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Chapitre 1

Introduction

1.1 Notion d’algorithme

L’algorithmique est une notion ancienne (apparue bien avant les premiers ordinateurs) qui peut se définir
comme

“une méthode de résolution d’un probléme sous la forme d’une suite d’opérations élémentaires
obéissant a un enchainement déterminé.”

Considérons par exemple le probléme suivant :

Plusieurs dossiers, classés par ordre alphabétique sur le nom, sont empilés sur une table. 11
s’agit de déterminer si une personne de nom X a bien un dossier & son nom dans la pile.

Avant de chercher & résoudre ce probléme, on commence par le spécifier plus précisément. Pour cela, on

identifie :

— les données du probléme (ce qu’on a en entrée avant de commencer la résolution) ;

— les résultats (ce qu’on fournit en sortie a la fin de la résolution) ;

— les éventuelles préconditions sur les données (des informations sur la nature des données en entrée) ;

— les postconditions (une relation définissant ce qu’on doit fournir en sortie en fonction de ce qu’on a en
entrée).

Pour notre probléme de recherche de dossier, on peut définir la spécification suivante :

Algorithme : Recherche linéaire
Entrées :
Une pile de dossiers P
Un nom X
Sorties :
Une réponse R
Précondition :
Les dossiers de P sont empilés par ordre alphabétique sur le nom, le dossier comportant le
plus petit nom se trouvant au sommet de la pile.
Postcondition :
Si P contient un dossier au nom de X alors R doit étre égal & oui sinon R doit étre égal & non

On peut maintenant chercher une méthode pour résoudre ce probléme. Une premiére solution consiste
a regarder successivement chaque dossier de la pile de fagon linéaire, a partir du dossier se trouvant
au sommet de la pile, jusqu’d trouver soit le dossier ayant pour nom X, soit un dossier ayant un nom
supérieur & X (auquel cas X n’a pas de dossier). L’algorithme correspondant peut s’exprimer de la fagon
suivante :
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début
tant que la pile de dossiers P n’est pas vide
et le nom du dossier au sommet de P est inférieur & X faire
Prendre le dossier au sommet de P
Le poser & coté de P
fintq
si P est vide ou le nom du dossier au sommet de P est différent de X alors
| R« non
sinon
| R« oui
finsi

fin

La nature des opérations élémentaires utilisées pour résoudre le probléme dépend des capacités de la
personne (ou machine) qui va exécuter I’algorithme.

Ici, on suppose que l'algorithme s’adresse & une personne capable d’effectuer les opérations suivantes :
— comparer (selon l'ordre alphabétique) le nom du dossier au sommet de la pile avec X,

— prendre le dossier au sommet de la pile,

— poser un dossier & coté de la pile,

— regarder si la pile de dossiers est vide.

Cet algorithme introduit 3 types d’enchainement d’opérations.

1. L’enchainement en séquence consiste a effectuer les opérations en séquence les unes a la suite des
autres. Par exemple, les lignes 4 et 5 s’enchainent en séquence et, par conséquent, l’opération
élémentaire de la ligne 5 n’est commencée qu’une fois que celle de la ligne 4 est terminée.

2. L’enchainement alternatif consiste a effectuer alternativement soit une premiére suite d’opérations,
soit une autre, en fonction d’une condition. Par exemple, en fonction de la condition de la ligne 7,
on effectuera alternativement ’opération élémentaire de la ligne 8, ou celle de la ligne 10.

3. L’enchainement répétitif consiste a effectuer plusieurs fois une méme suite d’opérations élémentaires
tant qu’une condition donnée est vérifiée. Par exemple, les opérations des lignes 4 et 5 sont répétées
tant que les deux conditions des lignes 2 et 3 sont vérifiées.

Notons enfin que cet algorithme termine, c’est & dire qu’il s’exécute en un temps fini. En effet, si la pile
contient n dossiers, les opérations des lignes 4 et 5 seront exécutées au plus n fois : & chaque fois, un
dossier est enlevé de la pile; au bout de n fois, la pile est vide et la condition de la ligne 1 n’est plus
vérifiée.

