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Graph queries



A small graph

Let’s consider a graph with edge labels: knows, worksAt,
patientOf, hasDisease, and treatsDisease.
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Query language capabilities

Graph query languages typically feature one or both of the
following basic capabilities

I subgraph matching

I finding nodes connected by paths

and possibly additional advanced features such as approximate
matching, aggregation, and comparing paths.
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Subgraph matching

Subgraph matching is the core basic capability of most graph
query languages

Essentially, this consists of conjunctive queries on graphs

I an edge pattern is a triple (s, `, t) where s and t can be
either constants (in node set N) or variables, and ` ∈ L is
an edge label

I a query rule is then a pattern

head ← body

where head and body are sets of edge patterns such that
every variable occurring in head occurs in body
I alternatively, head is a list of zero or more of the

variables (possibly with repetition) appearing in body

I A query is then a finite set of rules (of the same arity).
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Subgraph matching
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Example: People and the doctors of their friends

Q = (?p, friendDoctor , ?d)← (?p, knows, ?f ), (?f , patientOf , ?d)
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Subgraph matching

sue

saori

kotaro

st jude's

flu

            knows                                    

                                  patientOf

               worksAt

hasDisease             

sriram

                                                treatsDisease

umi

                 knows

          knows

...

knows      

migraine

hasDisease                         

...

          knows                        

                            patientOf

knows

Example: People who know someone who knows a doctor.

Q = 〈?p〉 ← (?p, knows, ?f ), (?f , knows, ?d), (?po, patientOf , ?d)
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Subgraph matching
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Example: Patients and their friends

Q = 〈?p, ?f 〉 ← (?p, knows, ?f ), (?p, patientOf , ?d)
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Subgraph matching

The semantics Q(G ) of evaluating query a Q on graph G is
based on embeddings of the rule body ’s of Q in G :

Q(G ) =
⋃

head←body∈Q

{h(head) | h(body) ⊆ G}

where h is a homomorphism, i.e., a function with domain
N ∪ Variables and range N that is the identity on N .

Alternatively, some graph DBs adopt a stricter isomorphism
semantics, i.e., homomorphisms that are injective.

I In other words, distinct variables in body must map to
distinct nodes in G .

In the property graph model, a distinction is also sometimes
made between node-isomorphism (i.e., our notion here) and
edge-isomorphism (see Angles et al. 2016).
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Subgraph matching
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Example: People and the doctors of their friends

Q = (?p, friendDoctor , ?d)← (?p, knows, ?f ), (?f , patientOf , ?d)

Q(G ) = {(umi , friendDoctor , saori), (kotaro, friendDoctor , saori), . . .}
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Subgraph matching
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Example: People who know someone who knows a doctor.

Q = 〈?p〉 ← (?p, knows, ?f ), (?f , knows, ?d), (?po, patientOf , ?d)

Q(G ) = {〈umi〉, . . .}
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Subgraph matching
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Example: Patients and their friends (homomorphisms)

Q = 〈?p, ?f 〉 ← (?p, knows, ?f ), (?p, patientOf , ?d)

Q(G ) = {〈kotaro, saori〉, 〈kotaro, sriram〉, . . .}
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Subgraph matching
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Example: Patients and their friends (isomorphisms)

Q = 〈?p, ?f 〉 ← (?p, knows, ?f ), (?p, patientOf , ?d)

Q(G ) = {〈kotaro, saori〉, 〈kotaro, sriram〉, . . .}
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Subgraph matching

Evaluation of subgraph matching queries is NP-complete in
combined complexity (i.e., in the size of Q and G ) and
logspace in data complexity (i.e., for a fixed query, in the size
of G ). This follows from the intractability of the subgraph
homomorphism problem.
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Subgraph matching: simulations

That is, instead of homomorphisms embedding Q in G , we
look for a binary relation S between the nodes and variables of
(a given) body of Q and the nodes of G such that

1. for each constant n in the body of Q, n is a node of G
and (n, n) ∈ S ;

2. for each variable v in the body of Q there exists a node n
of G such that (v , n) ∈ S ; and,

3. for each (x , n) ∈ S and each edge pattern (x , `, x ′) ∈ Q,

there is an edge n
`→ n′ ∈ G such that (x ′, n′) ∈ S .
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Subgraph matching: simulations

a

b

c d

knows

knows patientOf

Example. The following boolean query is simulated in the
graph above, but evaluates to “false” under standard query
semantics

〈〉 ← (?x , knows, ?y), (?x , knows, ?z), (?z , patientOf , ?y)

Here a simulation is S = {(?x , a), (?z , c), (?y , b), (?y , d)}
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Path navigation: reachability

The simplest form of path matching is reachability, namely,
computing

G ∗ = {(s, t) | there is a path in G from s to t}

or, given x , y ∈ N , determining whether or not (x , y) ∈ G ∗.

Extensively studied in the DB community since the 80’s (see
the survey of Yu et al.).
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Path navigation: label-constrained reachability

Generalizing reachability, we have the label-constrained
reachability queries: given x , y ∈ N and a set of labels L ⊆ L,
determining whether or not (x , y) is in the set

G ∗L = {(s, t) | there is a path in G from s to t

using only edges with labels in L}.

