
Querying Graphs

TIW2
Interoperability 2021-2022

Prof. Angela Bonifati

Lyon 1 University

8 November 2021

Agenda

1. Querying over graph data
I query languages for graphs
I openCypher

Cours 5 (TIW2 2021-2022) – A. Bonifati 2

Graph queries

A small graph

Let’s consider a graph with edge labels: knows, worksAt,
patientOf, hasDisease, and treatsDisease.

sue

saori

kotaro

st jude's

flu

 knows

 patientOf

 worksAt

hasDisease

sriram

 treatsDisease

umi

 knows

 knows

...

knows

migraine

hasDisease

...

 knows

 patientOf

knows

Cours 5 (TIW2 2021-2022) – A. Bonifati 4

Query language capabilities

Graph query languages typically feature one or both of the
following basic capabilities

I subgraph matching

I finding nodes connected by paths

and possibly additional advanced features such as approximate
matching, aggregation, and comparing paths.

Cours 5 (TIW2 2021-2022) – A. Bonifati 5

Subgraph matching

Subgraph matching is the core basic capability of most graph
query languages

Essentially, this consists of conjunctive queries on graphs

I an edge pattern is a triple (s, `, t) where s and t can be
either constants (in node set N) or variables, and ` ∈ L is
an edge label

I a query rule is then a pattern

head ← body

where head and body are sets of edge patterns such that
every variable occurring in head occurs in body
I alternatively, head is a list of zero or more of the

variables (possibly with repetition) appearing in body

I A query is then a finite set of rules (of the same arity).

Cours 5 (TIW2 2021-2022) – A. Bonifati 6

Subgraph matching

Subgraph matching is the core basic capability of most graph
query languages

Essentially, this consists of conjunctive queries on graphs

I an edge pattern is a triple (s, `, t) where s and t can be
either constants (in node set N) or variables, and ` ∈ L is
an edge label

I a query rule is then a pattern

head ← body

where head and body are sets of edge patterns such that
every variable occurring in head occurs in body
I alternatively, head is a list of zero or more of the

variables (possibly with repetition) appearing in body

I A query is then a finite set of rules (of the same arity).

Cours 5 (TIW2 2021-2022) – A. Bonifati 6

Subgraph matching

Subgraph matching is the core basic capability of most graph
query languages

Essentially, this consists of conjunctive queries on graphs

I an edge pattern is a triple (s, `, t) where s and t can be
either constants (in node set N) or variables, and ` ∈ L is
an edge label

I a query rule is then a pattern

head ← body

where head and body are sets of edge patterns such that
every variable occurring in head occurs in body

I alternatively, head is a list of zero or more of the
variables (possibly with repetition) appearing in body

I A query is then a finite set of rules (of the same arity).

Cours 5 (TIW2 2021-2022) – A. Bonifati 6

Subgraph matching

Subgraph matching is the core basic capability of most graph
query languages

Essentially, this consists of conjunctive queries on graphs

I an edge pattern is a triple (s, `, t) where s and t can be
either constants (in node set N) or variables, and ` ∈ L is
an edge label

I a query rule is then a pattern

head ← body

where head and body are sets of edge patterns such that
every variable occurring in head occurs in body
I alternatively, head is a list of zero or more of the

variables (possibly with repetition) appearing in body

I A query is then a finite set of rules (of the same arity).

Cours 5 (TIW2 2021-2022) – A. Bonifati 6

Subgraph matching

Subgraph matching is the core basic capability of most graph
query languages

Essentially, this consists of conjunctive queries on graphs

I an edge pattern is a triple (s, `, t) where s and t can be
either constants (in node set N) or variables, and ` ∈ L is
an edge label

I a query rule is then a pattern

head ← body

where head and body are sets of edge patterns such that
every variable occurring in head occurs in body
I alternatively, head is a list of zero or more of the

variables (possibly with repetition) appearing in body

I A query is then a finite set of rules (of the same arity).
Cours 5 (TIW2 2021-2022) – A. Bonifati 6

