

vided ∀D2 ∈ inst(∆2) : Qt
1(D2) = ⋂

Dk
1 :µ(Dk

1)=D2
Q1

(Dk
1)).

In other words, the translation Qt
2 is correct provided Q2

applied to the transformed instance µ(D1) and Qt
2 applied

to D1 both yield the same results, for all D1 ∈ inst(∆1).
Note that in this case, the direction of translation is against
that of the mapping µ. We henceforth call this backward

query translation. Translating a query Q1 posed against ∆1

to the schema ∆2 of peer p2 is aligned with the direction of
the mapping µ. We call this direction forward translation.
Intuitively, backward translation is similar to view expan-
sion and is the easier of the two. A key complication in
forward translation is that µ, the mapping that transforms
instances of ∆1 to those of ∆2, may not be invertible [17].
Thus, we define the semantics of query answering based on
certain answers over all possible pre-images Dk

1 for which
D2 = µ(Dk

1). We begin by describing forward translation
in Sect. 5.2. Section 5.3 briefly describes backward trans-
lation. Section 5.4 discusses the correctness of HePToX’s
query translation algorithms.

Output formatting: Note that owing to schema discrepancies
between ∆1 and ∆2, the output of Q2(µ(D1)) would adhere
to the schema ∆2. For Qt

2(D1), XQuery permits restructuring
of output, so this is not an issue. A similar comment applies
to the translation Qt

1 of Q1.

5.2 Forward query translation algorithm

Given a mapping µ from DTD ∆1 to DTD ∆2 (µ : ∆1→
∆2), we give a query translation algorithm that seamlessly
works when the input query Qi is posed against either ∆1 or
∆2. The forward direction of query translation corresponds
to answering queries using views. In this paragraph, we illus-
trate the forward direction.

XQuery fragment considered: The fragment of XQuery we
consider corresponds to queries expressible as joins of tree
patterns (TP) (see [3]), where the return arguments corre-
spond to leaf nodes of the database. Even for this simple
fragment of XQuery, query translation is far from trivial.
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5.2.1 Translating tree patterns

We use the following XQuery, Q1, on the MON schema
(Fig. 1a) as a running example to illustrate forward transla-
tion: “Find all patients with Admission/Problem =
‘Coronary’ whose Treatment started Dec 25, 2003”,
expressed as:

Example 1 [XQuery Forward]

We represent this query as (a join of) two tree patterns, as
illustrated in Fig. 10.

The rest of this section focuses on translating single tree
patterns. Translation of joins of TPs is discussed in
Sect. 5.2.2. Our algorithm translates a tree pattern for each
relevant mapping rule by applying two main steps: (i) expan-
sion, and (ii) translation. After the tree patterns have been
translated w.r.t. all relevant mapping rules, they undergo
(iii) a stitching phase and possibly (iv) a contraction phase.
We detail each phase in the following.

Expansion: The first forward query translation step is expand-
ing a query—which is represented by a tree pattern—to the
body of a rule. The goal is to match the TP and the rule body
so that the TP can be mapped to the rule’s body. Formally,
let t be a TP and r : hr←−br be a mapping rule, where hr is
the rule head, and br is the rule body. Expansion helps match
t to br , which is a substitution θ that maps variables in br to
those in t . This substitution θ may be partial since br may
contain components which have no counterpart in t , and not
all nodes in t may be in the range of θ . Any nodes that appear
in the rule body but do not have a TP variable mapped to them
are called dummy nodes. If we find a non-empty substitution
θ , check whether any variable $X in br such that θ($X) is a
leaf variable of t , appears in the rule head hr . If not, then r
is not relevant for translating t .

For example, Fig. 10, our running example, shows (the
join of) two TPs—t1 and t2. Consider the mapping rules
in Fig. 3 again. Figure 11a shows t1 without its join

Table 1 Union mapping table in HePToX

Source elements Operator Target elements

vehicle ∪ car = automobile

euroCar ∪ amCar � automobile

vehicle ∪ car = localCar ∪ foreignCar

euroCar ∪ amCar � localCar ∪ foreignCar

$Id = $RefVal
Join Condition(a)

$RefVal$Prob $Name

$Adm
@ID

$Pat

(b)

$D.tag = Date & $D/text() = "12/25/2003"
$Name.tag = Name & 
$Pat.tag = Patient & $Tr.tag = Treat & 

$T

$D
$Id

$Adm.tag = Admission & 
$Prob.tag = Problem &
$Prob/text() ="Coronary" 

@Patref

Fig. 10 ‘Join of’ two tree patterns

condition. Figure 11b shows the expansion of the body of
Rule 1 in Fig. 3. The part of the expanded TP that was orig-
inally present in t (Fig. 11a) is highlighted in Fig. 11(b) by
using nodes shown in dark circles (e.g., $A, $AP, and $PR).
To better illustrate the dummy nodes—those nodes not asso-
ciated with variables in Fig. 11a—in Fig. 11b (e.g., $AD,
$M, and $P, etc) have edges leading to them shown as dashed
gray lines. At this point, any distinguished node present in
the original TP is also identified as such in the expanded TP
and distinguished nodes are tracked as so through the steps of
the query translation algorithm. Therefore, Rule 1 is relevant
for tree pattern t1.

Similarly, Rules 3 and 4 are relevant for t1, while rules 1
and 3 are relevant for t2. For instance, rule 2 is irrelevant for
both TPs since no variables corresponding to the TP variables
(via any substitution) appear in the head of rule 2.

At this point, any distinguished node present in the original
TP is also identified as such in the expanded TP, and distin-
guished nodes are tracked as such throughout the steps of the
query translation algorithm. Since t1 has no distinguished
nodes, there are no changes to track in Fig. 11.

