Querying Graphs

TIW2
Interoperability 2021-2022

Prof. Angela Bonifati
Lyon 1 University

8 November 2021

Agenda

1. Querying over graph data
» query languages for graphs
» openCypher

Cours 5 (TIW2 2021-2022) — A. Bonifati

A small graph

Let's consider a graph with edge labels: knows, worksAt,
patientOf, hasDisease, and treatsDisease.

. flu
migraine ‘——\treatsDisease
i hasDisease
hasD :
asDisease /‘ st jude's
sue worksAt
knows
knows .
saori
patientOf
H knows
umi patientOf
’kn/ovzy knows sriram
knows
kotaro

Cours 5 (TIW2 2021-2022) — A. Bonifati

Query language capabilities

Graph query languages typically feature one or both of the
following basic capabilities

» subgraph matching
» finding nodes connected by paths

and possibly additional advanced features such as approximate
matching, aggregation, and comparing paths.

Cours 5 (TIW2 2021-2022) — A. Bonifati

Subgraph matching

Subgraph matching is the core basic capability of most graph
query languages

Cours 5 (TIW2 2021-2022) — A. Bonifati

Subgraph matching

Subgraph matching is the core basic capability of most graph
query languages

Essentially, this consists of conjunctive queries on graphs

» an edge pattern is a triple (s, ¢, t) where s and t can be
either constants (in node set) or variables, and ¢ € L is
an edge label

Cours 5 (TIW2 2021-2022) — A. Bonifati

Subgraph matching

Subgraph matching is the core basic capability of most graph
query languages

Essentially, this consists of conjunctive queries on graphs

» an edge pattern is a triple (s, ¢, t) where s and t can be
either constants (in node set) or variables, and ¢ € L is
an edge label

» a query rule is then a pattern

head < body

where head and body are sets of edge patterns such that
every variable occurring in head occurs in body

Cours 5 (TIW2 2021-2022) — A. Bonifati

Subgraph matching

Subgraph matching is the core basic capability of most graph
query languages

Essentially, this consists of conjunctive queries on graphs
» an edge pattern is a triple (s, ¢, t) where s and t can be
either constants (in node set) or variables, and ¢ € L is
an edge label
» a query rule is then a pattern

head < body

where head and body are sets of edge patterns such that
every variable occurring in head occurs in body
» alternatively, head is a list of zero or more of the
variables (possibly with repetition) appearing in body

Cours 5 (TIW2 2021-2022) — A. Bonifati

Subgraph matching

Subgraph matching is the core basic capability of most graph
query languages

Essentially, this consists of conjunctive queries on graphs
» an edge pattern is a triple (s, ¢, t) where s and t can be
either constants (in node set) or variables, and ¢ € L is
an edge label
» a query rule is then a pattern

head < body

where head and body are sets of edge patterns such that
every variable occurring in head occurs in body
» alternatively, head is a list of zero or more of the
variables (possibly with repetition) appearing in body
» A query is then a finite set of rules (of the same arity).

Cours 5 (TIW2 2021-2022) — A. Bonifati

Subgraph matching

N flu
migraine ‘——\lreatsDisease
hasDisease hasDise%‘ st jude's
sue worksAt
knows
knows
saori
patientOf
knows
umi patientOf
’@M knows sriram
knows
kotaro

Example: People and the doctors of their friends

Q = (?p, friendDoctor,?d) < (?p, knows, ?f), (?f, patientOf , ?d)

Cours 5 (TIW2 2021-2022) — A. Bonifati

Subgraph matching

N flu
migraine ‘——\lreatsDisease
hasDisease hasDise%‘ st jude's
sue worksAt
knows
knows
saori
patientOf
knows
umi patientOf
’@M knows sriram
knows
kotaro

Example: People who know someone who knows a doctor.