Subgraph matching

sue

saori

kotaro

st jude's

flu

 knows

 patientOf

 worksAt

hasDisease

sriram

 treatsDisease

umi

 knows

 knows

...

knows

migraine

hasDisease

...

 knows

 patientOf

knows

Example: People and the doctors of their friends

Q = (?p, friendDoctor , ?d)← (?p, knows, ?f), (?f , patientOf , ?d)

Cours 5 (TIW2 2021-2022) – A. Bonifati 7

Subgraph matching

sue

saori

kotaro

st jude's

flu

 knows

 patientOf

 worksAt

hasDisease

sriram

 treatsDisease

umi

 knows

 knows

...

knows

migraine

hasDisease

...

 knows

 patientOf

knows

Example: People who know someone who knows a doctor.

Q = 〈?p〉 ← (?p, knows, ?f), (?f , knows, ?d), (?po, patientOf , ?d)

Cours 5 (TIW2 2021-2022) – A. Bonifati 8

Subgraph matching

sue

saori

kotaro

st jude's

flu

 knows

 patientOf

 worksAt

hasDisease

sriram

 treatsDisease

umi

 knows

 knows

...

knows

migraine

hasDisease

...

 knows

 patientOf

knows

Example: Patients and their friends

Q = 〈?p, ?f 〉 ← (?p, knows, ?f), (?p, patientOf , ?d)

Cours 5 (TIW2 2021-2022) – A. Bonifati 9

Subgraph matching

The semantics Q(G) of evaluating query a Q on graph G is
based on embeddings of the rule body ’s of Q in G :

Q(G) =
⋃

head←body∈Q

{h(head) | h(body) ⊆ G}

where h is a homomorphism, i.e., a function with domain
N ∪ Variables and range N that is the identity on N .

Alternatively, some graph DBs adopt a stricter isomorphism
semantics, i.e., homomorphisms that are injective.

I In other words, distinct variables in body must map to
distinct nodes in G .

In the property graph model, a distinction is also sometimes
made between node-isomorphism (i.e., our notion here) and
edge-isomorphism (see Angles et al. 2016).

Cours 5 (TIW2 2021-2022) – A. Bonifati 10

Subgraph matching

The semantics Q(G) of evaluating query a Q on graph G is
based on embeddings of the rule body ’s of Q in G :

Q(G) =
⋃

head←body∈Q

{h(head) | h(body) ⊆ G}

where h is a homomorphism, i.e., a function with domain
N ∪ Variables and range N that is the identity on N .

Alternatively, some graph DBs adopt a stricter isomorphism
semantics, i.e., homomorphisms that are injective.

I In other words, distinct variables in body must map to
distinct nodes in G .

In the property graph model, a distinction is also sometimes
made between node-isomorphism (i.e., our notion here) and
edge-isomorphism (see Angles et al. 2016).

Cours 5 (TIW2 2021-2022) – A. Bonifati 10

Subgraph matching

The semantics Q(G) of evaluating query a Q on graph G is
based on embeddings of the rule body ’s of Q in G :

Q(G) =
⋃

head←body∈Q

{h(head) | h(body) ⊆ G}

where h is a homomorphism, i.e., a function with domain
N ∪ Variables and range N that is the identity on N .

Alternatively, some graph DBs adopt a stricter isomorphism
semantics, i.e., homomorphisms that are injective.

I In other words, distinct variables in body must map to
distinct nodes in G .

In the property graph model, a distinction is also sometimes
made between node-isomorphism (i.e., our notion here) and
edge-isomorphism (see Angles et al. 2016).