Translation: Next, we translate the expanded TP by apply-
ing the rule to it. The correspondence between the vari-
ables in the original TP and those in the expanded TP (i.e.,
the rule body) is kept track of by means of a substitution
between the two. Figure 11b shows the substitution for TP t1
as {$A→ $Adm, $AP→ $Prob, $P R → $Ref V al}.
Using this substitution, original query constraints are propa-
gated through the translation; e.g., the translated query result-
ing from applying rule 1 to the expanded TP above is shown
in Fig. 11c. For readability, all tag constraints are shown
concisely by writing the tags (in gray) next to the appropri-
ate nodes. Note how the constraint $Prob/text () =
“Coronary” is propagated via the substitution as $AP/

text () = “Coronary”. Additionally, the condition $P R =
$I D in the body of rule 1 is used to infer that the attribute
child @I D of the node $AP/text () in Fig. 11c corresponds
to the attribute child @Pat Re f of the node $A in Fig. 11b.
Note that some of the nodes have Skolem terms associated
with them. They play a key role in the stitching phase.

Figure 11d–e shows the translated query pieces obtained
from t1 via rules 3 and 4, respectively. Figure 12a repro-
duces the TP t2 while Fig. 12b–d shows its translated query
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Fig. 11 A series of steps in the
translation of TPs t1 from
Fig. 10: a Tree pattern t1 from
Fig. 10a without the join
predicate. b The expansion of
the body of Rule 1 from Fig. 3 to
the tree pattern t1. c The results
of applying the head of Rule 1
to the expansion of t1 (as shown
in (b)). d The results of applying
the head of Rule 3 to the
expansion of t1. e The results of
applying the head of Rule 4 to
the expansion of t1. f The results
of stitching together the
translations in (c), (d), and (e)
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pieces obtained via rules 1, 3, and 4. Distinguished nodes are
shown with a box surrounding their variable (e.g., $N , $N2,
in Fig. 12).

The last part of the translation phase is to remove the
dummy nodes from the leaves of the translated query, since
they are not necessary in the translation of the query. We
cannot remove the dummy nodes from internal nodes, since
they may be used for stitching. For example $M, $AD, $DD
can be dropped in Fig. 11c. In contrast, internal dummy
nodes cannot be dropped at this stage, and they are actu-
ally kept as such in the translated TP of Fig. 11c. Examples
of such nodes are f 1($BOS), f 2($BOS), f 3($AP/text (),
$I D, $M, $AD, $DD, $N ), which are Skolem functions of
dummy nodes in the expanded TP. The latter may indeed be
needed later during the stitching phase.
Stitching: At this stage we have obtained translated pieces
of a TP via various mapping rules. They must be stitched
together by identifying nodes and possibly adding equalities
between leaf variables. Two nodes are identifiable provided
they have the same tag and the Skolem terms denoting their
node id are unifiable. Consider the translated pieces asso-
ciated with t1 (Fig. 11c–e). It is easy to see that the two
BostonGeneral nodes and the twoProgress nodes are
both identifiable: unification is via an identity substitution.
Stitching those trees based on this identification yields the
TP in Fig. 11f. The key/keyref constraint between @ID and
PatRef is used to infer the equality $P R = $I D, which is
added as a condition in Fig. 11f.

Figure 12b–d shows the translated pieces of t2 (Fig. 12a)
w.r.t. Rules 1, 3, and 4. The result of stitching is shown
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Fig. 12 Translation of TP t2 from Fig. 10: a TP t2 from Fig. 10b with-
out the join predicate. b The results of applying the head of Rule 1 to
the expansion of t2. c The results of applying the head of Rule 3 to
the expansion of t2. d The results of applying the head of Rule 4 to
the expansion of t2. e Stitching together the results of (b), (c), and (d).
f The two individual translated TPs, t t1 (corresponding to t1) and t t2
(corresponding to t2)
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in Fig. 12e. Three BostonGe-neral nodes and the two
Progress nodes have been identified and the equality
$P R = $I D has been added to the conditions.

Contraction: This step drops dummy nodes from the trans-
lated query. A node in a translated TP is a dummy node
provided it (1) is a leaf and corresponds to a dummy node in
the original expanded source TP, or (2) it is an internal node
and all its children are dummy. In Fig. 11f, the dummy nodes
(e.g., $M, $T Date, $T Desc, f 6($T Date, $T Desc)) are
highlighted by graying out the edges leading to them. Note
that f 6($T Date, $T Desc) is dummy since both its children
are dummy. The translated TP corresponding to t1 is simply
the TP in Fig. 11f with all dummy nodes dropped and all
Skolem terms dropped and replaced by the tags associated
with those nodes. Similarly, $M, $AD, $DD, and $T Desc
in Fig. 12e are dummy nodes. The translated TP correspond-
ing to t2 is just the TP in Fig. 12e with the dummy nodes
dropped and the Skolem terms dropped and replaced by the
tags associated with those nodes.

5.2.2 Translating tree patterns joins

Consider again the XQuery queryQ1 and its representation as
join of TPs in Fig. 10. This query is translated by first translat-
ing each of the TPs and then adding in the join condition. We
rename the variables separated across translated TPs to avoid
conflict. Figure 12f shows the two individual translated TPs
(denoted t t1 and t t2) corresponding to t1 and t2 along with the
join condition. The original join condition was $P R = $I D,
which, after variable renaming, becomes $P R2 = $I D1.
Note that the dummy nodes present in the translations of t1
(Fig. 11f) and t2 (Fig. 12e) are dropped in Fig. 12f. To get
the final translated query, we need to detect nodes across the
two tree patterns t t1 and t t2 that need to be merged. This
can happen because of constraints in the query. For example,
the join condition $P R2 = $I D1, together with the equal-
ity $P R2 = $I D2, implies $I D1 = $I D2. Since the node
$I D1 corresponds to a key (of Coronary, Pulmonary, etc.)
according to the BOSschema, this means that the two @ID
nodes in t t1 and t t2 whose values have been equated, must
be identical as nodes. Since the database is tree-structured,
the parents f 3($AP1/text (), $I D1, $M1, $AD1, $DD1,

