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Abstract—Zernike moments constitute a powerful shape descriptor in terms of robustness and description capability. However, the

classical way of comparing two Zernike descriptors only takes into account the magnitude of the moments and loses the phase

information. The novelty of our approach is to take advantage of the phase information in the comparison process while still preserving

the invariance to rotation. This new Zernike comparator provides a more accurate similarity measure, together with the optimal rotation

angle between the patterns, while keeping the same complexity as the classical approach. This angle information is of particular

interest for many applications, including 3D scene understanding through images. Experiments demonstrate that our comparator

outperforms the classical one in terms of similarity measure. In particular, the robustness of the retrieval against noise and geometric

deformation is greatly improved. Moreover, the rotation angle estimation is also more accurate than state-of-the-art algorithms.

Index Terms—Zernike moments, scene analysis, 3D object recognition, shape.
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1 INTRODUCTION

ZERNIKE moments are widely used to capture global
features of an image in pattern recognition and image

analysis. First introduced in computer vision by Teague [1],

this shape descriptor has proved its superiority over other
moment functions [2], [3], regarding to its description

capability and robustness to noise or deformations. Hence,

rotation-invariant pattern recognition using Zernike mo-

ments has been extensively studied [4], [5]. Even very

recently, a lot of authors have been working on these

moments, particularly to improve their computation time

[6], [7], [8], [9] or their accuracy [10].

Practically, one Zernike moment is a complex number

that contains two different values: magnitude and phase;

however, the usual way (i.e., used in all existing algorithms)

of comparing two Zernike descriptors only considers the

moments magnitudes (as it brings invariance to rotation). In

the context of 2D and 2D-3D indexing and recognition, this

loss of information is not harmless when comparing two

different patterns and can induce erroneous results and

impreciseness, as will be further illustrated.

Using the phase information of Zernike moments

(together with the magnitude) in the comparison process

seems a natural way to improve the similarity measure in

terms of robustness against geometric deformation or noise

particularly. However, in that case, the resulting compara-

tor is not invariant anymore to rotation, unless the in-plane

rotation angle between the two patterns is known. Fortu-

nately, in this paper, we show that the moment phases can

also be used to retrieve this rotation angle in an optimal

way. Finding both information (i.e., a robust rotation-

invariant similarity measure together with the optimal

angle of rotation) can be of great interest for many

applications including image registration [11], motion

estimation in video, and, particularly, scene understanding:

indeed, recognizing the objects composing the image and

then extracting their in-plane orientation angles may help to

compute their precise 3D pose and thus to understand

accurately the corresponding 3D environment. A lot of

work has been done for angle/similarity recognition using

keypoint-based local descriptors like SIFT [12]; however,

this kind of tool works only on textured objects and fails to

describe smooth shapes or drawings (i.e., sketch) for

instance. In such hard description/recognition cases, global

shape descriptors like Zernike moments are particularly

robust, that is the reason why they have recently been used

for rotation-invariant 2D/3D object recognition through

sketches [13], [14]. It appears quite relevant to compute the

in-plane rotation together with the similarity distance in

such 2D/3D indexing scenarios, particularly for some

emerging applications like sketch-based modeling [15].

Apart from us, one approach has focused on the

subproblem of the rotation angle estimation using Zernike

moments. The method was brought by Kim and Kim [16]

and it proved to be very robust with respect to noise even

for circular symmetric patterns. Nevertheless, the probabil-

istic model used to recover the rotation angle has no

concrete interpretation and does not correspond to any

geometrical reality, so it does not return any similarity

distance. Besides, this method is based on the hypothesis

that the two patterns are the same (that is, except some noise

and the rotation), which does not always hold in practice.
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In this context, we have developed a new general and

rigorously founded approach for comparing two Zernike

descriptors that takes use of both magnitude and phase

information. Our approach keeps the same complexity as the

standard technique (euclidean distance between magnitude

values) but provides a more accurate rotation-invariant

similarity measure while retrieving the optimal in-plane

rotation angle. Due to the adaptability of Zernike description,

our approach is suited to compare any kinds of images/

patterns: binary, gray level, or sketch images (i.e., drawings).

We also compared our results with two state-of-the-art

approaches for sketch and object recognition: the geometric

hashing [17] and the deformation tolerant generalized Hough

Transform from Anelli et al. [18].

The following section concisely presents Zernike mo-

ments. In Section 3, we lean upon drawbacks of the

conventional approach to build our method. The computa-

tional efficiency is also a constraint because the resulting

algorithm will be used within a matching process; we thus

detail a fast implementation in Section 4. Finally, we present

experimental results in Section 5, and an application to a

real 2D/3D indexing scenario in Section 6.