L’algorithme de recherche séquentielle permet effectivement de résoudre notre probléme. Il est cependant
relativement inefficace : si la pile contient 1000 dossiers, il faudra en moyenne regarder le nom de 500
dossiers avant de pouvoir résoudre le probléme, et dans le pire des cas, il faudra en regarder 1000.

De fait, une personne sensée se trouvant face a une pile de 1000 dossiers triés par ordre alphabétique ne
regardera pas chaque dossier linéairement, du premier au dernier, mais partagera la pile de dossiers en 2
piles de tailles comparables et, en fonction du nom du dossier au sommet de la deuxiéme pile, continuera sa
recherche soit dans la premiére pile, soit dans la seconde. Elle répétera ainsi ce processus “dichotomique”
jusqu’a trouver le bon dossier ou bien jusqu’a ce que la pile soit vide. L’algorithme correspondant peut
étre formulé de la facon suivante :
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début
tant que la pile de dossiers P n’est pas vide

et le nom du dossier au sommet de P est différent de X faire
Couper la pile de dossiers P en 2 parties
(On appellera Psup la moitié supérieure, et Pinf la moitié inférieure)
si le nom du dossier au sommet de Pinf = X alors
| Ne garder que le premier dossier de Pinf dans P
sinon si le nom du dossier au sommet de Pinf > X alors
| Enlever de P tous les dossiers de Pinf
sinon
Enlever de P le premier dossier de Pinf
Enlever de P tous les dossiers de Psup
finsi
fintq
si P est vide alors
| R« non
sinon
| R« oui
finsi

fin

Ce deuxiéme algorithme, plus compliqué dans son énoncé que le premier est néanmoins nettement plus
efficace. En effet, si la pile contient 1000 dossiers, on la séparera en 2 piles de 500 dossiers puis une des
2 piles de 500 dossiers sera séparée en 2 piles de 255 dossiers, ... de telle sorte qu’en répétant (au plus)
10 fois ce processus dichotomique, soit on aura trouvé le dossier, soit la pile sera vide. Ainsi, alors que
I’algorithme de recherche séquentiel demandera en moyenne de consulter 500 dossiers, celui de recherche
dichotomique ne demandera que 10 consultations (dans le pire des cas).

Ce premier exemple permet d’introduire un point fondamental de ’algorithmique, & savoir la complezité.
En effet, étant donné un méme probléme, il existe généralement plusieurs algorithmes le résolvant. Ces
algorithmes seront notamment comparés sur leur complexité en temps, c’est a dire sur le nombre d’opé-
rations élémentaires qui devront étre effectuées pour résoudre un méme probléme. Cette complexité
est calculée “approximativement” dans le sens ot I’on donnera simplement un ordre de grandeur : sur
Pexemple précédent on dira que ’algorithme de recherche linéaire est d’ordre linéaire, noté O(n), ce qui
signifie que si ’on a n dossiers il faudra faire de ’ordre de n opérations, tandis que ’algorithme de re-
cherche dichotomique est d’ordre logarithmique, noté O(loga(n)), ce qui signifie que si 'on a n dossiers
il faudra faire de l'ordre de logs(n) opérations.

1.2 Introduction a la structure d’un ordinateur

Dans le contexte de ce cours, un algorithme est conc¢u pour étre exécuté par un ordinateur. La notion

d’opération élémentaire dépend donc des capacités d’un ordinateur. De fagon trés schématique, un ordi-

nateur est composé des éléments suivants :

— une mémoire, chargée de conserver 'information ;
La mémoire est composée d’une suite d’informations élémentaires appelées bit. Un bit peut prendre
deux valeurs (généralement symbolisées par 0 et 1). Une suite de 8 bits forme un octet. Chaque octet
a une adresse dans la mémoire permettant d’y accéder.

— une unité centrale (CPU), chargée de traiter I'information ;
L’unité centrale est capable d’exécuter un nombre fini (et trés limité) d’instructions simples. L’ensemble
des instructions que 'unité centrale est capable d’exécuter forme le langage machine.