$N1) and f 3($AP2/text (), $I D2, $M2, $AD2, $DD2,

$N2) of the two @ID nodes should also be the same. This
induces the constraint $AP1/text () = $AP2/text () and
hence $AP2/text () = ‘Coronary’. Similarly, the equalities
$P R2 = $I D1 and $I D1 = $P R1 imply $P R2 = $P R1
and hence the two Progress nodes in Fig. 11f with node id
f 4($P R1) and f 4($P R2) are identified, and hence the two
@PatRef nodes, being single-valued children of their parent,
are identified in turn. In general, whenever two nodes are
identified, so are their parents in the two trees. This process

is shown in Fig. 13a. The final merged TP with Skolem terms
dropped is shown in Fig. 13b. The XQuery corresponding to
this TP is as follows:

5.3 Backward query translation algorithm

When a query Q is expressed against the DTD ∆2, the key
intuition for query translation is to follow the mapping rule in
the reverse direction, i.e., from the head to the body. This has
resemblances to query folding and answering queries using
views in [29]. However, the presence of Skolem functions
greatly simplifies this process. The reason is that the node ids
act as a “glue” suggesting which sub-element pieces should
be associated together. Consequently, they drive exactly
which mapping rule bodies we need to “join” together to
rewrite the given query. A backward query translation algo-
rithm has been developed in [46], with nested queries and
target constraints. For a thorough discussion between our
backward query translation algorithm and theirs, see Sect. 7.
We now explore this algorithm through an example; the
pseudocode is shown in Fig. 16.

Example 2 [XQuery Backward] Consider the query: “Find
symptoms of patients admitted with ‘Pulmonary’ (ailment)”.

Figure 14 shows the join of TPs corresponding to this
query. Next, HePToX translates each query TP by matching
it to each rule head. While similar to the expansion phase in
Forward Query Translation, here the query TPs are matched
to the head of each rule, rather than the body of each rule.

Continuing with our example, it is easy to see that only
the heads of 1, 2, 4 can be partially matched to the query.5

The expanded TPs are obtained by matching the TPs against
each of these rule heads and are shown in Fig. 15a–c, where to
minimize clutter, we do not show tag constraints nor the sub-
stitutions between query variables and the terms in the rule
heads. From the names of variables and tags the substitution

5 In the head of rule 3, only Progress can be matched to the query,
but this is subsumed by matches to other rule heads and is redundant.
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Fig. 13 Translation of the join
of TPs from Fig. 10: a some pair
of nodes in t t1 and t t2 being
merged; b the final TP
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Fig. 14 Join of TPs corresponding to Q2

between query variables and rule variables should be implic-
itly clear. We also mark the variables that appeared in the orig-
inal query (shown via distinctly patterned edges in the figure).
For example, in Fig. 15a–c, we know $Pulm is associated
with the node f3($AP/text (), $I D, $M, $N , $AD, $DD),
$ID with the node $ID, $Prog with node f2($P R), $Symp
with node f3($E P, $E D), $Desc with node $Desc, $Prog
also with the node f2($I D), and finally $PR with node
$PR.

Next, each expanded TP is replaced by the tree expres-
sion in the corresponding rule body (Fig. 15d–f). We again
track the variables mentioned in the original query. For exam-
ple, query variable $Pulm corresponds to each of the nodes
labeled $AP in Fig. 15d–f and query variable $Desc corre-
sponds to the node labeled $EP in Fig. 15e. Other variables
are tracked in a similar fashion.

The next step is to drop dummy nodes. The idea is very
similar to that in the forward direction of translation and is not
elaborated further. Dropping of dummy nodes generates sim-
plified but equivalent TPs. Nodes in different TPs that cor-
respond to the same query variable are stitched together. For
example, the $A and $PR nodes in Fig. 15e and f are merged.
The final result of merging nodes is shown in Fig. 15g, which
is a join of two TPs. The TPs are shown more concisely by
writing the tags directly in place of the variables that are
constrained by those tags. The join of TPs corresponds to the
following XQuery statement:
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Fig. 15 Translating Q2 with the rules in Fig. 3: a Matching the query
patterns for Q2 with the head of Rule 1. b Matching the query patterns
for Q2 with the head of Rule 2. c Matching the query patterns for Q2
with the head of Rule 4. d Replacing the head pattern of (a) with the
body of Rule 1. e Replacing the head pattern of (b) with the body of
Rule 2. f Replacing the head pattern of (c) with the body of Rule 4.
g The final result

5.4 Query translation correctness

Figure 16 shows forward direction query translation algo-
rithm. The algorithm translates one TP at a time. For each
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rule which is relevant to a given TP, it expands the TP and
translates it. Each rule may only translate a piece of the TP
in general, since the matching between the TP and the rule’s
body may be partial. The algorithm then stitches the trans-
lated pieces obtained via various rules using the stitching
procedure explained above. It then joins the translated TPs.
This “join step” involves variable renaming, a chase pro-
cedure for identifying nodes across the translated TPs, and
replaces the Skolem terms by the tags associated with the
nodes. Finally, the resulting TP (or join of TPs) is trans-
lated to XQuery, a step that is straightforward and is omit-
ted.

The following result shows the correctness of the algo-
rithm w.r.t. the query answering semantics in Definition 1.

Theorem 1 [Correctness of query translation] For the frag-
ment of XQuery defined in Sect. 5.2, the query translation
algorithm in Fig. 16 is correct w.r.t. the semantics of query
answering defined in Definition 1.

Proof To prove the correctness of query translation, we need
to show that it holds for both forward and backward direc-
tions of query translation.

We first show that it holds for the backward direction and
use some of the results for the converse translation. The claim
for this direction can be formulated as follows:

Let µ, ∆1, ∆2, Q2, Qt
2 be as defined above. Then, for

every D1 ∈ inst (∆1): Qt
2(D1) = Q2(µ(D1)).

The backward translation (also reported in Fig. 16) is sim-
ilar to view expansion, with µ being the view definition. Intu-
itively, the composition µ ◦ Q2 should give us Qt

2. This is a
sanity check that we must run, and the Qt

2 we get using our
algorithm must be equivalent to this.

Let ι: V �→ D be a variable instantiation as a function
that maps each variable ∈ V in the query (whether it be Q2

or Qt
2) to a value in a database D (which may be µ(D1)

or D1). Thus, given a query Q, containing a set of variables
{$x1, . . . , $xn}, an instantiation ι maps each variable $xi to a
value in a given database. Thus, an instantiation can be seen
as a tuple of bindings over ($x1, . . . , $xn).