2 ZERNIKE MOMENTS

Complex Zernike functions constitute a set of orthogonal

basis functions mapped over the unit circle. Zernike

moments of a pattern are constructed by projecting it onto

those functions. They share three main properties:

. The orthogonality. This property ensures that the
contribution of each moment is unique and
independent.

. The rotation invariance. The magnitude of Zernike
moments is independent of any planar rotation of
the pattern around its center of mass.

. The information compaction. Low frequencies of a
pattern are mostly coded into the low-order mo-
ments. As a result, relatively small descriptors are
robust to noise or deformations.

Mathematically, Zernike basis functions are de-
fined with an order p and a repetition q over
D ¼ fðp; qÞj0 � p � 1; jqj � p; jp� qj ¼ eveng:

Zpq ¼
pþ 1

�

Z Z
x2þy2�1

V �pqðx; yÞfðx; yÞ@x@y; ð1Þ

where V �pq denotes the complex conjugate of Vpq, itself
defined as

Vpqð�; �Þ ¼ Rpqð�Þ:eiq� ð2Þ

and

Rpqð�Þ ¼
Xp
k¼jqj

jp�kj even

ð�1Þ
p�k

2 pþk
2 !

p�k
2 !k�q2 !kþq2 !

�k:

From (1) and (2), Zernike moments of a pattern rotated

by an angle � around its origin are given in polar

coordinates as

Z�
pq ¼ Zpqeiq�: ð3Þ

Equation (3) proves the invariance of the magnitude of

Zernike moments to rotation since jZpqeiq�j ¼ jZpqj. Due to

the property of orthogonality, the reconstruction of the

pattern can be simply expressed as the sum of every

Zernike basis functions weighted by the corresponding

moments:

~fðx; yÞ ¼
XX
ðp;qÞ2D

ZpqVpqðx; yÞ: ð4Þ

3 SIMILARITY MEASURE AND ROTATION ANGLE

RETRIEVAL

3.1 The Classical Approach

The usual way of comparing two patterns in the Zernike

space only considers the magnitudes of the moments [4]. In

the remainder of this paper, we will denote the usual

comparator of Zernike descriptors as the classical one.

Formally, this comparator is nothing else than a euclidean

distance between the magnitudes:

d2 ¼
XX
ðp;qÞ2D

jZpqj � jZ0pqj
� �2

: ð5Þ

However, the advantage of losing the phase information

—this allows the invariance to rotation—also brings some

drawbacks: The first consequence is that the classical

comparator is unable to retrieve the rotation angle between

two similar patterns as this information is encoded onto the

moment phases. A corollary is that two symmetrical patterns

will be classified as identical since their moment magnitudes

are the same. Consequently, for an application which has to

differentiate symmetric patterns (e.g., 2D-3D recognition

that aims to retrieve viewpoint of potentially symmetric

3D objects like cars or people), the classical comparator is

inoperative.

More generally, one can assume that this missing

information has a negative influence on the retrieval

efficiency, especially in hard cases like noisy, deformed,

or occluded patterns. Our approach is based on the

assumption that using the phase information may result

in a more robust description. Experiments have confirmed

that this hypothesis is exact whatever the number of

moments and for a wide type of distortions (see Section 5).

Fig. 1 presents a short example of image retrieval from

sketch which illustrates the superiority of the proposed

approach upon the classical one.

3.2 The Proposed Zernike Comparator

In this section, we present a new way of comparing

Zernike moments that takes both magnitude and phase

information into account. Our new comparator provides a

similarity score more robust than the classical one and

retrieves for free an accurate angle of rotation between

the two images. The angle is considered to be optimal

since the euclidean distance between the first image and
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the rotated second one is minimized. Let I and J be two

different images and ðJ � <�Þ be the J image rotated by �.

The euclidean distance between I and ðJ � <�Þ can be

expressed as a function of the rotation angle � as follows:

d2
I;Jð�Þ ¼

XX
x2þy2�1

Iðx; yÞ � ðJ � <�Þðx; yÞ
�� ��2: ð6Þ

Thus, our objective is to minimize this expression so as to

determine the corresponding angle�. Equation (3) has shown

that if the set of moments fZJ
pqjðp; qÞ 2 Dg represents the J

image, then fZJ
pqe

iq�jðp; qÞ 2 Dg represents J � <�. By repla-

cing I and ðJ � <�Þ in (6) by their exact Zernike reconstruction

(4), we obtain (7) (see next page), whereZIpq andZJpq represent

Zernike moments of images I and J , respectively, and

hVpq; V �uvi denotes the scalar product of two Zernike basis

functions over the unit disc. Due to the orthogonality of the

basis, this product is null except for the case where

ðp; qÞ ¼ ðu; vÞ. In that case, it can be simplified into

Vpq; V
�
pq

D E
¼ �

pþ 1
:

At first glance, (7) is not trivial to minimize, but it can be

rewritten into (8) (see the next page, with jZpqj and ½Zpq�,
respectively, the modulus and the argument of Zpq).