Note that this is equivalent to the following problem

I determine whether or not there is a path in G from x to
y such that the concatenation of the edge labels along
the path forms a string in the language denoted by the
regular expression (`1 ∪ · · · ∪ `n)∗

where L = {`1, . . . , `n}, ∪ is disjunction, and ∗ is the Kleene
star ...
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Path navigation: regular path queries

Regular path queries return all paths (i.e., pairs of nodes)
connected by some regular expression over edge labels
I queries of the form

〈?x , ?y〉 ← (?x , r , ?y)

where r is a regular expression over L
I semantics is the set of all node pairs (s, t) such that there

is a path from s to t in G and the sequence of edge labels
along the path forms a word in the language of r .

I query evaluation: O(|G ||r |) time complexity

For example, the “knowing” social network is

〈?x , ?y〉 ← (?x , knows+, ?y)

and the general social network is

〈?x , ?y〉 ← (?x , (knows ∪ patientOf)+, ?y)
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Path navigation: regular path queries

Example. Co-authorship network

(?s, ?t) ← (?s, (authored/authored−1)∗, ?t)

On the graph

john

P1

jane

P2

max

authored
authored authored

authored

this query evaluates to

{(john, john), (john, jane), (john,max), (jane, jane), (jane, john),

(jane,max), (max ,max), (max , jane), (max , john)}.
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Unions of conjunctions of RPQs

It is natural to combine the functionalities of subgraph
matching and RPQs, in the shape of unions of conjunctions of
RPQs (UCRPQs):

I an edge pattern is a triple (s, r , t) where s and t can be
either constants (in node set N) or variables, and r is a
regular expression over L

I a query rule is a pattern

head ← body

where body is a set of edge patterns and head is a list of
zero or more of the variables (possibly with repetition)
appearing in body

I A query is a finite set of rules, each of the same arity.
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Unions of conjunctions of RPQs
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Example: Doctors and the patients in both their social and
treatment networks

Q = 〈?d , ?p〉 ← (?d , knows∗, ?p), (?p, patientOf ∗, ?d)

Cours 5 (TIW2 2021-2022) – A. Bonifati 23



Regular queries

Note that all recursion in UCRPQs is captured in the Kleene
star operation, R∗.

... which is just the transitive closure of the binary relation
defined by R ...

This leads us to the Regular Queries of Reutter et al., properly
generalizing UCRPQs while maintaining all of their nice
algorithmic properties

I equivalence is decidable; query evaluation is tractable.1

1
http://drops.dagstuhl.de/opus/volltexte/2015/4984/pdf/11.pdf
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Regular queries

Regular Queries. Non-recursive Datalog programs, where:

I All rules, except perhaps the output rule, are binary.

I We can take the transitive closure of any predicate in a
rule body.

For our co-authorship example, we have the following
equivalent regular query:

coAuthored(S ,T ) ← authored(S ,X ), authored(T ,X )

answer(S ,T ) ← coAuthored∗(S ,T ).
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Practical syntaxes



openCypher

openCypher.

I Declarative graph query language of the popular
open-source Neo4j graph database.
http://neo4j.com/developer/cypher/

I Property graph model (cf. Angles et al. 2016)
I directed node- and edge-labeled graph
I nodes and edges have ID
I nodes and edges carry sets of property-value pairs
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openCypher: property graphs

(image credit: http://tinkerpop.apache.org)
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openCypher: subgraph matching

The basic building block of queries is subgraph matching, via a
MATCH clause, with isomorphic matching.

MATCH (n:Person)-[:Created]->(m),

(m)<-[:Created]-(p)

WHERE n.age = 29 AND p.age < 35

RETURN p

〈?p〉 ← (?n, created , ?m), (?p, created , ?m),

n.age = 29, p.age < 35, n.label = Person

Can be further combined using UNION, applying aggregation
functions, string functions, etc.
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openCypher: subgraph matching

MATCH (n:Person)-[:Created]->(m),

(m)<-[:Created]-(p)

WHERE n.age = 29 AND p.age < 35

RETURN p

Result is {〈4〉}.
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openCypher: path queries

Cypher also provides support for RPQs in the MATCH clause.

MATCH (n:Person)-[:knows*]->(p)

WHERE n.name = "marko"

RETURN p

and with bounded recursion

MATCH (n:Person)-[:knows*2..7]->(p)

WHERE n.name = "marko"

RETURN p

Can also apply * to a disjunction of symbols

Cours 5 (TIW2 2021-2022) – A. Bonifati 31



openCypher: path queries

Cypher also provides support for RPQs in the MATCH clause.

MATCH (n:Person)-[:knows*]->(p)

WHERE n.name = "marko"

RETURN p

and with bounded recursion

MATCH (n:Person)-[:knows*2..7]->(p)

WHERE n.name = "marko"

RETURN p

Can also apply * to a disjunction of symbols

Cours 5 (TIW2 2021-2022) – A. Bonifati 31



Popular imperative syntaxes

Gremlin.

I Part of the Apache TinkerPop graph
computing framework. http://tinkerpop.apache.org

I Property graph model
I Example.

gremlin> g.V().has(’name’,’kotaro’).

out(’knows’).in(’patientOf’).

values(’name’)

==>kotaro

==>sriram

See also the recent Sparksee API for a similar approach to
graph analytics
http://sparsity-technologies.com
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Recap

1. Querying over graph data
I query languages for graphs
I openCypher
I Gremlin and Sparksee

Cours 5 (TIW2 2021-2022) – A. Bonifati 34