Q = (?p) + (?p, knows, ?f), (?f, knows, ?d), (?po, patientOf , ?d)

Cours 5 (TIW2 2021-2022) — A. Bonifati

Subgraph matching

P flu
migraine ‘——\lreatsDisease
hasDisease hasDise%‘ st jude's
sue worksAt
knows
knows
saori
patientOf
knows

umi patientOf
’ﬂﬁ/ knows sriram

knows

kotaro

Example:

Q

Cours 5 (TIW2 2021-2022)

Patients and their friends

= (?p,?f) « (?p, knows, ?f), (?p, patientOf , ?d)

— A. Bonifati

Subgraph matching

The semantics Q(G) of evaluating query a @ on graph G is
based on embeddings of the rule body’s of Q in G:

Q(G) = J {h(head) | h(body) C G}

head<—body€eQ

where h is a homomorphism, i.e., a function with domain
N U Variables and range N that is the identity on N.

Cours 5 (TIW2 2021-2022) — A. Bonifati 10

Subgraph matching

The semantics Q(G) of evaluating query a @ on graph G is
based on embeddings of the rule body’s of Q in G:

Q(G) = J {h(head) | h(body) C G}

head<—body€eQ

where h is a homomorphism, i.e., a function with domain
N U Variables and range N that is the identity on N.

Alternatively, some graph DBs adopt a stricter isomorphism
semantics, i.e., homomorphisms that are injective.

» In other words, distinct variables in body must map to
distinct nodes in G.

Cours 5 (TIW2 2021-2022) — A. Bonifati 10

Subgraph matching

The semantics Q(G) of evaluating query a @ on graph G is
based on embeddings of the rule body’s of Q in G:

Q(G) = J {h(head) | h(body) C G}

head<—body€eQ

where h is a homomorphism, i.e., a function with domain
N U Variables and range N that is the identity on N.

Alternatively, some graph DBs adopt a stricter isomorphism
semantics, i.e., homomorphisms that are injective.

» In other words, distinct variables in body must map to
distinct nodes in G.

In the property graph model, a distinction is also sometimes
made between node-isomorphism (i.e., our notion here) and
edge-isomorphism (see Angles et al. 2016).

Cours 5 (TIW2 2021-2022) — A. Bonifati

10

Subgraph matching

PR flu
migraine ———_ treatsDisease
hasDisease hasDisease ;
st jude's
sue worksAt
knows
knows
saori
patientOf
umi \knows patientOf
'@’Vy knows sriram
kotaro knows
Example: People and the doctors of their friends
Q@ = (?p, friendDoctor,?d) < (?p, knows, ?f), (?f, patientOf , ?d)
Q(G) = {(umi, friendDoctor, saori), (kotaro, friendDoctor, saori), . ..}

Cours 5 (TIW2 2021-2022) — A. Bonifati

11

Subgraph matching

Lo flu
migraine ‘—ﬁueatsDisease
hasDisease hasDisek‘ st jude's
sue worksAt
knows
knows R
saori
patientOf
i knows
umi patientOf
’@vy knows sriram
knows
kotaro

Example: People who know someone who knows a doctor.

Q = (?p) + (?p, knows, ?f), (?f, knows, ?d), (?po, patientOf , 7d)

Q(G) = {(umi),...}

Cours 5 (TIW2 2021-2022) — A. Bonifati

12

Cours 5 (TIW2 2021-2022)

Subgraph matching

P flu
migraine ‘—ﬁ treatsDisease
hasDisease hasDisek‘ st jude's
sue worksAt
knows
knows
saori
patientOf
knows
umi patientOf
’kﬂvy knows sriram
knows
kotaro

Example: Patients and their friends (homomorphisms)

Q = (2p,7)

(?p, knows, ?f), (?p, patientOf , 7d)
Q(G

) = {(kotaro, saori), (kotaro, sriram), . . .}

— A. Bonifati

13

Cours 5 (TIW2 2021-2022)

Subgraph matching

P flu
migraine ‘—ﬁ treatsDisease
hasDisease hasDise%‘ st jude's
sue worksAt
knows
knows
saori
patientOf
knows
umi patientOf
'@M knows sriram
knows
kotaro

Example: Patients and their friends (isomorphisms)

Q = (?p,?f) + (?p, knows, ?f), (?p, patientOf , 7d)
Q(G) = {tkotarorsaerty, (kotaro, sriram), ...}

— A. Bonifati

14

Subgraph matching

Evaluation of subgraph matching queries is NP-complete in
combined complexity (i.e., in the size of @ and G) and
logspace in data complexity (i.e., for a fixed query, in the size
of G). This follows from the intractability of the subgraph
homomorphism problem.