Formula (8) points out that the only parameter whose the

distance depends is �, which, in addition, is only present

into the cosine functions. As a consequence, the search for

optimal distance and angle will result in minimizing a sum

of cosines.

Even if, in real applications, only a subset of Zernike

moments is used (as it brings robustness to the description),

the proposed method remains valid: Simply, it can be seen as

a fast way of retrieving the euclidean distance between the

two blurred patterns (that is, their reconstruction from the

subset of moments) using their projection in Zernike space.

The next section focuses on resolving the minimization so as

to insure a low complexity and a fast computing time.

d2
I;Jð�Þ ¼

XX
x2þy2�1

����XX
ðp;qÞ2D

ZI
pq:Vpqðx; yÞ

�
XX
ðp;qÞ2D

ZJ
pqe

iq�:Vpqðx; yÞ
����
2

¼
XX
x2þy2�1

����XX
ðp;qÞ2D

ZIpq � ZJ
pqe

iq�
� �

Vpqðx; yÞ
����
2

¼
XX
x2þy2�1

��XX
ðp;qÞ2D

ðZI
pq � ZJ

pqe
iq�ÞVpqðx; yÞ

�
�XX
ðu;vÞ2D2

�
ZIuv � ZJ

uve
iv�

	
Vuvðx; yÞ

��


¼
XX
x2þy2�1

� XX
ðp;qÞ;ðu;vÞ2D2

ZIpq � ZJ
pqe

iq�
� �

Vpqðx; yÞ

ZI�uv � ZJ�
uv e
�iv�� �

V �uvðx; yÞ



¼
XX
ðp;qÞ;ðu;vÞ2D2

(
ZI
pq � ZJpqeiq�

� �
ZI�
uv � ZJ�uv e�iv�

� �
�XX
x2þy2�1

Vpqðx; yÞV �uvðx; yÞ
�


¼
XX
ðp;qÞ;ðu;vÞ2D2

ZIpq � ZJpqeiq�
� �

ZI�uv � ZJ�
uv e
�iv�� �

:

Vpq; V
�
uv


 �
if ðp; qÞ ¼ ðu; vÞ;

0 else

(

¼
XX
ðp;qÞ2D

ZI
pq � ZJpqeiq�

��� ���2 Vpq; V
�
pq

D E
;

ð7Þ

d2
I;Jð�Þ ¼

XX
ðp;qÞ2D

�

pþ 1
ZIpq � ZJ

pqe
iq�

��� ���2

¼
XX
ðp;qÞ2D

�

pþ 1
ZI
pq

��� ���ei½ZIpq � � ZJpq

��� ���ei q�þ½ZJpq �ð Þ
��� ���2

¼
XX
ðp;qÞ2D

�

pþ 1
ei½Z

I
pq � ZIpq

��� ���� ZJ
pq

��� ���eiðq�þ½ZJpq ��½ZIpq �Þ� ���� ���2

¼
XX
ðp;qÞ2D

�

pþ 1
ei½Z

I
pq �

��� ���2: ZIpq��� ���� ZJ
pq

��� ���ei q�þ½ZJpq ��½ZIpq �ð Þ
��� ���2

¼
XX
ðp;qÞ2D

�

pþ 1
ZI
pq

��� ���� ZJpq

��� ���cos q�þ ½ZJ
pq� � ½ZI

pq�
� �� ����

�i ZJpq

��� ���sin q�þ ½ZJ
pq� � ½ZI

pq�
� �� ����2

¼
XX
ðp;qÞ2D

�

pþ 1
ZIpq

��� ���� ZJpq

��� ���cos q�þ ½ZJ
pq� � ½ZI

pq�
� �� �2

�

þ ZJ
pq

��� ���sin q�þ ½ZJ
pq� � ½ZIpq�

� �� �2
�

¼
XX
ðp;qÞ2D

�

pþ 1

"
ZI
pq

��� ���2þ ZJ
pq

��� ���2�2 ZIpqZ
J
pq

��� ���:
cos q�þ ½ZJpq� � ½ZIpq�
� �#

:

ð8Þ
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Fig. 1. The four best retrievals for the drawing of a rooster (a) from a

database of 200 binary logos. Results are ordered by similarity measure

(a distance of zero means a complete similarity) for both comparators.



4 EFFICIENT MINIMUM SEARCH

In this section, we describe how to efficiently extract the

global minimum of (8) by restricting the search using

Nyquist-Shannon sampling theorem. Assuming that the

Zernike moments of each image are known until the

Nth order, the sum initially comprises OðN2Þ cosine terms.