Cours 5 (TIW2 2021-2022) – A. Bonifati 10

Subgraph matching

sue

saori

kotaro

st jude's

flu

 knows

 patientOf

 worksAt

hasDisease

sriram

 treatsDisease

umi

 knows

 knows

...

knows

migraine

hasDisease

...

 knows

 patientOf

knows

Example: People and the doctors of their friends

Q = (?p, friendDoctor , ?d)← (?p, knows, ?f), (?f , patientOf , ?d)

Q(G) = {(umi , friendDoctor , saori), (kotaro, friendDoctor , saori), . . .}

Cours 5 (TIW2 2021-2022) – A. Bonifati 11

Subgraph matching

sue

saori

kotaro

st jude's

flu

 knows

 patientOf

 worksAt

hasDisease

sriram

 treatsDisease

umi

 knows

 knows

...

knows

migraine

hasDisease

...

 knows

 patientOf

knows

Example: People who know someone who knows a doctor.

Q = 〈?p〉 ← (?p, knows, ?f), (?f , knows, ?d), (?po, patientOf , ?d)

Q(G) = {〈umi〉, . . .}

Cours 5 (TIW2 2021-2022) – A. Bonifati 12

Subgraph matching

sue

saori

kotaro

st jude's

flu

 knows

 patientOf

 worksAt

hasDisease

sriram

 treatsDisease

umi

 knows

 knows

...

knows

migraine

hasDisease

...

 knows

 patientOf

knows

Example: Patients and their friends (homomorphisms)

Q = 〈?p, ?f 〉 ← (?p, knows, ?f), (?p, patientOf , ?d)

Q(G) = {〈kotaro, saori〉, 〈kotaro, sriram〉, . . .}

Cours 5 (TIW2 2021-2022) – A. Bonifati 13

Subgraph matching

sue

saori

kotaro

st jude's

flu

 knows

 patientOf

 worksAt

hasDisease

sriram

 treatsDisease

umi

 knows

 knows

...

knows

migraine

hasDisease

...

 knows

 patientOf

knows

Example: Patients and their friends (isomorphisms)

Q = 〈?p, ?f 〉 ← (?p, knows, ?f), (?p, patientOf , ?d)

Q(G) = {〈kotaro, saori〉, 〈kotaro, sriram〉, . . .}

Cours 5 (TIW2 2021-2022) – A. Bonifati 14

Subgraph matching

Evaluation of subgraph matching queries is NP-complete in
combined complexity (i.e., in the size of Q and G) and
logspace in data complexity (i.e., for a fixed query, in the size
of G). This follows from the intractability of the subgraph
homomorphism problem.

Cours 5 (TIW2 2021-2022) – A. Bonifati 15

Subgraph matching: simulations

That is, instead of homomorphisms embedding Q in G , we
look for a binary relation S between the nodes and variables of
(a given) body of Q and the nodes of G such that

1. for each constant n in the body of Q, n is a node of G
and (n, n) ∈ S ;

2. for each variable v in the body of Q there exists a node n
of G such that (v , n) ∈ S ; and,

3. for each (x , n) ∈ S and each edge pattern (x , `, x ′) ∈ Q,

there is an edge n
`→ n′ ∈ G such that (x ′, n′) ∈ S .

Cours 5 (TIW2 2021-2022) – A. Bonifati 16

Subgraph matching: simulations

a

b

c d

knows

knows patientOf

Example. The following boolean query is simulated in the
graph above, but evaluates to “false” under standard query
semantics

〈〉 ← (?x , knows, ?y), (?x , knows, ?z), (?z , patientOf , ?y)

Here a simulation is S = {(?x , a), (?z , c), (?y , b), (?y , d)}

Cours 5 (TIW2 2021-2022) – A. Bonifati 17

Subgraph matching: simulations

a

b

c d

knows

knows patientOf

Example. The following boolean query is simulated in the
graph above, but evaluates to “false” under standard query
semantics

〈〉 ← (?x , knows, ?y), (?x , knows, ?z), (?z , patientOf , ?y)

Here a simulation is S = {(?x , a), (?z , c), (?y , b), (?y , d)}
Cours 5 (TIW2 2021-2022) – A. Bonifati 17

Path navigation: reachability

The simplest form of path matching is reachability, namely,
computing

G ∗ = {(s, t) | there is a path in G from s to t}

or, given x , y ∈ N , determining whether or not (x , y) ∈ G ∗.