An instantiation ι is valid provided this tuple satisfies any
applicable predicate condition (e.g., price > 100, $idre f =
$id, etc.). More precisely, let ι be a variable instantiation for
query Qt

2 over D1. Let ι′ be a variable instantiation for query
Q2 over µ(D1), ι′ is obtained via a constructing procedure
as ι ◦ µ−1. Indeed, ι is valid as it satisfies any applicable
predicate condition p. µ−1 is valid provided it satisfies any
applicable predicate pt (with pt being the predicate trans-
lated according to µ−1), plus the other predicates possibly
introduced by µ−1 and due to joins of variables in the rule

body. Given that ι is valid, and µ−1 is valid, ι′ is also valid
as the composition operator is transparent w.r.t. validity.6

The next step is to show that the set of valid instantiations
for Q2 (over µ(D1)) and for Qt

2 (over D1) are identical. First,
assume Q2 is covered by the head of one rule in µ. Given
a valid instantiation ι′ for Q2, let us consider its projection
over the leaf variables of µ(D1), let us call it Π(ι′). We can
define an isomorphism τ from nodes of this projection to
the nodes in Π(ι). It is easy to check that this isomorphism
ensures that the set of valid instantiations for Q2 and Qt

2 are
identical.

Then we consider Q2 spanning multiple rule heads in µ.
Here a valid instantiation ι over µ(D1), is the join of the
single instantiations against multiple rule heads. The joins
obviously preserve the predicates and ensures that the con-
structing procedure for ι′ is again valid.

We now show that the claim holds for the forward direc-
tion. Let µ, ∆1, ∆2, Q1, Qt

1 be as defined above. Then, for
every D2 ∈ inst (∆2) : Qt

1(D2)=⋂
Dk

1 :µ(Dk
1)=D2

Q1(Dk
1)).

Forward translation (Fig. 16) is analogous to computing
the certain answers to a query Q1. Let ι: V �→ D be a variable
instantiation as a function that maps each variable ∈ V in the
query (whether it be Q1 or Qt

1) to a value in a database D.
Intuitively, ι must be valid for any database D that is consis-
tent with D2. To represent all possible databases consistent
with D2, we must define all possible pre-images Dk

1 such
that µ(Dk

1) = D2. Since there may be several pre-images,
for each pre-image Dk

1, ιk is a valid instantiation from Q1

to Dk
1. Similarly, ι′ is a valid instantiation from Qt

1 to D2.
Thus, for k instances of ∆1, we must consider the intersec-
tion ι = ⋂

Dk
1
ιk , the intersection of valid instantiations still

being a valid instantiation. We can define an isomorphism τ

from nodes of ι to the nodes in ι′. It is easy to check that this
isomorphism ensures that the set of valid instantiations for
Q1 and Qt

1 are identical.
The above held for a query Q1 spanning a single rule

body. With a query Q1 spanning multiple rule bodies, the
same consideration made for the backward translation holds.

��

6 Experimental study

This section studies the performance of HePToX’s mapping
generation, query translation, and query processing. We also
show HePToX’s scalability w.r.t. the number of peers and the
data heterogeneity of the network. All experiments adhere to

6 Indeed, µ−1 can be seen as the translation of a query covering the
entire rule head against the rule body, whereas ι is a query against the
rule body. Thus, the composition operator would be exactly the Carte-
sian product of these two queries.
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Fig. 16 Query translation algorithm

a common scenario, where each peer maps to a set of acquain-
tances, using the mapping rules in Sect. 4.

6.1 Experimental guidelines

In all the experiments, we consider a P2P network consisting
of several peers. The mappings in HePToX connect a peer to
a set of acquaintances, thus forming a mapping graph. It is not
necessary to build a strongly connected graph, as it is suffi-
cient that a transitive connection exists between every pair of
nodes. Mappings between two sources can then be obtained
by composing the mappings between all the peers that con-
nect the two sources. There may exist alternative mapping
paths between the two peers. Because of that, the network
has a considerable resilience to node failures, since a failing
or leaving node on a mapping path does not invalidate the
remaining mapping paths.

Currently the shortest path is chosen during query evalu-
ation. Other criteria may be used, such as the size of inter-
mediate answers or the coverage of the query by the schema
mappings; this is beyond the scope of this paper. HePToX
marks each query with a global unique id; peers will not pro-
cess queries with previously seen ids, thus handling cycles
that occur in a semantic path.

The network gracefully handles insertions of new nodes.
Each peer joining the network maps its local schema to that
of a few acquaintances. Any existing peer in the network may
similarly map its schema to this new peer’s schema. Recall
that, although mappings are unidirectional, query processing
can take place along and against the mappings.

Thanks to P2P load balancing, HePToX’s peers execute
queries on their local data and retrieve the query results that
are relatively concise, thus reducing the network load. In this
section, we demonstrate that HePToX query evaluation is
efficient and local resources consumption is minimized as
each peer only needs to remember the addresses and map-
pings of its acquaintances. This localization means that a
user asking a query will not need to know where the answers
are exactly coming from, nor does the user know how many
peers respond to his query, thus making the P2P paradigm a
natural setting for query reformulation in HePToX.