Nonetheless, the sum can be simplified by removing the

constant terms and by aggregating the cosine terms that

own the same frequency:

A1 cosðq�þB1Þ þA2 cosðq�þB2Þ
¼ jCjcos q�þ ½C�ð Þ;

ð9Þ

where C is a complex that is worth A1e
iB1 þA2e

iB2 . Then,

(8) can be equivalently expressed as a sum of N cosines:

fNð�Þ ¼
XN
q¼1

Aq cosðq�þBqÞ; ð10Þ

with Aq 2 IRþ and Bq 2 ½��; ��.

4.1 Restricting the Search of a Global Minimum

One can notice that fNð�Þ is a 2�-periodic function. Usually,

the general technique for finding the minimum of a periodic

function is a gradient descent. Indeed, fNð�Þ’s first and

second derivatives are easy to compute. However, such

functions generally have many local minima, whereas our

approach requires to find the global one. One expensive

solution is then to find every local minima and maxima

with the gradient descent method by following the function

from � ¼ 0 to 2�.
However, fNð�Þ owns a discrete Fourier spectrum

bounded by a maximal frequency fMAX
N ¼ N=2�. Hence,

fNð�Þ has at most N local maxima and N local minima in

½0; 2��. Moreover, the Nyquist-Shannon sampling theorem

teaches us that the function cannot change substantially

between two consecutive sampling points taken at the

Nyquist frequency F ¼ 1=T ¼ N=�. The minimal distance

between two consecutive minima is thus bounded by �=N .

The initial starting points for finding every possible minima

with a gradient descent can thus be equally scattered in

2N points. Moreover, by cutting fN into 4N intervals, we

ensure that only one minimum or one maximum is present

in each interval (see Fig. 2).

4.2 Optimized Minima Retrieval

Our approach for optimizing the gradient descent takes

advantage of the previously formulated properties. fN is

sampled by 4N points equally spread between ½0; 2��:
fxn ¼ n�=2Nj0 � n < 4Ng. We compute fN ’s differential,

denoted as f 0N , for each of those points. Section 4.1 ensures

that if and only if a minimum is present between two

consecutive points ½xn; xnþ1�, then f 0NðxnÞ is negative and

f 0Nðxnþ1Þ is positive (see Fig. 2). Moreover, those differential

values enable to approximate the abscissa of the local

minimum. Indeed, by approximating fN between ½xn; xnþ1�
as a second-degree polynomial, then the minimum abscissa

can be evaluated at

xminimum ¼
xnþ1f

0
NðxnÞ � xnf 0Nðxnþ1Þ

f 0NðxnÞ � f 0Nðxnþ1Þ

¼xn þ
�

2N

f 0NðxnÞ
f 0NðxnÞ � f 0Nðxnþ1Þ

:

ð11Þ

For our application, the gradient descent algorithm does
not need to be iterated to reach a high precision since this
simple approximation (represented as crosses in Fig. 2) is
precise enough for our purpose (cf. experimental results in
Section 5.1). Finally, the computational complexity of our
approach for the distance minimization using the approx-
imation is OðN2Þ. Our approach has then the same
computational complexity than the classical Zernike com-
parator (5).

5 EXPERIMENTAL RESULTS

This section describes several experiments that illustrate

. the efficiency of our minimum search (Section 5.1);

. a comparison of our approach with the classical one
in terms of similarity accuracy and retrieval perfor-
mance (Section 5.2.2);

. a comparison of our approach with two state-of-the-
art methods: geometric hashing and generalized
Hough Transform (Section 5.2.3); and

. a comparison of our approach with the state-of-the-
art angle estimation algorithm (Section 5.3).

5.1 Efficient Minimum Search

In order to demonstrate the efficiency of our minimum search
algorithm (see Section 4), a set of 30,000 random functions
fNð�Þ (see (10)) has been created. For each of three different
bandwidths N ¼ f6; 12; 24g, there are 10,000 functions with
random Ap and Bp. First, we have computed for each
function the exact solution � and the approximation ~�
using, respectively, an exhaustive gradient descent and the
proposed optimization. Second, we have compared both
results and distinguished two types of situation:
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Fig. 2. A random function f3 cut into 4N ¼ 12 intervals. Each interval
contains at most one local minimum. When a minimum exists in the
interval, the left derivative is negative and the right derivative is positive.
For each minimum, a black cross figures the minimum position
approximated with second-order polynomial.



1. The global minimum is correctly found by our
approach: � � ~�.

2. Another minimum is found.

The second case derives from situations where the function
admits more than one solution: In terms of Zernike
description, when there are s� 1 secondary minima as
small as the global one, that concretely means that the
pattern is s-fold symmetric. For instance, a circular
symmetric (two-fold symmetric) pattern can be rotated in
an equivalent way by two different angles f�; �þ 180�g. In
reality, what truly determines the rightness of the retrieved
angle is the vertical error on the depth of the approximated
minimum.