Extensively studied in the DB community since the 80’s (see
the survey of Yu et al.).

Cours 5 (TIW2 2021-2022) – A. Bonifati 18

Path navigation: label-constrained reachability

Generalizing reachability, we have the label-constrained
reachability queries: given x , y ∈ N and a set of labels L ⊆ L,
determining whether or not (x , y) is in the set

G ∗L = {(s, t) | there is a path in G from s to t

using only edges with labels in L}.

Note that this is equivalent to the following problem

I determine whether or not there is a path in G from x to
y such that the concatenation of the edge labels along
the path forms a string in the language denoted by the
regular expression (`1 ∪ · · · ∪ `n)∗

where L = {`1, . . . , `n}, ∪ is disjunction, and ∗ is the Kleene
star ...

Cours 5 (TIW2 2021-2022) – A. Bonifati 19

Path navigation: label-constrained reachability

Generalizing reachability, we have the label-constrained
reachability queries: given x , y ∈ N and a set of labels L ⊆ L,
determining whether or not (x , y) is in the set

G ∗L = {(s, t) | there is a path in G from s to t

using only edges with labels in L}.

Note that this is equivalent to the following problem

I determine whether or not there is a path in G from x to
y such that the concatenation of the edge labels along
the path forms a string in the language denoted by the
regular expression (`1 ∪ · · · ∪ `n)∗

where L = {`1, . . . , `n}, ∪ is disjunction, and ∗ is the Kleene
star ...

Cours 5 (TIW2 2021-2022) – A. Bonifati 19

Path navigation: regular path queries

Regular path queries return all paths (i.e., pairs of nodes)
connected by some regular expression over edge labels
I queries of the form

〈?x , ?y〉 ← (?x , r , ?y)

where r is a regular expression over L
I semantics is the set of all node pairs (s, t) such that there

is a path from s to t in G and the sequence of edge labels
along the path forms a word in the language of r .

I query evaluation: O(|G ||r |) time complexity

For example, the “knowing” social network is

〈?x , ?y〉 ← (?x , knows+, ?y)

and the general social network is

〈?x , ?y〉 ← (?x , (knows ∪ patientOf)+, ?y)

Cours 5 (TIW2 2021-2022) – A. Bonifati 20

Path navigation: regular path queries

Regular path queries return all paths (i.e., pairs of nodes)
connected by some regular expression over edge labels
I queries of the form

〈?x , ?y〉 ← (?x , r , ?y)

where r is a regular expression over L
I semantics is the set of all node pairs (s, t) such that there

is a path from s to t in G and the sequence of edge labels
along the path forms a word in the language of r .

I query evaluation: O(|G ||r |) time complexity

For example, the “knowing” social network is

〈?x , ?y〉 ← (?x , knows+, ?y)

and the general social network is

〈?x , ?y〉 ← (?x , (knows ∪ patientOf)+, ?y)

Cours 5 (TIW2 2021-2022) – A. Bonifati 20

Path navigation: regular path queries

Example. Co-authorship network

(?s, ?t) ← (?s, (authored/authored−1)∗, ?t)

On the graph

john

P1

jane

P2

max

authored
authored authored

authored

this query evaluates to

{(john, john), (john, jane), (john,max), (jane, jane), (jane, john),

(jane,max), (max ,max), (max , jane), (max , john)}.

Cours 5 (TIW2 2021-2022) – A. Bonifati 21

Path navigation: regular path queries

Example. Co-authorship network

(?s, ?t) ← (?s, (authored/authored−1)∗, ?t)

On the graph

john

P1

jane

P2

max

authored
authored authored

authored

this query evaluates to

{(john, john), (john, jane), (john,max), (jane, jane), (jane, john),

(jane,max), (max ,max), (max , jane), (max , john)}.