6.2 Implementation and setup

Emulab [15], a network emulation testbed, to get a realis-
tic P2P network. Emulab consists of a collection of PCs, the
network delay and bandwidth of which can be set at will. Em-
ulab allows the full allocation of a real machine’s resources.
We observed that XML query answering on each peer is
computationally demanding, and cannot just rely on par-
tially allocated machines, as in other emulators, e.g., Planet-
lab, justifying our choice of Emulab. We could get 50 real
machines in total from the Emulab network. We chose a 70 ms
delay and a 50 MB bandwidth to simulate as much as possi-
ble the real networks behavior. We mounted FreePastry [36]
as the network protocol. Compared to unstructured P2P net-
works (e.g., gnutella), FreePastry offers scalable and efficient
P2P routing. Its O(log N) routing complexity, and O(log N)
routing table size is at least as efficient as CAN, Tapestry,
Chord etc. The current implementation of HePToX exhib-
its high modularity; it can run with any XML Query engine
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Table 2 Query #, query
description, and query mapping
coverage (% of QMC)

Query# Query description QMC (%)

Q1 Selection with 1 filter, Mich. QR3, etc. 11.4

Q2 Selection with 2 filters, Mich. QS5, etc. 13.7

Q3 Selection with 3 filters, Mich. QS16, etc. 20.7

Q4 Selection with 2 filters (1 nested), Mich. QS18, etc. 11.5

Q5 Selection with 3 filters (2 nested), Mich. QS34 etc. 11.8

Q6 1 Join, Selection with 2 filters, Mich. QJ1, etc. 28.6

Q7 1 Joins, Selection with 1 filter, Mich. QJ3, etc. 28

Q8 3 Joins, Selection with 1 filter, No corresp. Mich. 62.5

Q9 6 Joins, Selection with 1 filter, No corresp. Mich. 100

Q10 9 Joins, Selection with 1 filter, No corresp. Mich. 100

by implementing a simple API. We chose QIZX [40] as an
XML query engine, as this is the fastest open-source XQuery
engine we could find. We used FreePastry vs.1.3.2 and QIZX
vs.0.4p1, respectively. HePToX is written in JAVA, thus mak-
ing it cross-platform.

6.3 Guiding principles

The experiments are conducted according to the following
guidelines: (i) each peer joining the network is equipped with
the peer schema and the peer data adhering to that schema;
(ii) each peer chooses other peers as its acquaintances, and
these acquaintances in turn see it as their acquaintance; (iii)
a peer evaluating a query translates the query to the schema
of each acquaintance, according to our algorithm, and ships
the translated query to that acquaintance; (iv) forwarding of
queries by a peer stops as soon as the peer realizes it already
processed an incoming query request, to avoid cycles. We
broadcast a query to all the other acquaintances, as in real
P2P scenarios. More optimized broadcasting can be applied,
and is beyond the scope of this work.

Datasets and queries used for experiments. To probe the effi-
ciency of query translation (Fig. 16), we considered both
synthetic and real XML datasets. As a synthetic dataset,
we derived 9 restructured variations of XMark [41], cov-
ering a variety of structural transformations. This produced
10 different XMark schemas randomly scattered across the
network. Detailed description of the schemas can be found
in [23]. We modified the XMark xmlgen code accordingly
to generate the datasets conforming to the schemas above
with an average size of 50MB. We ran a comprehensive
set of 10 queries on the XMark schemas: 7 queries are
from the UMichigan XML benchmark queries (adapted to
XMark schemas) and 3 queries are multiple joins queries
of increasing complexity. A summary description of these
queries is in Table 1; complete query specifications are in
[23]. The UMichigan XML benchmark queries were more

suitable to probe the effectiveness of our algorithms than the
XMark queries themselves, since they build around the XML
data structures and let us leverage the heterogeneity of our
schemas variations. In order to study the performance of the
algorithms on a collection of queries against a common data
set, we adapted the UMichigan XML benchmark queries to
the XMark dataset and use the latter data set for all our que-
ries.

Similarly, to see the effectiveness of our translation algo-
rithm on real data we used the DBResearch collection of 19
XML schemas used in Piazza [44]. For this dataset, we ran the
same queries used in Piazza experiments, which amount to
multiple-joins queries of increasing complexity. The descrip-
tion of these queries can be found at [23].

We measured the average number of rules across any pair
of schemas; it is 8.67 for the synthetic dataset. Table 1 out-
lines the % of query mapping coverage (QMC) for each query
as the percentage of rules traversed by that query divided by
the average number of rules on any schema pair. Table 1
shows that all the benchmark queries QMC is up to 25% of
the total coverage, whereas ad-hoc join queries are close to
100% of the total coverage. Thus, the queries in Table 1 cover
all cases and satisfactorily span the QMC %.

6.4 Rule inference algorithm in HePToX

HePToX’s GUI [11] allows the user to draw a few arrows/
boxes, and generate the corresponding rules accordingly.
To test the performance of the algorithms in Sect. 4, we
measured the time to infer the rules for XMark schemas vari-
ations (DBResearch schemas, respectively), having an aver-
age of 65 (7) arrows between them. Our algorithm generates
an average of 9 (3) rules in about 45 (25) ms (tested on a
P4 machine, with 3.0GHz and 2GB memory). We could
not compare the scalability of our rule inference algorithm
with the corresponding mapping generation algorithm in Clio
[24], as the latter is under copyright. We instead compare the
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Fig. 17 HePToX Query translation and query performance for XMark
dataset: a Average QT time w.r.t. average number of acquaintances.
b Average number of semantic hops w.r.t. degree of homogeneity.

c Average QT time w.r.t. total number of distinct schemas. d Time com-
position for querying. e Query completion w.r.t. timeout. f Scalability
of the query completion time w.r.t. number of peers

usability of the two systems; we describe our experience in
Sect. 6.8.

6.5 Query translation in HePToX

In this experiment, we probe the effectiveness of the query
translation algorithm under different network configurations.
In particular, we realized different parameters may affect
query translation time: (a) the average number of acquain-

tances across all sets; (b) the degree of ‘heterogeneity’ (rang-
ing from all acquaintances having the same schema to all
acquaintances having different schema); and (c) the overall
number of distinct heterogeneous schemas scattered across
the network. In this experiment, we investigate how (a)–(c)
impact query translation time.

In experiment (a), we consider there to be a total of distinct
10 schemas in the network, and measure the query transla-
tion (QT) time when the average number of acquaintances on
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each peer varies from2 to10. The result, reported in Fig. 17a,
showed us that in order to keep the number of translations
reasonably low, we have to choose an average number of
acquaintances of (at least) 4. This number of acquaintances
for a 50 peers network is indeed sufficient to get an accept-
able average length of semantic paths for that network, as
also confirmed by next experiment (b). Indeed, Fig. 17b plots
the average number of hops (or length of semantic paths)
achieved when the average number of acquaintances is equal
to 4 (few queries are reported to avoid clutter). The x axis in
such a case represents the degree of ‘heterogeneity’ increas-
ing from 1 to 10, meaning that 1 to 10 acquaintances have
a distinct schema. It can be noted that the average length of
semantic paths (reaching 3) stabilizes with (at least) a degree
of heterogeneity of 3. These two experiments let us choose
an average number of acquaintances equal to4 in the remain-
der.