Table 1 details the root-mean-square (RMS) errors on the
angle ~� and on the depth of the minimum fNð ~�Þ ¼ ~fN for
both situations. The proportion of occurrences of the second
case (the retrieved minimum is not the global one) is
comprised below 0.15 percent. In the first case, the RMS
errors of the angle and the minimum depth do not run over
0:81� and 0.2 percent, respectively, even for N ¼ 6 (when
the approximation is coarser). In the second case, the RMS
error of the angle is high because a different minimum is
retrieved. However, the depth of this minimum is similar to
that of the global one since the maximum RMS error of ~fN is
comprised below 1 percent in the worst case. That means
that the minimum found may not be the global one but is
really close in terms of depth.

As a conclusion, our minimum search seems precise
enough (less than 1� of error for most of the cases) even for
the case N ¼ 6 for which the approximation is coarser; this
corresponds to 16 moments. However, the appropriate
number of moment depends on the application since it will
also influence the robustness of the similarity measure.

5.2 Comparative Study of Similarity Accuracy

We have conducted experiments to test the efficiency of the
proposed comparator with respect to the state of the art, in
terms of similarity accuracy and robustness. To that aim, we
have gathered 502 logo images (about 25 percent are binary
images and others are gray-level images). Some of them are
shown in Fig. 3. These images were cropped and resized in
order to fit the size of a square of 100 � 100 pixels. Then,
synthetic distorted images were generated for each of these
original patterns. What is denoted as distortions include

additive uniform noise, nonaffine geometric deformation,1

occlusion, and translation. Examples of such distorted
patterns at various levels are displayed in Fig. 4. These four
types of distortion, applied at 19 different degrees, have been
used to create four corresponding databases. In each
database, the set of one original pattern and its 19 gradually
distorted versions constitutes one class. Hence, one can see
each test database as a collection of 10,040 different patterns
divided into 502 classes of 20 elements.

5.2.1 Databases Construction

For each test database, the distortion is applied gradually
among 19 levels. The four types of distortion are as follows:

1. An additive uniform noise added to the patterns
such that the SNR varies from 30 dB (level 0) to
1.5 dB (level 19). The resulting values are bounded in
[0, 255].

2. A nonaffine smooth deformation (i.e., a geometric
deformation) whose amplitude varies locally from 0
(level 0) to 25 pixels (level 19) at most. This
deformation is generated by two 100 � 100 displace-
ment maps Dx and Dy that are initialized to 0,
except for eight random cells where we create
vectors of the given amplitude and random direc-
tions. These eight deformation vectors are then
diffused until convergence (principle of the heat
diffusion). The deformation function consists of

DeformedPatternðx; yÞ ¼ PatternðxþDxðx; yÞ; y
þDyðx; yÞÞ:

We used bilinear interpolation for noninteger values
of displacement.

3. A partial occlusion: We choose another random
pattern and we paste it on the original one such that
the occluded part varies from 0 percent (level 0) to
47.5 percent (level 19). The white parts of the pasted
pattern are set transparent.

REVAUD ET AL.: IMPROVING ZERNIKE MOMENTS COMPARISON FOR OPTIMAL SIMILARITY AND ROTATION ANGLE RETRIEVAL 5

1. The case of affine deformation has already been investigated in [19].

TABLE 1
The Average RMS Errors Corresponding

to the Approximation of the Minimum Position for Various N

Fig. 3. Some of the 502 patterns used in the experiments.



4. A translation. Its direction is random and its
amplitude is comprised between 0 (level 0) and
7 pixels (level 19).

5.2.2 Comparison with the Classical Zernike

Comparator

In order to conduct an exhaustive evaluation of our

approach with respect to the classical way of comparing

two Zernike descriptors, we have considered the similarity

measure evaluation as a classification problem like in [4].

We have made two types of measurement using both

comparators on the four databases:

. The recall-precision graph considering the pre-
viously defined classes. This measure accounts for
the classification capability of our comparator and
allows its complete evaluation for indexing issues.

. The error rate on first retrieval: Knowing a distorted
pattern, we try to retrieve the original one. Contrary
to the recall-precision measurement, this one corre-
sponds to a recognition scenario where only the first
retrieval is important.