Cours 5 (TIW2 2021-2022) – A. Bonifati 21

Path navigation: regular path queries

Example. Co-authorship network

(?s, ?t) ← (?s, (authored/authored−1)∗, ?t)

On the graph

john

P1

jane

P2

max

authored
authored authored

authored

this query evaluates to

{(john, john), (john, jane), (john,max), (jane, jane), (jane, john),

(jane,max), (max ,max), (max , jane), (max , john)}.

Cours 5 (TIW2 2021-2022) – A. Bonifati 21

Unions of conjunctions of RPQs

It is natural to combine the functionalities of subgraph
matching and RPQs, in the shape of unions of conjunctions of
RPQs (UCRPQs):

I an edge pattern is a triple (s, r , t) where s and t can be
either constants (in node set N) or variables, and r is a
regular expression over L

I a query rule is a pattern

head ← body

where body is a set of edge patterns and head is a list of
zero or more of the variables (possibly with repetition)
appearing in body

I A query is a finite set of rules, each of the same arity.

Cours 5 (TIW2 2021-2022) – A. Bonifati 22

Unions of conjunctions of RPQs

It is natural to combine the functionalities of subgraph
matching and RPQs, in the shape of unions of conjunctions of
RPQs (UCRPQs):

I an edge pattern is a triple (s, r , t) where s and t can be
either constants (in node set N) or variables, and r is a
regular expression over L

I a query rule is a pattern

head ← body

where body is a set of edge patterns and head is a list of
zero or more of the variables (possibly with repetition)
appearing in body

I A query is a finite set of rules, each of the same arity.

Cours 5 (TIW2 2021-2022) – A. Bonifati 22

Unions of conjunctions of RPQs

It is natural to combine the functionalities of subgraph
matching and RPQs, in the shape of unions of conjunctions of
RPQs (UCRPQs):

I an edge pattern is a triple (s, r , t) where s and t can be
either constants (in node set N) or variables, and r is a
regular expression over L

I a query rule is a pattern

head ← body

where body is a set of edge patterns and head is a list of
zero or more of the variables (possibly with repetition)
appearing in body

I A query is a finite set of rules, each of the same arity.

Cours 5 (TIW2 2021-2022) – A. Bonifati 22

Unions of conjunctions of RPQs

sue

saori

kotaro

st jude's

flu

 knows

 patientOf

 worksAt

hasDisease

sriram

 treatsDisease

umi

 knows

 knows

...

knows

migraine

hasDisease

...

 knows

 patientOf

knows

Example: Doctors and the patients in both their social and
treatment networks

Q = 〈?d , ?p〉 ← (?d , knows∗, ?p), (?p, patientOf ∗, ?d)

Cours 5 (TIW2 2021-2022) – A. Bonifati 23

Regular queries

Note that all recursion in UCRPQs is captured in the Kleene
star operation, R∗.

... which is just the transitive closure of the binary relation
defined by R ...

This leads us to the Regular Queries of Reutter et al., properly
generalizing UCRPQs while maintaining all of their nice
algorithmic properties

I equivalence is decidable; query evaluation is tractable.1

1
http://drops.dagstuhl.de/opus/volltexte/2015/4984/pdf/11.pdf

Cours 5 (TIW2 2021-2022) – A. Bonifati 24

http://drops.dagstuhl.de/opus/volltexte/2015/4984/pdf/11.pdf

Regular queries

Note that all recursion in UCRPQs is captured in the Kleene
star operation, R∗.

... which is just the transitive closure of the binary relation
defined by R ...

This leads us to the Regular Queries of Reutter et al., properly
generalizing UCRPQs while maintaining all of their nice
algorithmic properties

I equivalence is decidable; query evaluation is tractable.1

1
http://drops.dagstuhl.de/opus/volltexte/2015/4984/pdf/11.pdf

Cours 5 (TIW2 2021-2022) – A. Bonifati 24

http://drops.dagstuhl.de/opus/volltexte/2015/4984/pdf/11.pdf

Regular queries

Note that all recursion in UCRPQs is captured in the Kleene
star operation, R∗.

... which is just the transitive closure of the binary relation
defined by R ...