Figure 17c shows how the total number of distinct schemas
present in the network affects the average QT time. This
experiment shows that the average QT time grows almost
linearly with the number of distinct schemas up to 5 and
stabilizes after 5. It lets us conclude that variations of the
QT time can be appreciated for a number of schemas less or
equal to the number of acquaintances (i.e., 4) and are blurred
otherwise.

6.6 Query performance in HePToX

The next experiment examines the minimal overhead
introduced by our translation algorithm all along the query
answering process. In Fig. 17d, we highlight the various time
components (%) taken by query translation, network delay,
and local query answering, respectively, while the actual
times (in ms) are reported on top of each bar. It can be noted
that query translation takes a negligible time if compared to
network delay and local query answering. The latter, essen-
tially due to QIZX, was the bottleneck for all queries and
caused the crashing of the most complex ones. Query answers
to Q8, Q9, and Q10 are omitted in this plot, since they neither
completed nor yielded any answers within the given time-
out. We tried different query engines before choosing QIZX,
which is considered the fastest one, thus this behavior was
definitely outside our control.

The next experiment complements the previous one by
measuring the % of query completed within a specified time-
out with no heterogeneity/the maximum heterogeneity in the
network, respectively. Figure 17e shows the % of query com-
pleted when the peers have all different schemas (maximum
heterogeneity) w.r.t. the baseline case when all peers exhibit
the same schema (no heterogeneity). We can see that for
instance the difference between the two curves for queries
Q3 and Q7 is at most 1,000ms, showing the overall neg-

ligible impact of translation over query processing. In the
above experiments, we have considered a uniform schema
distribution, in which each peer owns the same number of
schemas. We tested our system with a skewed schema distri-
bution in which the participating peers have an unbalanced
number of schemas. We used the Zipfian distribution to sim-
ulate the skew, as the latter closely simulates the real cases.
Figure 18(left) shows the average number of hops for dif-
ferent skew factors (from 0 (uniform distribution) to 3). We
can notice that this number decreases to a steady state, thus
showing that more local evaluation (and less translations,
resp.) takes place as we increase the skewness. This is con-
firmed by the time composition shown in Fig. 18(right) for
such non-uniform distribution. This experiment was done by
executing Q1 on 50 Emulab peers.

6.7 Scalability and network churn in HePToX

The next experiment in Fig. 17f shows the scalability of HeP-
ToX P2P databases. We report the query completion time
(including the query translation time, query evaluation and
network delay) when varying the number of peers in the net-
work up to 5,000 peers. This experiment was executed on
the Pastry simulator alone, as Emulab real machines would
not be enough. It can be observed that query completion fol-
lows a quite regular logarithmic curve.

To study the effect of joining/leaving peers on HePToX
query translation and query completion time, we have run
another experiment in Pastry by considering an initial num-
ber of peers equal to 1,000. In such experiment, as peers
are leaving, they also take away the acquaintance lists of their
former acquaintances. The peer’s number of acquaintances
never drops below 5, and, in case this happens, the peer cre-
ates new acquaintances. We can observe in Fig. 19 the time
composition by varying the number of leaving peers from
0% to 50% (i.e., until 500 peers are left). Times gracefully
decrease while increasing the percentage of leaving peers in
the network. We repeated the same experiment on the result
network of 500 peers by varying the number of joining peers
from 0% to 50% (i.e., until reaching a number of 1,000
peers) and we observed a symmetric trend. Due to the lack
of space, this result is omitted.

We next considered a real dataset, DB research. We ran the
previous experiments on all Piazza queries; the results were
very similar to the previous results, so we only report here
the time composition graph in Fig. 20. Modulo the fact that
HePToX and Piazza have a different syntax for their mapping
languages, we obtained the same 29 mappings employed in
Piazza. It can be noted that the behavior of our query trans-
lation algorithm is similar for both synthetic and real data.
The times reported in Fig. 20 are reduced compared with the
XMark datasets due to the smaller sizes of DBResearch data
(up to only 27KB per peer).
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Fig. 18 Average number of hops and time composition in a skewed P2P schema distribution

Fig. 19 Time composition in case of network churn in HePToX with
XMark dataset

6.8 Usability

One final issue to be explored is how usable is HePToX-
–does HePToX’s system of boxes and arrows reduce the
user’s effort in creating a mapping? To do so, we used the
11 usability scenario from STBenchmark [1]. In particu-
lar, we used HePToX’s visual interface to implement the
STBenchmark basic mapping scenarios. We then compared
these results to the results on the same scenarios as conducted
on Clio in [1]. Although the use of the resultant mappings are
different—Clio concentrates on translating data, whereas
HePToX translates queries—the amount of effort to create
the initial mappings is worth comparing.

STBenchmark provides a simple usability model, SU,
which we adopt. The SU model quantifies human effort as
a quadruple (L,S,D,K), where L is the number of dragging
actions, S and D are the number of single mouse clicks, and
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Fig. 20 Time composition for querying in HePToX for the DBRe-
search data set

double mouse clicks, respectively, and K is the number of
keystrokes used for text input [1]. For example, the tuple
(1,3,5,11) says that it required 1 dragging action, 3 single
mouse clicks, 5 double mouse clicks, and 11 keystrokes to
implement a mapping scenario.

Given a quadruple (L,S,D,K), the SU model associates an
effort cost using the equation cost = (4L + S + 2D + 4K )

[1]. The dragging and keystrokes are assigned higher costs
based on the findings in [1] that it is easier to make mistakes
in dragging and keystrokes than it is to click the mouse. The
double click is assigned twice the cost of the single click
since it requires twice the effort.