The Zernike moments of the patterns are extracted from

the center of mass of the patterns in the case of noise and

deformation, and from the center of the pictures for the cases

of occlusion and translation since it has no sense to compute a

center of mass when the pattern is occluded. All experiments

were performed for three different numbers of moments: 25

(up to 8th order), 49 (12th order), and 81 (16th order), which

are representative of the numbers of Zernike moments used

in the literature. In all cases, results were about the same so we

decided to only illustrate the 12th order case.
Recall versus precision: A good way of measuring the

efficiency of our approach in a global indexing framework

is to evaluate the recall versus precision of both compara-

tors (see Fig. 5). The experiment consists of comparing a
pattern P of the database to others, then ordering the results
by similarity, and, finally, counting the number A of
relevant patterns (i.e., from the same class than P ) in the
first N retrieved patterns. The precision is then equal to
A=N and the recall to A=Amax, with Amax the size of the
corresponding class. The results (averaged over all patterns
from all the classes of the corresponding database) are
illustrated in Fig. 5 for each database (noise, deformation,
occlusion, and translation); the precision is presented for
each value of recall. Practically, the higher is the curve, the
better is the similarity measure. The first tier (i.e., recall
value for N ¼ Amax) and second tier (i.e., recall value for
N ¼ 2Amax) measures have also been computed for each
graph (see Table 2).

As shown by the curves, the proposed comparator
performs always better than the classical one. The gain is
particularly high for additive noise and deformation, where
theproposed method performsupto, respectively,6.8 percent
and 5.6 percent better in terms of the first tier measure.

Recognition performances: We have also conducted
recognition experiments where the objective, starting from
each of the 10,040 images of each database, is to retrieve the
correct corresponding original pattern among the 502 origi-
nal ones. Fig. 6 displays the percentage of recognition errors
(an erroneous pattern is returned in first position) for the
classical and proposed comparator as a function of the
distortion level. Globally, the proposed comparator is
making about twice less errors than the classical one for
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Fig. 4. Illustration of the four types of distortion. From left to right, the
four groups of distortions: additive noise, deformation, occlusion, and
translation. In each group, the 6th, 13th, and 19th distortion levels are
presented. The images are inverted (black becomes white) for
visualization purposes.

Fig. 5. Recall-precision curves for 49 moments (i.e., up to 12th order) on

the four databases: additive random noise, nonaffine deformation,

occlusion, and translation. Each database contains 10,040 patterns

divided into 502 classes of one original and 19 distorted versions.

TABLE 2
Comparison of the First Tier and Second Tier Measures for Each Database



medium distortions, except for the case of occlusion where
our method makes about 15 percent less errors only.

In conclusion, the use of both magnitude and phase
during comparison much improves the efficiency of the
descriptor in terms of classification and recognition. Indeed,
recall-precision measures have shown that the proposed
method better classifies the set of patterns than the classical
comparator in spite of huge distortions. Besides, there were
about twice as few recognition errors in our second
experiment than with the classical method for medium
distortion strengths.

5.2.3 Comparison with Geometric Hashing and

Generalized Hough Transform

We have also compared our approach with two state-of-the-
art methods for sketch and object recognition: the geometric
hashing [17] and the recent deformation tolerant general-
ized Hough Transform from Anelli et al. [18]. The geometric
hashing is a well-known indexing technique that is used to
quickly find matches between two sets of features (e.g.,
points). On the contrary, the generalized Hough transform
is an object identification technique suitable for matching a
shape contour model with unsegmented images: Edges are
extracted in the image and each edge point casts a vote in
the space of the parameters (x and y position of the object to
find). Anelli et al. have added two extra steps after the
voting phase: 1) The votes are clustered in order to deal
with small local deformations and then 2) the shape
segmentation is further verified by back-projecting the
image segments on the shape model and computing the
model coverage score:

. For the geometric hashing, we need feature points;
hence, we have extracted Harris [20] and DoG
keypoints [21], [12] in each pattern. An example of
pattern with its keypoints is presented in Fig. 7. The
descriptor for a given pattern consists of a list of its
15 strongest keypoints in terms of response value.
Then, we have trained a hash table for each type of
distortion. In the retrieval step, we begin by extracting

the 25 strongest keypoints of the pattern to identify
(we take more than 15 because the presence of noise
can add new keypoints), and we successively project
them on the hash tables of the learned patterns for
different random basis (50 times). The best scores are
stored for each learned pattern and it constitutes at the
end the final matching scores. We deliberately chose
small values for the number of keypoints and
iterations so that a comparison is tractable in terms
of time (see Table 3).

. In the case of the deformation tolerant GHT (DT-
GHT) from Anelli et al. [18], each pattern was first
indexed (i.e., canny edges extraction, segmentation
of the edges, building of an R-table). Then, to
compare two patterns, we simply search the first
one (the model) into the second one. This returns a
matching score between 0 and 1 (1 means perfect
match).