This leads us to the Regular Queries of Reutter et al., properly
generalizing UCRPQs while maintaining all of their nice
algorithmic properties

I equivalence is decidable; query evaluation is tractable.1

1
http://drops.dagstuhl.de/opus/volltexte/2015/4984/pdf/11.pdf

Cours 5 (TIW2 2021-2022) – A. Bonifati 24

http://drops.dagstuhl.de/opus/volltexte/2015/4984/pdf/11.pdf

Regular queries

Regular Queries. Non-recursive Datalog programs, where:

I All rules, except perhaps the output rule, are binary.

I We can take the transitive closure of any predicate in a
rule body.

For our co-authorship example, we have the following
equivalent regular query:

coAuthored(S ,T) ← authored(S ,X), authored(T ,X)

answer(S ,T) ← coAuthored∗(S ,T).

Cours 5 (TIW2 2021-2022) – A. Bonifati 25

Regular queries

Regular Queries. Non-recursive Datalog programs, where:

I All rules, except perhaps the output rule, are binary.

I We can take the transitive closure of any predicate in a
rule body.

For our co-authorship example, we have the following
equivalent regular query:

coAuthored(S ,T) ← authored(S ,X), authored(T ,X)

answer(S ,T) ← coAuthored∗(S ,T).

Cours 5 (TIW2 2021-2022) – A. Bonifati 25

Practical syntaxes

openCypher

openCypher.

I Declarative graph query language of the popular
open-source Neo4j graph database.
http://neo4j.com/developer/cypher/

I Property graph model (cf. Angles et al. 2016)
I directed node- and edge-labeled graph
I nodes and edges have ID
I nodes and edges carry sets of property-value pairs

Cours 5 (TIW2 2021-2022) – A. Bonifati 27

http://neo4j.com/developer/cypher/

openCypher: property graphs

(image credit: http://tinkerpop.apache.org)

Cours 5 (TIW2 2021-2022) – A. Bonifati 28

http://tinkerpop.apache.org

openCypher: subgraph matching

The basic building block of queries is subgraph matching, via a
MATCH clause, with isomorphic matching.

MATCH (n:Person)-[:Created]->(m),

(m)<-[:Created]-(p)

WHERE n.age = 29 AND p.age < 35

RETURN p

〈?p〉 ← (?n, created , ?m), (?p, created , ?m),

n.age = 29, p.age < 35, n.label = Person

Can be further combined using UNION, applying aggregation
functions, string functions, etc.

Cours 5 (TIW2 2021-2022) – A. Bonifati 29

openCypher: subgraph matching

The basic building block of queries is subgraph matching, via a
MATCH clause, with isomorphic matching.

MATCH (n:Person)-[:Created]->(m),

(m)<-[:Created]-(p)

WHERE n.age = 29 AND p.age < 35

RETURN p

〈?p〉 ← (?n, created , ?m), (?p, created , ?m),

n.age = 29, p.age < 35, n.label = Person

Can be further combined using UNION, applying aggregation
functions, string functions, etc.

Cours 5 (TIW2 2021-2022) – A. Bonifati 29

openCypher: subgraph matching

The basic building block of queries is subgraph matching, via a
MATCH clause, with isomorphic matching.

MATCH (n:Person)-[:Created]->(m),

(m)<-[:Created]-(p)

WHERE n.age = 29 AND p.age < 35

RETURN p

〈?p〉 ← (?n, created , ?m), (?p, created , ?m),

n.age = 29, p.age < 35, n.label = Person

Can be further combined using UNION, applying aggregation
functions, string functions, etc.

Cours 5 (TIW2 2021-2022) – A. Bonifati 29

openCypher: subgraph matching

MATCH (n:Person)-[:Created]->(m),

(m)<-[:Created]-(p)

WHERE n.age = 29 AND p.age < 35

RETURN p

Result is {〈4〉}.

Cours 5 (TIW2 2021-2022) – A. Bonifati 30

openCypher: subgraph matching

MATCH (n:Person)-[:Created]->(m),

(m)<-[:Created]-(p)

WHERE n.age = 29 AND p.age < 35

RETURN p

Result is {〈4〉}.