— plusieurs unités d’entrée/sortie, chargées d’échanger des informations avec ’environnement extérieur
(le clavier, la souris, I’écran, ...);

— un bus, chargé de transférer I'information entre la mémoire, les unités d’entrée/sortie et 'unité centrale.
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1.3 Démarche pour la résolution d’un probléme

Pour résoudre un probléme & I'aide d’un ordinateur, il est assez vite apparu indispensable d’ajouter des
niveaux de description et d’abstraction entre ’homme, qui pose le probléme, et la machine, qui est chargée
de le résoudre. En effet, ’homme définit le probléme en langue naturelle (par exemple en francais), de
fagon informelle et souvent ambigiie et incompléte. A Pautre extrémité du processus, un ordinateur n’est
capable d’exécuter que des instructions de trés bas niveau, ot 'information est codée sous la forme d’une
suite de 0 et de 1.

Du probléme a la spécification formelle

A partir de la description informelle, ambigiie et incompléte du probléme, [’analyste élabore une spéci-

fication formelle, qui décrit de fagon non ambigiie et (si possible) compléte et correcte ce que doit faire

le programme, c’est a dire le “quoi”. Cette description est faite indépendemment d’une solution. Il s’agit

notamment de préciser

— les paramétres en entrée, c’est & dire la nature des questions ou données du probléme,

— les paramétres en sortie, c’est & dire la nature des solutions ou résultats au probléme,

— les préconditions, c’est & dire les conditions portant sur les paramétres en entrée sous lesquelles le
probléme est défini,

— larelation entre les paramétres en entrée et les paramétres en sortie, c’est & dire la valeur des paramétres
en sortie en fonction de celle des paramétres en entrée,

— les contraintes & respecter pour la résolution du probléme (notamment les contraintes de ressources).

De la spécification formelle & I’algorithme

A partir de la spécification formelle, l’analyste /programmeur élabore un algorithme, qui spécifie le “com-
ment”, c’est & dire ’enchainement d’opérations élémentaires & effectuer pour résoudre le probléme.

Un algorithme est généralement élaboré selon une démarche descendante, qui consiste & décomposer le
probléme en sous-problémes, chaque sous-probléme devant étre de nouveau clairement spécifié puis résolu.
Cette décomposition permet d’aborder le probléme progressivement en créant des niveaux de description
de plus en plus détaillés. Chacun des sous-problémes sera d’autant plus compréhensible que dans sa
description il n’y a que quelques idées simples. En général, la taille d’un algorithme ne doit pas dépasser
une vingtaine de lignes.

Vérification de l’algorithme

Une fois congu, un algorithme doit étre validé. Il s’agit de vérifier que I’algorithme répond effectivement

au probléme spécifié, et plus particuliérement qu’il est

— correct, c’est-a-dire que les valeurs des paramétres de sortie calculées par ’algorithme sont effectivement
celles que 'on souhaitait calculer;

— complet, c’est-a-dire que les bonnes valeurs des paramétres de sortie sont trouvées pour toutes les
valeurs possibles des paramétres en entrée (dans les limites spécifiées par les préconditions) ;

— fini, c’est-a-dire que le nombre d’opérations élémentaires a effectuer pour résoudre le probléme est fini,
autrement dit, que lalgorithme ne “boucle” pas indéfiniment sur une série d’instructions.

Cette vérification peut étre effectuée de fagcon théorique par une preuve. Elle doit généralement étre

validée expérimentalement par des tests, c’est & dire une simulation de ’exécution de l'algorithme sur

un certain nombre de données. Ces données utilisées pour tester la solution sont appelées jeux d’essai.

Elles doivent étre les plus complétes possibles, de fagon a tester ’algorithme sur tous les cas possibles

d’utilisation.