In order to properly compare our Zernike comparator with

these methods, we have evaluated the recall versus precision
scores. However, the comparison steps for geometric hashing
and Hough transform are both quite slow so it was not
possible to process the 10;0002 comparisons required for the

recall-precision measures. As a consequence, we deliberately
sampled each database into five deformation levels (3rd, 7th,
11th, 15th, and 19th)� 100 patterns instead of 502, with each

type of pattern (gray level/black and white) equally sampled.
Each of the four databases thus contains 500 different
elements.

Timing analysis. Table 3 gives a comparison of the
similarity calculation processing time for each method.

Even if our method is slower than the classical euclidean
comparison, its complexity is the same ðOðorder2ÞÞ and
both processing times are very low (less than 60 ms for

1,000 comparisons for our approach). However, the DT-
GHT and the geometric hashing are several orders of
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Fig. 6. The proportion of recognition errors when trying to retrieve the

original pattern (among the 502 ones) from a distorted version using the

classical comparator and the proposed comparator. The percentage of

errors is highlighted for each method at the 15th distortion level.

Fig. 7. The 15 strongest keypoints of a pattern detected by the Harris

corner detector (blue crosses) and the extrema in scale-space of DoG

(red circles).

TABLE 3
Average Processing Times for 1,000 Comparisons on a

2 GHz Computer for Similarity Calculation with Each Method



magnitude slower (37 and 27 seconds, respectively, for
1,000 comparisons). With a number of comparisons of
5002 per database for the recall-precision experiment, it still
required about 10 hours to process the four databases for
the DT-GHT or the geometric hashing against less than
1 minute for Zernike experiments.

Recall versus precision. Fig. 8 and Table 4 illustrate the
results.

In the case of translation, the geometric hashing and DT-
GHT approaches perform uppermost due to their invar-
iance in position (however, the geometric hashing is not so
good because of the interpolation noise), but it can be
noticed that the proposed Zernike method does not perform
so bad (almost 80 percent on the first tier measure). For
every other distortions, our approach performs better than
DT-GHT and geometric hashing in terms of the first and
second tier measures; in the case of noise, the proposed
method largely works better since the noise is localized in
the high frequencies and, hence, has a small effect on the
low-order Zernike moments. The geometric hashing
achieves low performance in all cases except for translation
since the keypoint response values and locations are
strongly disturbed when the images are distorted.

5.3 Rotation Angle Retrieval

We have conducted experiments to demonstrate the
accuracy of our approach in the specific case of rotation
angle estimation between similar but distorted patterns. We
have performed the experiment on the previous set of
502 logo images. The images were rotated by random
angles. Then, various distortions (the same as in Section 5.2)
were applied to each rotated pattern. The distortion levels,
however, are twice as small as in the previous section;
otherwise, images would have been too much different to
be put in correspondence by a rotation. Then, we have
estimated the rotation angle with respect to the original
pattern using the proposed algorithm and the most robust
and acknowledged method in the state of the art: the Kim
and Kim robust estimator [16]. The total number of test
images is thus 200,800: 502 (the number of original patterns)
� 10 (the number of rotations) � 10 (the number of
distortion levels) � 4 (the number of types of distortion).

To compare to the estimator from Kim and Kim [16], we
have used the same number of Zernike moments: 25 mo-
ments were computed up to 8th order. For each of the four
databases (noise, deformation, occlusion, and translation),
we have computed the RMS error of the retrieved angles
using each algorithm; results are presented in Table 5. The
RMS error using our method is systematically lower than
for the estimator from Kim and Kim, for all the types of
distortion. In particular, in the case of additive noise and
deformation, the proposed method provides results whose
accuracy is about two times better than with the estimator
from Kim and Kim. The occlusion and translation cases
yield an important RMS error: In the first case, this comes
from the fact that sometimes some crucial parts of the
pattern in terms of rotation evidences are occluded; in the
second case, this is caused by the displacement of the
rotation center.

6 2D TO 3D OBJECT RECOGNITION FROM

HAND-DRAWN SKETCH

The proposed algorithm has been tested within a real
industrial application: the automatic transcription of
sketched storyboards into reconstructed 3D scenes. An
example of such a scenario is illustrated in Fig. 9: A 3D scene
has been generated from a hand-drawn storyboard.
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Fig. 8. Recall-precision curves on the four reduced databases for the

following methods: proposed Zernike, DT-GHT, geometric hashing.

Each database contains 500 patterns divided into 100 classes of one

original and four distorted versions.