Cours 5 (TIW2 2021-2022) — A. Bonifati

15

Subgraph matching: simulations

That is, instead of homomorphisms embedding Q in G, we
look for a binary relation S between the nodes and variables of
(a given) body of Q and the nodes of G such that

1. for each constant n in the body of @, nis a node of G
and (n,n) € S;

2. for each variable v in the body of @ there exists a node n
of G such that (v,n) € S; and,

3. for each (x,n) € S and each edge pattern (x,/,x’) € Q,
there is an edge n —» n’ € G such that (x',n") e S.

Cours 5 (TIW2 2021-2022) — A. Bonifati

16

Subgraph matching: simulations

knows

knows

: patientOf@

Example. The following boolean query is simulated in the
graph above, but evaluates to “false” under standard query
semantics

() < (7x, knows, ?y), (?x, knows, ?z), (?z, patientOf , ?y)

Cours 5 (TIW2 2021-2022) — A. Bonifati

17

Subgraph matching: simulations

knows

knows

: patientOf@

Example. The following boolean query is simulated in the
graph above, but evaluates to “false” under standard query

semantics

() < (7x, knows, ?y), (?x, knows, ?z), (?z, patientOf , ?y)

Here a simulation is S = {(?x, a), (?z,¢), (?y, b), (?y.d)}

Cours 5 (TIW2 2021-2022) — A. Bonifati

17

Path navigation: reachability

The simplest form of path matching is reachability, namely,
computing

G* = {(s,t) | thereis a path in G from s to t}
or, given x,y € N, determining whether or not (x,y) € G*.

Extensively studied in the DB community since the 80's (see
the survey of Yu et al.).

Cours 5 (TIW2 2021-2022) — A. Bonifati

18

Path navigation: label-constrained reachability
Generalizing reachability, we have the label-constrained

reachability queries: given x,y € N and a set of labels L C L,
determining whether or not (x, y) is in the set

G/ ={(s, t) | there is a path in G from s to t
using only edges with labels in L}.

Cours 5 (TIW2 2021-2022) — A. Bonifati 19

Path navigation: label-constrained reachability

Generalizing reachability, we have the label-constrained
reachability queries: given x,y € N and a set of labels L C L,
determining whether or not (x, y) is in the set

G/ ={(s, t) | there is a path in G from s to t
using only edges with labels in L}.

Note that this is equivalent to the following problem

» determine whether or not there is a path in G from x to
y such that the concatenation of the edge labels along
the path forms a string in the language denoted by the
regular expression ({1 U---U/,)*

where L = {¢1,...,¢,}, U is disjunction, and x is the Kleene

star ...
Cours 5 (TIW2 2021-2022) — A. Bonifati

Path navigation: regular path queries

Regular path queries return all paths (i.e., pairs of nodes)
connected by some regular expression over edge labels
» queries of the form

(7, 7y) = (7,1, 7y)

where r is a regular expression over L

» semantics is the set of all node pairs (s, t) such that there
is a path from s to t in G and the sequence of edge labels
along the path forms a word in the language of r.