Il s’agit par ailleurs d’évaluer la complexité en temps de I'algorithme, c’est & dire un ordre de grandeur
du nombre d’opérations élémentaires qui devront étre effectuées en fonction des valeurs des parameétres
en entrée. Enfin, il faut également évaluer la complezité en espace de 'algorithme, c’est & dire la taille
mémoire nécessaire a ’exécution de ’algorithme.
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De P’algorithme au programme

L’algorithme est ensuite codé par le programmeur dans un langage de programmation. On distingue
usuellement 3 styles de langages de programmation, correspondant & 3 paradigmes de programmation :
— les langages impératifs (par exemple C, Ada, Cobol, Fortran, Pascal), ou les opérations élémentaires
sont des affectations et appels de procédures;
— les langages fonctionnels (par exemple Lisp, Scheme, Haskell, CAML), ou les opérations élémentaires
sont des appels de fonctions;
— les langages logiques (par exemple Prolog), ol les opérations élémentaires sont des affirmations logiques.
Dans ces 3 catégories de langages de programmation, les programmes sont essentiellement structurés en
termes de décomposition fonctionnelle et de traitements. Il existe un quatriéme paradigme de program-
mation, orthogonal aux 3 premiers qui consiste & structurer les programmes en termes de données : la
programmation orientée objet. Ainsi, il existe des langages impératifs orientés objet (par exemple C++,
Java, Eiffel), des langages fonctionnels orientés objet (par exemple Clos, Smalltalk, Loops) et des langages
logiques orientés objet (par exemple L&O, Login, Life).

Les opérations élémentaires utilisées pour coder un algorithme dépendent du langage de programmation
choisi. Néanmoins, tous ces langages permettent de coder facilement les différents types d’enchainements
(en séquence, alternatif et répétitif) apparaissant dans un algorithme. La structuration et la gestion des
données varie aussi d’un langage & 'autre. Il est alors nécessaire d’adapter en conséquence l’algorithme
au moment du codage.

Du programme au code exécutable

Le code écrit dans un langage de programmation, appelé le code source, est ensuite traduit par un
compilateur ou un interpréteur en un code en langage machine, appelé le code objet et exécutable par
lordinateur. Un compilateur traduit la totalité du programme source pour générer un code objet qui
sera ensuite exécuté, tandis qu’un interpréteur traduit une par une les instructions du code source et les
exécute au fur et & mesure de la traduction. Cette phase de compilation ou d’interprétation est entiérement
automatique et est effectuée par un programme. Vous en apprendrez plus sur ce sujet & ’occasion du
cours de théorie des langages, en deuxiéme année.
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Chapitre 2

Variables, Expressions et Affectations

2.1 Les variables

Un probléme est spécifié par une relation entre les valeurs des paramétres en entrée (les données) et les
valeurs des paramétres en sortie (les résultats). Pour calculer les valeurs des paramétres en sortie a partir
des valeurs en entrée, un algorithme peut utiliser des données intermédiaires, appelées variables locales.

Ainsi, un algorithme manipule 3 catégories de données, plus généralement appelées variables : les para-
métres en entrée, les parameétres en sortie et les variables locales ; ce qui peut étre schématisé de la fagcon
suivante :

Algorithme :
parametres relation entre entrées et sorties parameétres
en — — en
entrée variables locales sortie

Par exemple, le probléme consistant a résoudre une équation du second degré peut étre décrit par :

Résolution d’une équation du second degré :
ar%+br1+c:a7‘%+br2+c=O
a,bc — — 71,72
variable locale : delta

Chaque variable (paramétre en entrée, parameétre en sortie ou variable locale) peut étre vue comme une
boite contenant une information. Elle est caractérisée par un nom, permettant de référencer la boite, un
type, permettant de caractériser la nature des informations que I’on pourra déposer dans la boite, et une
valeur, désignant 'information effectivement contenue dans la boite.

2.1.1 Nom d’une variable

Le nom d’une variable, aussi appelé identificateur, est la représentation symbolique de ’adresse ou est
stockée la valeur de la variable dans la mémoire. En effet, les données sont conservées dans la mémoire
de ordinateur. Cette mémoire est constituée d’une suite de bits (informations binaires) regroupés par
groupe de 8 en octets. Chaque octet a une adresse permettant de le retrouver. Au lieu de désigner une
variable par son adresse en mémoire, on donne un nom symbolique & cette adresse.