For this experiment, we downloaded the 11 basic map-
ping scenarios from the STBenchmark website [42]. For each
mapping scenario, STBenchmark provided a diagram of an
expected mapping and transformation rule along with source
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Table 3 Testing the usability of
HePToX and Clio

A “+” indicates that the
mapping was able to be created
outside of the user interface but
that a small extension to the
interface would be necessary to
create the mapping inside the
interface. A “*” indicates that a
substantial extension would be
required to create the mapping
inside the interface

Scenario/mapping system HePToX Clio

Effort Cost Effort Cost

Copy (3,3,0,0) 15 (0,4,0,0) 4

Constant value generation + + (0,6,0,17) 74

Horizontal partition (4,4,0,0) 20 (0,22,2,21) 110

Surrogate key assignment (4,4,0,0) 20 (0,42,2,39) 202

Vertical partition + + (0,7,0,0) 7

Unnesting (4,4,0,0) 20 (0,7,0,0) 7

Nesting (4,4,0,0) 20 (0,18,2,0 22

Self Joins * * * *

Denormalization + + (0,23,2,1) 31

Keys and object fusion (9,9,0,0) 36 (0,30,4,0) 38

Atomic value changes (6,6,0,0) 30 (0,20,0,45) 200

and target descriptions in XSD. Since HePToX used DTDs,
we used Altova XMLSpy 2009 [2] to convert from XSD to
DTD, followed by manual corrections.

We then had an experimenter practice each mapping sce-
nario to become familiar with HePToX’s user interface and
create the mapping with the least cost. This result was then
compared with results of Clio from [1], which were per-
formed under similar conditions. The results are shown in
Table 3.

We can observe that, although Clio was able to implement
more scenarios, HePToX required significantly less effort on
the majority of the scenarios that it could implement. The
scenarios in which Clio has a lower cost were the ‘Copy’
and ‘Unnesting’ scenarios, in which Clio utilizes the auto-
matic generation of correspondences, which can be verified
by the administrator. Thus, the suggested matching gener-
ated by Clio was only needed to be confirmed with single
mouse clicks on these special cases. In the other cases, where
Clio was unable to use its automatic matching module, we
observed that the key difference was that HePToX is basically
click-and-drag oriented and Clio is instead click-and-select
oriented. Based on these experiments, we see that click-and-
drag requires less effort.

Although it is algorithmically capable of handling such
mappings, the HePToX interface was unable to implement
the ‘Constant value generation’, ‘Vertical partition’, and ‘de-
normalization’ scenarios because they required heavy modi-
fications beyond the capabilities of the simple prototype user
interface. As an example, HePToX does not provide a graph-
ical user interface to relate the two vertical partitions of a
target schema by the referential constraint on one of the attri-
butes. The modifications required to do so, and are marked
with a “+” in Table 3. Both systems were not able to imple-

ment the ‘Self join’ scenario because the latter requires the
system to duplicate the schema through the visual interface.
Since both systems’ interfaces can only load single source
and target schemas, changing this would require a substantial
change to their user interfaces.

As a first step toward a usability model for constructing
mappings, the SU model makes one big assumption: it does
not take into account human errors and ‘thinking time’ dur-
ing mapping design. Thus, the SU model has to assume that
the mapping designer is an expert who is familiar with the
visual interface and makes no mistakes [1]. For such a reason,
future benchmarks accounting for such extensions would be
urgently needed.

7 Related Work

Data exchange and P2P data integration systems. The Clio
data exchange project is one of the pioneering schema map-
ping tools [32,37]). They were the earliest to propose visual
schema correspondences and developed an efficient algo-
rithm for discovering the source-to-target tuple-generating
dependencies (or tgds) from the lines. Their framework cap-
tures both relational and nested relational schemas.

Clio derives a set of tgds from a set of lines between a
source schema and a target schema. Applying these trans-
formation computes a target instance that adheres to the tar-
get schema and to the correspondences. Similarly, HePToX
derives a set of TreeLog mapping rules from element corre-
spondences (i.e., boxes and arrows) between two schemas.
TreeLog rules are similar in spirit to tgds, although TreeLog
has a higher order syntax that facilitates mappings between
data and schema elements. However, the problems solved by
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Clio and HePToX are different. In a PDMS, the goal is not
data exchange (i.e., translating data), but gathering answers
to queries from any peer (i.e., translating queries). In prin-
ciple, one could translate the data from every peer to the
querying peer and then answer the query there. But this is
impractical, as it would require translating every peer’s data
to every other peer’s schema.

Clio has been extended [46] to handle ‘XML target query
answering’, i.e., an XML query posed against the target
schema must be translated into a set of queries against the
sources, via the mappings from source to target and a set of
target constraints. To the best of our knowledge, they do not
handle data-metadata mappings in query translation. More-
over, their query rewriting algorithm is against the direction
of the mappings, and thus equivalent to the backward direc-
tion in HePToX, disregarding target constraints. The forward
direction HePToX query rewriting algorithm is entirely new,
and not addressed in any works on XML query rewriting
[20,46].

Earlier versions of Clio [37] use the partitioned normal
form (PNF) as the default grouping mechanism. PNF groups
nested set of elements by the atomic elements in the upper
levels. Consider an example adapted from the schemas in [37]
with source src: Emps → Emp*, Emp → A B C, and target
tgt : Emps → Emp*, Spouses → Spouse*, Emp → A B*
E, Spouse → E C, where there is a keyref/key constraint
from Emp/E to Spouse/E. Applying PNF in Clio, creates the
value of E in schema tgt as a function of the values of A
and C, whereas in HePToX creates a function of A. There
are natural examples justifying both choices. For example,
let A = empName and C = spouseName. If B = child, creat-
ing E as a function of A and C nicely groups children of an
employee and spouse. But, if B = employee’s hobby, which
is unrelated to spouse, then creating E as a function of A is
more meaningful.

A recent Clio extension to nested mappings [19] allows
grouping to be further customized and declaratively
changed. This allows users to modify the default PNF
grouping condition, and is especially useful in schema evo-
lution applications, when two similar source schemas are
mapped to the same target schema. Since our aim in HeP-
ToX is query reformulation rather than data exchange, we
did not add different grouping conditions to our TreeLog
rule language.