Cours 5 (TIW2 2021-2022) – A. Bonifati 30

openCypher: path queries

Cypher also provides support for RPQs in the MATCH clause.

MATCH (n:Person)-[:knows*]->(p)

WHERE n.name = "marko"

RETURN p

and with bounded recursion

MATCH (n:Person)-[:knows*2..7]->(p)

WHERE n.name = "marko"

RETURN p

Can also apply * to a disjunction of symbols

Cours 5 (TIW2 2021-2022) – A. Bonifati 31

openCypher: path queries

Cypher also provides support for RPQs in the MATCH clause.

MATCH (n:Person)-[:knows*]->(p)

WHERE n.name = "marko"

RETURN p

and with bounded recursion

MATCH (n:Person)-[:knows*2..7]->(p)

WHERE n.name = "marko"

RETURN p

Can also apply * to a disjunction of symbols

Cours 5 (TIW2 2021-2022) – A. Bonifati 31

Popular imperative syntaxes

Gremlin.

I Part of the Apache TinkerPop graph
computing framework. http://tinkerpop.apache.org

I Property graph model
I Example.

gremlin> g.V().has(’name’,’kotaro’).

out(’knows’).in(’patientOf’).

values(’name’)

==>kotaro

==>sriram

See also the recent Sparksee API for a similar approach to
graph analytics
http://sparsity-technologies.com

Cours 5 (TIW2 2021-2022) – A. Bonifati 32

http://tinkerpop.apache.org
http://sparsity-technologies.com

Popular imperative syntaxes

Gremlin.

I Part of the Apache TinkerPop graph
computing framework. http://tinkerpop.apache.org

I Property graph model
I Example.

gremlin> g.V().has(’name’,’kotaro’).

out(’knows’).in(’patientOf’).

values(’name’)

==>kotaro

==>sriram

See also the recent Sparksee API for a similar approach to
graph analytics
http://sparsity-technologies.com

Cours 5 (TIW2 2021-2022) – A. Bonifati 32

http://tinkerpop.apache.org
http://sparsity-technologies.com

References

I Querying graphs. Angela Bonifati et al. Morgan & Claypool, 2018.

I Survey of graph database models. Renzo Angles and Claudio
Gutiérrez. ACM Comput. Surv. 40(1), 2008.
http://users.dcc.uchile.cl/~cgutierr/papers/surveyGDB.pdf

I Graph reachability queries: A survey. Jeffrey Xu Yu and Jiefeng
Cheng. In Managing and Mining Graph Data, pages 181-215.
Springer, 2010.
http://dx.doi.org/10.1007/978-1-4419-6045-0_6 (you must be on campus or VPN)

I Foundations of modern graph query languages. Renzo Angles et al.
arXiv 1610.06264, 2016
https://arxiv.org/pdf/1610.06264.pdf

I Graph queries: from theory to practice. Angela Bonifati and
Stefania Dumbrava. SIGMOD Record 47(4): 5-16, 2018.
http://linkeddatabook.com/editions/1.0/

I Querying semantic data on the web. Marcelo Arenas et al.
SIGMOD Record 41(4): 6-17, 2012.
http://www.sigmod.org/publications/sigmod-record/1212/pdfs/03.principles.arenas.pdf

Cours 5 (TIW2 2021-2022) – A. Bonifati 33

http://users.dcc.uchile.cl/~cgutierr/papers/surveyGDB.pdf
http://dx.doi.org/10.1007/978-1-4419-6045-0_6
https://arxiv.org/pdf/1610.06264.pdf
http://linkeddatabook.com/editions/1.0/
http://www.sigmod.org/publications/sigmod-record/1212/pdfs/03.principles.arenas.pdf

Recap

1. Querying over graph data
I query languages for graphs
I openCypher
I Gremlin and Sparksee

Cours 5 (TIW2 2021-2022) – A. Bonifati 34