» query evaluation: O(|G]||r|) time complexity

Cours 5 (TIW2 2021-2022) — A. Bonifati

20

Path navigation: regular path queries

Regular path queries return all paths (i.e., pairs of nodes)
connected by some regular expression over edge labels
» queries of the form

(7, 7y) = (7,1, 7y)

where r is a regular expression over L
» semantics is the set of all node pairs (s, t) such that there
is a path from s to t in G and the sequence of edge labels
along the path forms a word in the language of r.
» query evaluation: O(|G]||r|) time complexity
For example, the “knowing” social network is

(7x,?y) < (?x, knows™, ?y)
and the general social network is

(?x,?y) < (?x, (knows U patientOf) ™, ?y)

Cours 5 (TIW2 2021-2022) — A. Bonifati

20

Path navigation: regular path queries

Example. Co-authorship network

(?s,7t) « (7s, (authored/authored_l)*, 7t)

Cours 5 (TIW2 2021-2022) — A. Bonifati

21

Path navigation: regular path queries

Example. Co-authorship network

(?s,7t) « (7s, (authored/authored_l)*, 7t)

authored authored

authored authored

On the graph

Cours 5 (TIW2 2021-2022) — A. Bonifati 21

Path navigation: regular path queries

Example. Co-authorship network

(?s,7t) « (7s, (authored/authored_l)*, 7t)

authored authored

authored authored

this query evaluates to

On the graph

{(john, john), (john, jane), (john, max), (jane, jane), (jane, john),

(jane, max), (max, max), (max, jane), (max, john)}.

Cours 5 (TIW2 2021-2022) — A. Bonifati

21

Unions of conjunctions of RPQs

It is natural to combine the functionalities of subgraph
matching and RPQs, in the shape of unions of conjunctions of
RPQs (UCRPQs):
» an edge pattern is a triple (s, r,t) where s and t can be
either constants (in node set N) or variables, and r is a
regular expression over L

Cours 5 (TIW2 2021-2022) — A. Bonifati 22

Unions of conjunctions of RPQs

It is natural to combine the functionalities of subgraph
matching and RPQs, in the shape of unions of conjunctions of
RPQs (UCRPQs):

» an edge pattern is a triple (s, r,t) where s and t can be
either constants (in node set N) or variables, and r is a
regular expression over L

» a query rule is a pattern
head <+ body

where body is a set of edge patterns and head is a list of
zero or more of the variables (possibly with repetition)
appearing in body

Cours 5 (TIW2 2021-2022) — A. Bonifati

22

Unions of conjunctions of RPQs

It is natural to combine the functionalities of subgraph
matching and RPQs, in the shape of unions of conjunctions of
RPQs (UCRPQs):

» an edge pattern is a triple (s, r,t) where s and t can be
either constants (in node set N) or variables, and r is a
regular expression over L

» a query rule is a pattern
head <+ body

where body is a set of edge patterns and head is a list of
zero or more of the variables (possibly with repetition)
appearing in body

» A query is a finite set of rules, each of the same arity.

Cours 5 (TIW2 2021-2022) — A. Bonifati

22

Unions of conjunctions of RPQs

P flu
migraine ‘—ﬁ treatsDisease
hasDisease hasDiseg‘ stjude's
sue worksAt
knows
knows
saori
patientOf
knows
umi patientOf
"“’/OW knows sriram
knows
kotaro

Example: Doctors and the patients in both their social and
treatment networks

Q = (?d,?p) < (?d, knows™, ?p), (?p, patientOf*, ?d)

Cours 5 (TIW2 2021-2022) — A. Bonifati

23

Regular queries

Note that all recursion in UCRPQs is captured in the Kleene
star operation, R*.

1http ://drops.dagstuhl.de/opus/volltexte/2015/4984/pdf/11.pdf
Cours 5 (TIW2 2021-2022) — A. Bonifati

24

http://drops.dagstuhl.de/opus/volltexte/2015/4984/pdf/11.pdf

Regular queries

Note that all recursion in UCRPQs is captured in the Kleene
star operation, R*.

. which is just the transitive closure of the binary relation
defined by R ...

1http ://drops.dagstuhl.de/opus/volltexte/2015/4984/pdf/11.pdf
Cours 5 (TIW2 2021-2022) — A. Bonifati

24

http://drops.dagstuhl.de/opus/volltexte/2015/4984/pdf/11.pdf

Regular queries

Note that all recursion in UCRPQs is captured in the Kleene
star operation, R*.

. which is just the transitive closure of the binary relation
defined by R ...