Syntaxiquement, le nom d’une variable est une suite de caractéres alpha-numériques, commencant par
une lettre (majuscule ou minuscule). Le nom de la variable doit étre choisi judicieusement afin de donner
une indication sur la nature et le role de la donnée. Ainsi, si la variable correspond au total d’une facture,
il est préférable de 'appeler total-facture plutét que toto ou X23.

11
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2.1.2 Type d’une variable

Toutes les données sont stockées en mémoire sous la forme d’une suite de 0 et de 1. En fonction du type

(de la nature) de la donnée, cette suite de 0 et de 1 sera interprétée (décodée) differemment. Par exemple,

— un entier relatif peut étre codé sur 2 octets consécutifs (soit 16 bits) de telle sorte que le bit le plus
a gauche indique le signe de Pentier (positif si le bit est & 0, négatif sinon), tandis que les autres bits
correspondent a I’entier codé en base 2;

— un nombre flottant peut étre codé sur 4 octets consécutifs de telle sorte que 'octet le plus & gauche
représente l’exposant (en base 2) et les 3 octets suivants la mantisse (en base 2) ;

— un caractére est codé sur un octet par son code ASCII en base 2;

- etc, ...

Pour connaitre la valeur d’une variable, il est alors indispensable de connaitre au préalable son type pour

savoir sur combien d’octets elle est codée et comment interpréter correctement la suite correspondante

de 0 et de 1.

Ainsi, il faut déclarer le type de chaque variable (paramétres et variables locales) avant de 'utiliser. A
la suite de cette déclaration, on ne pourra mettre dans la variable que des informations appartenant au
type déclaré.

La déclaration d’une donnée s’effectuera en faisant suivre le type de la variable de son nom. On utilisera
dans la suite les types de données suivants :
— Les types de données élémentaires :
— le type entier, désignant ’ensemble des entiers relatifs;
En pratique, le nombre d’entiers que ’on peut représenter est limité par le nombre d’octets utilisés
pour les représenter, et les entiers trop grands (en valeur absolue) doivent étre codés différemment.
— le type réel, désignant I’ensemble des réels;
L& encore, il n’est pas possible de coder I’ensemble de tous les réels. En pratique, les réels sont
approximés par des nombres flottants (ce qui peut provoquer des erreurs numériques).
— le type car, désignant ’ensemble des caractéres du clavier (caractéres alpha-numeériques et caractéres
spéciaux) ;
— le type logique (aussi appelé booléen), désignant les deux valeurs vrai et faux;
— le type pointeur, désignant ’ensemble des adresses mémoires (ce type sera étudié au deuxiéme
semestre) ;
— le type texte, aussi appelé chaine, désignant I’ensemble des chaines de caractéres'
— Les types de données composés :
— le type tableau, désignant une suite indexée comportant un nombre variable mais borné de données
de méme type;
— le type structure, désignant une suite comportant un nombre fixé de données de types différents
— le type fichier, désignant une suite comportant un nombre variable mais non borné a priori de
données de méme type (ce type sera étudié au deuxiéme semestre).

2.1.3 Valeur d’une variable

La valeur d’une variable est contenue dans ’emplacement mémoire se trouvant & I’adresse représentée par
le nom de la variable. Ce contenu (une suite de 0 et de 1) doit étre interprété correctement en fonction
du type de la variable.

Attention : & la suite de sa déclaration, la valeur d’une variable n’est pas définie.

Données constantes : Certaines variables ont une valeur constante, qui ne change pas pendant toute
I’exécution de D'algorithme. Ces variables sont appelées constantes. Elles sont déclarées au début de
I’algorithme en faisant suivre le nom de la variable par sa valeur.