TABLE 5
The Average RMS Error of Rotation Angle Using the Estimator from Kim and Kim [16] and the Proposed Method

TABLE 4
Comparison of the First Tier and Second Tier Measures for Each Comparator and for Each Distortion



Formally, an object database contains various 3D models (as
polygonal meshes); on the other side, the cartoonist draws a
2D storyboard by digitally sketching the objects of the scene
he has in mind. Then, the objective is to recognize each 3D
model from the corresponding piece of sketch, along with
its 3D viewing angle, its scale and its rotation angle in the
drawing plane, so as to automatically and correctly place it
in the 3D scene. To obtain this result, an important number
of views of each 3D model is indexed using Zernike
moments like in [13] (about 50 views per object). We do not
compute Zernike moments on the whole view, but on a
bounding circle containing at least 70 percent of the pattern.
We limit the indexed surface for the following reasons:

1. We try to reduce the surface potentially disturbed by
the background during retrieval.

2. Such an approach may bring some kind of robust-
ness regarding small occlusions. A complete robust-
ness to occlusion could be reached if each model
view was described by several Zernike circles of
various scales and positions; however, this develop-
ment is out of the scope of this paper.

Once we have described all the 3D model views, we search
them in the sketched storyboard with a two-pass process to
speed up the recognition. The first pass aims at finding a set
of raw correspondences and the second pass refines this set.
Without loss of generality, we will now describe the search
of one given model into the sketch: In the first pass, we scan
the whole sketched storyboard with a circular window at
different scales and positions. For each position, we
describe the window using Zernike moments and we store
the model view which achieves the smallest distance with
the local descriptor according to our comparator. We use a
standard nonmaxima suppression technique in the result-
ing scale-space of distances and we apply a first threshold
to the obtained maxima: we obtain a set of potential matches.
This first search is processed for a reduced set of positions
and scales in order to reduce the processing time: eight
scales, starting from 400 � 400 pixels until 1,400 � 1,400
pixels, and for each scale the window slides over the image

with a step width of windowSize=15 (since that corresponds

to a translation whose amplitude is correctly retrieved in

Section 5). In our experiment, the storyboard dimension is

3,350 � 2,260 and this greedy recognition takes about

2 minutes on a 2-GHz machine. The computation of Zernike

moments is made faster by precomputing a set of 100 � 100

Zernike filters and by applying a fast smoothing approach

along scales (like pyramids of Gaussian in [12]) to quickly

sample each 100 � 100 window. As we saw in Section 5.2,

Zernike distance is not so invariant to translation, so we

refine the search during a second pass: For each potential

match, we search locally around its position in the scale-

space (the step widths are decreased both in position and

scale). This allows us to find the optimal position for each

potential match and thus to make the difference between

true and false positive after a second thresholding. This

second pass takes about 30 seconds per potential match

(there are typically four to six potential matches per

storyboard image).
Moreover, we assume that the 3D models are approxi-

mately vertically positioned on a horizontal flat ground,

which means that their 3D vertical axes are probably also

vertical in the picture. Since our method provides not only

the similarity but also the rotation angle, we are able to

eliminate from the first pass further false positives which

could not be eliminated by the classical Zernike comparator

alone. Recognition results are presented in Fig. 10. Note that

all the bushes are not detected: This is caused by the fact

that sometimes their sketch deviates too much from their

3D model. Even if there are slight errors in the placement

estimation, the recognition results are still acceptable.
For such an application, the estimations are significantly

better and more stable with the proposed comparator than

with the classical comparator coupled with the in-plane

rotation estimator from [16], which is less reliable when it

has to estimate a rotation angle between two different

patterns (see Section 5.3).
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Fig. 9. Example of 2D/3D object recognition application: reconstruction
of a 3D scene from a hand-drawn 2D storyboard associated with a 3D
model database. On the top, the recognized 3D model (on the right) is
the best retrieved result between the drawing (on the left) and the whole
set of indexed views, using the proposed Zernike comparator. By doing
so, the 3D pose and the in-plane rotation angle are retrieved in the same
time and, thereafter, allows the 3D reconstruction.

Fig. 10. Recognition results for the circus tent, the trailer, and the bushes

pasted on the sketch image after edge extraction. No human

intervention was needed to obtain this result.



7 SUMMARY AND DISCUSSION

We have presented an efficient comparator of Zernike

descriptors whose novelty is to take advantage of the phase

information in the comparison process while still preser-

ving the invariance to rotation. The provided similarity

measure is more robust to distortions (especially geome-

trical deformation and noise). The recognition errors are

also about twice less important for medium distortions than

with the classical comparator (i.e., the euclidean distance

between Zernike magnitudes). Moreover, our approach has

the same Oðorder2Þ complexity as the classical one. Finally,

it provides, for free, an estimation of the rotation angle that

outperforms the robust estimator from Kim and Kim [16].

To conclude, this novel theoretical contribution to the

Zernike framework can apply to any application already

using Zernike moments. It is worth noting that it can also

apply to the pseudo-Zernike moments [22] as both theories

share almost the same background.
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