The latest version of Clio addresses data exchange with
data-metadata correspondences [24], where NDOS (nested
schemas with dynamic elements) define data exchange
between a source database and a target database. As we
already discussed, HePToX focuses on query reformulation
and answering in PDMS rather than on data exchanged. We
devised TreeLog, an extension of SchemaSQL/SchemaLog
[4], that has, among the other features, the ability to spec-
ify views whose schema is dynamic, in the sense that it

exploited in the target schema data instances that are part
of the source database. Specifically, since we handle query
translation in a P2P setting, in which the peers come with
their own schema, the presence of dynamic elements in the
target is not meaningful (because we never need to create a
target schema dynamically on a peer). Therefore, although
HePToX (via TreeLog) has the expressive power to define
mappings where the target schema is dynamic, in a PDMS
knowledge of the instances cannot be exploited while creat-
ing such correspondences, while it has to be in a mapping
tool, such as Clio [24].

Finally, a number of commercial visual programming tools
help the user to produce mappings, such as Altova MapForce,
BEA WebLogic, Altova Stylus Studio, IBM WebSphere, and
Microsoft BizTalk Mapper. Such tools require substantial
user intervention and have been compared in [1].

In Piazza [20,21], each peer stores semantic mappings
and storage descriptions. Semantic mappings are equalities or
subsumptions between query expressions, provided in XQue-
ry. Storage descriptions are equalities or subsumptions
between a query and one or more relations stored on a peer.
In HePToX, the exact mapping rules are derived automati-
cally from correspondences, which are very intuitive for the
user. Piazza’s query reformulation is quite different from
HePToX’s. In Piazza, semantic mappings are first used to
do query rewriting using the MiniCon algorithm [39]. When
semantic mappings cannot be applied further, storage
descriptions are used to do query reformulation. The result
of this phase is a reformulation of peer relations into stored
relations, which can be either in GAV or LAV style. Query
routing in Piazza requires centralized index that scales with
the number of attributes of individual peers. In contrast to
Piazza, HePToX is totally decentralized and its scalability is
less than linear (i.e., logarithmic, as in DHT-based systems).

The semantics of HePToX’s forward query translation is
similar to answering queries using views [29]. However, we
can leverage Skolem functions and the form of the map-
ping rules to perform forward translation efficiently.
Benedikt et al. [7] and Bohannon et al. [10] also have stud-
ied mappings between schemas, including recursive ones and
node-to-path mappings. None of the above works, including
Piazza, handles schema mappings involving data-metadata
conflicts.

Orchestra [26] extends PDMSs for life scientists. It focuses
on provenance, trust, and updates. While it can be extended to
XML, it uses the relational model. Orchestra’s mapping rules
translate from tgds to Datalog, rather than HePToX’s map-
ping rules which translate from a visual language to TreeLog.
Unlike HePToX, which supports the user in easily creating
the mapping between schemas, Orchestra relies on other sys-
tems to create the initial mappings. Moreover, the Q system,
which is the query module in Orchestra, focuses on keyword
queries rather than on XQuery queries.
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Calvanese et al. [12] address data interoperability in P2P
systems using expressive schema mappings, also following
the GAV/LAV paradigm, and show that the problem is in
PTIME only when mapping rules are expressed in epistemic
logic. [14] studies finding a minimal query reformulation
between relational and XML schemas. Consistency of XML
data exchange for tree patterns is studied in [6].

Query answering relies on the notion of certain answers,
and leaf nodes bound in the mappings are captured into
functional dependencies. The tractable cases for checking
mapping consistency are identified whenever mapping
expressions do not include the descendant axis and wildcard.

Fagin et al. [18] show that composition of finite sets of
source-to-target tuple-generating dependencies (tgds) is
always definable by a second-order tgd. Mappings between
data and schema items as in HePToX are in terms of Tree-
Log rules, and composition is not considered. We are able to
directly generate mappings between data and schema items
across schemas, from given correspondences. Our mapping
language, like SchemaLog [4], is semantically reducible to
first order. A recent paper [19] also considers nested map-
pings, which are not handled here. Finally, the primitive
groups used in mapping rule inference (Sect. 4) are similar
to the primary paths used in Clio [37].
Schema-matching systems. Automated techniques for
schema matching (e.g., CUPID [16,30,38]) can output ele-
mentary schema-level associations by exploiting linguistic
features, context-dependent type matching, similarity func-
tions etc. These associations could constitute the input of
our rule inference algorithm if the user does not provide the
arrows. Bohannon et al. [9] discusses how to infer condi-
tions for contextual schema matching. Such conditions could
be employed as input to the data-metadata correspondences
used in HePToX. Again, we assume that the above corre-
spondences are provided by a user rather than output by a
tool, such as the one in [9].
Ontology-matching systems. Ontology alignment also cre-
ates a mapping, but it is very different from the mappings
created in HePToX. Most previous work focuses on finding
simple equivalences. We present some typical work ontol-
ogy alignment, and refer the reader to [27] for a survey. On-
toMorph [13] translates symbolic knowledge between dif-
ferent knowledge representations through user-driven trans-
formation rules. Prompt [34] finds corresponding concepts
by refining an initial mapping (pairs of anchors) given by
users or some simple linguistic matching approaches. The
philosophy followed by Prompt is similar to that of Similar-
ity Flooding [31]. FCA-Merge [43] is an alignment technique
that depends on external resources to find Is–A relationships
between concepts. However, since the formal context is built
upon the generalization/specialization hierarchy of the con-
cepts, this approach could not be extended to the more com-
plex mappings that HePToX creates.

8 Conclusions and future work

We have presented the HePToX P2P XML database system,
focusing on the following key conceptual contributions: (i) an
algorithm for inferring mapping rules, expressed in a higher-
order logic TreeLog, from correspondences between hetero-
geneous peer schemas, specified via boxes and arrows, cov-
ering data-metadata interplay between schemas; (ii) a precise
and intuitive semantics for query evaluation in a P2P setting;
(iii) a query translation algorithm that is correct w.r.t. this
semantics and is efficient, as revealed by the detailed exper-
imentation. It is interesting to investigate extension of the
techniques developed here to handle larger classes of map-
pings and queries.
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