This leads us to the Regular Queries of Reutter et al., properly
generalizing UCRPQs while maintaining all of their nice
algorithmic properties

» equivalence is decidable; query evaluation is tractable.?

1http ://drops.dagstuhl.de/opus/volltexte/2015/4984/pdf/11.pdf
Cours 5 (TIW2 2021-2022) — A. Bonifati 24

http://drops.dagstuhl.de/opus/volltexte/2015/4984/pdf/11.pdf

Regular queries

Regular Queries. Non-recursive Datalog programs, where:
» All rules, except perhaps the output rule, are binary.

» We can take the transitive closure of any predicate in a
rule body.

Cours 5 (TIW2 2021-2022) — A. Bonifati

25

Regular queries

Regular Queries. Non-recursive Datalog programs, where:
» All rules, except perhaps the output rule, are binary.

» We can take the transitive closure of any predicate in a
rule body.

For our co-authorship example, we have the following
equivalent regular query:

coAuthored(S, T) <« authored(S, X), authored(T, X)
answer(S, T) < coAuthored™(S, T).

Cours 5 (TIW2 2021-2022) — A. Bonifati

25

openCypher

openCypher.

» Declarative graph query language of the popular
open-source Neo4j graph database.
http://neo4j.com/developer/cypher/

» Property graph model (cf. Angles et al. 2016)

» directed node- and edge-labeled graph
» nodes and edges have ID
» nodes and edges carry sets of property-value pairs

Cours 5 (TIW2 2021-2022) — A. Bonifati

27

http://neo4j.com/developer/cypher/

openCypher: property graphs

knows

weight:1.0

created

8
name:marko name:josh
age:29 age:32
1 3 created 4

> <
> -
PersOn /o ((weight:0.4 e weight:0.4 11 \person

~

created
0" Lublem
poyealn

)

6
person

name:peter
age:35

name:vadas name:ripple
age:27 lang:java

(image credit: http://tinkerpop.apache.org)

Cours 5 (TIW2 2021-2022) — A. Bonifati

28

http://tinkerpop.apache.org

openCypher: subgraph matching

The basic building block of queries is subgraph matching, via a
MATCH clause, with isomorphic matching.

MATCH (n:Person)-[:Created]->(m),
(m)<-[:Created] - (p)

WHERE n.age = 29 AND p.age < 35

RETURN p

Cours 5 (TIW2 2021-2022) — A. Bonifati

29

openCypher: subgraph matching

The basic building block of queries is subgraph matching, via a
MATCH clause, with isomorphic matching.

MATCH (n:Person)-[:Created]->(m),
(m)<-[:Created] - (p)

WHERE n.age = 29 AND p.age < 35

RETURN p

(?p) < (?n, created, ?m), (?p, created, ?m),
n.age = 29, p.age < 35, n.label = Person

Cours 5 (TIW2 2021-2022) — A. Bonifati

29

openCypher: subgraph matching

The basic building block of queries is subgraph matching, via a
MATCH clause, with isomorphic matching.

MATCH (n:Person)-[:Created]->(m),
(m)<-[:Created] - (p)

WHERE n.age = 29 AND p.age < 35

RETURN p

(?p) < (?n, created, ?m), (?p, created, ?m),

n.age = 29, p.age < 35, n.label = Person

Can be further combined using UNION, applying aggregation
functions, string functions, etc.

Cours 5 (TIW2 2021-2022) — A. Bonifati

29

openCypher: subgraph matching

knows

weight:1.0
name:marko name:lop
age:29 lang:java

created 3

Person /9 (weight:0.4

name:josh
age:32
created

< 4

W weight0.4 il

\ 4

i

knows
weight:0.5
0 LayBram

created

N

6
person

name:vadas name:peter
age:27 age:35

MATCH (n:Person)-[:Created]->(m),
(m)<-[:Created]-(p)

WHERE n.age = 29 AND p.age < 35

RETURN p

Cours 5 (TIW2 2021-2022) — A. Bonifati

name:ripple
lang:java

30

openCypher: subgraph matching

knows

weight:1.0

name:marko name:lop
age:29 lang:java
created 3

created

name:josh
age:32

<
<

W weight0.4

\ 4

Person /9 (weight:0.4

i

knows
weight:0.5

created

N

6
person
name:vadas name:peter
age:27 age:35

MATCH (n:Person)-[:Created]->(m),
(m)<-[:Created]-(p)

WHERE n.age = 29 AND p.age < 35

RETURN p

Cours 5 (TIW2 2021-2022) — A. Bonifati

1

0 Lubrem

name:ripple
lang:java

Result is {(4)}.

30

openCypher: path queries

Cypher also provides support for RPQs in the MATCH clause.
MATCH (n:Person)-[:knows*]->(p)

WHERE n.name = "marko"
RETURN p

Cours 5 (TIW2 2021-2022) — A. Bonifati

31

openCypher: path queries

Cypher also provides support for RPQs in the MATCH clause.
MATCH (n:Person)-[:knows*]->(p)

WHERE n.name = "marko"
RETURN p

and with bounded recursion

MATCH (n:Person)-[:knows*2..7]->(p)
WHERE n.name = "marko"
RETURN p

Can also apply * to a disjunction of symbols

Cours 5 (TIW2 2021-2022) — A. Bonifati

31

Popular imperative syntaxes

Gremlin.

» Part of the Apache TinkerPop graph
Computing framework. http://tinkerpop.apache.org

» Property graph model
» Example.
gremlin> g.V() .has(’name’,’kotaro’).
out (’knows’) .in(’patient0£f’).
values(’name’)
==>kotaro
==>sriram

Cours 5 (TIW2 2021-2022) — A. Bonifati

32

http://tinkerpop.apache.org
http://sparsity-technologies.com

Popular imperative syntaxes

Gremlin.

» Part of the Apache TinkerPop graph
Computing framework. http://tinkerpop.apache.org

» Property graph model
» Example.

gremlin> g.V() .has(’name’,’kotaro’).
out (’knows’) .in(’patient0£f’).
values(’name’)

==>kotaro
==>sriram

See also the recent Sparksee API for a similar approach to
graph analytics

http://sparsity-technologies.com

Cours 5 (TIW2 2021-2022) — A. Bonifati 32

http://tinkerpop.apache.org
http://sparsity-technologies.com

References

v

Querying graphs. Angela Bonifati et al. Morgan & Claypool, 2018.

» Survey of graph database models. Renzo Angles and Claudio

Gutiérrez. ACM Comput. Surv. 40(1), 2008.
http://users.dcc.uchile.cl/~cgutierr/papers/surveyGDB. pdf

Graph reachability queries: A survey. Jeffrey Xu Yu and Jiefeng
Cheng. In Managing and Mining Graph Data, pages 181-215.

Springer, 2010.
http://dx.doi.org/10.1007/978-1-4419-6045-0_6 (yOU must be on campus or VPN)

Foundations of modern graph query languages. Renzo Angles et al.

arXiv 1610.06264, 2016

https://arxiv.org/pdf/1610.06264.pdf

Graph queries: from theory to practice. Angela Bonifati and
Stefania Dumbrava. SIGMOD Record 47(4): 5-16, 2018.
http://linkeddatabook.com/editions/1.0/

Querying semantic data on the web. Marcelo Arenas et al.
SIGMOD Record 41(4): 6-17, 2012.

http://www.sigmod.org/publications/sigmod-record/1212/pdfs/03.principles.arenas.pdf

Cours 5 (TIW2 2021-2022) — A. Bonifati

33

http://users.dcc.uchile.cl/~cgutierr/papers/surveyGDB.pdf
http://dx.doi.org/10.1007/978-1-4419-6045-0_6
https://arxiv.org/pdf/1610.06264.pdf
http://linkeddatabook.com/editions/1.0/
http://www.sigmod.org/publications/sigmod-record/1212/pdfs/03.principles.arenas.pdf

Recap

1. Querying over graph data
» query languages for graphs
» openCypher
» Gremlin and Sparksee

Cours 5 (TIW2 2021-2022) — A. Bonifati

34