IDans de nombreux langages, le type texte est représenté par un tableau de caractéres.
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2.2 Description des variables dans un algorithme

Par la suite, la partie statique d’un algorithme, spécifiant les paramétres et déclarant les variables, sera
décrite selon le formalisme suivant :

Procédure : nom-de-la-procédure(<noms-des-paramétres>)
Entrées :

pour chaque paramétre en entrée, préciser son type et son nom
Sorties :

pour chaque paramétre en sortie, préciser son type et son nom
Précondition :

Conditions sur les paramétres en entrée
Postcondition :

Relation entre les paramétres en entrée et ceux en sortie
Déclarations :

pour chaque variable locale, préciser son type et son nom

const : pour chaque constante, préciser son nom et sa valeur

début
Suite d’opérations élémentaires permettant de calculer les paramétres en sortie en fonction des

paramétres en entrée (partie dynamique de I’algorithme)
fin

Par exemple, l'algorithme calculant les racines d’une équation du second degré peut étre spécifié de la
fagon suivante :

Procédure : racines(a, b, ¢, r1,12)
Entrées :
réel a
réel b
réel ¢
Sorties :
réel rq
réel 9
Précondition :
b? —4dac>0et a+#0
Postcondition :
ar% +bri+c= ar% + bry + ¢ = 0 ou autrement dit, 71 et ro sont les deux solutions de
l’équation az? +bxr +c¢ =0
Déclarations :
réel delta
début
Suite d’opérations élémentaires

permettant de calculer r1 et ro & partir de a, b et c.
fin

Pour abbréger, on pourra regrouper plusieurs déclarations de paramétres sur une méme ligne lorsqu’ils
ont le méme mode de passage (entrée ou sortie) et le méme type :

Procédure : racines(a, b, c,r1,12)
Entrées :

réel a,b, c
Sorties :

réel 1,72
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2.3 L’affectation

Pour résoudre un probléme, un algorithme décrit la suite d’instructions a effectuer pour calculer les valeurs
des parameétres en sortie & partir des valeurs des parameétres en entrée. Il existe 2 instructions différentes :
I’affectation, qui permet de changer la valeur d’une variable, et I’appel de procédure, qui permet d’appeler
(d’utiliser) un algorithme dans un autre. On étudie ici I'affectation ; 'appel de procédure sera étudié au
chapitre 4.

L’affectation permet de changer la valeur d’une variable, autrement dit de modifier le contenu de la
mémoire & I’adresse symbolisée par le nom de la variable. Syntaxiquement, une affectation sera représentée
par :

nom-var <— expr

et a pour signification : la variable de nom nom-var prend pour valeur la valeur de I’expression expr,
autrement dit, la valeur de 'expression expr est stockée dans la mémoire & ’adresse symbolisée par le
nom nom-var. La valeur de I’expression expr doit appartenir au type déclaré pour la variable nom-var.

2.4 Définition d’une expression

L’expression affectée & une variable peut étre une valeur explicite :
par exemple, I'instruction a « 25 affecte la valeur 25 a la variable de nom a.
L’expression affectée & une variable peut également étre la valeur contenue dans une autre variable :

par exemple, 'instruction a < b affecte & la variable de nom a la valeur contenue dans la
variable de nom b.

Enfin, 'expression affectée a une variable peut étre le résultat d’une opération entre d’autres expressions.
1l existe 3 types d’opérations : les opérations arithmétiques, les opérations de comparaison et les opérations
logiques.

2.4.1 Opérations arithmétiques

Les opérations arithmétiques binaires sont : I'addition, notée “+”, la soustraction, notée “-”, la
multiplication, notée “*’, la division réelle, notée “/”, la division entiére notée “div” et le modulo?, noté
“mod”. Ces opérations prennent en argument deux expressions numériques et rendent la valeur numérique
correspondant & ’application de ’opération sur les valeurs des expressions en argument.

7

Ces opérations sont définies sur les réels et sur les entiers, sauf “div” et “mod” qui ne sont définies que

sur les entiers.

Enfin, les opérateurs de multiplication, de division et de modulo sont plus prioritaires que (et donc évalués
avant) les opérateurs d’addition et de soustraction. Une expression arithmétique peut étre parenthésée
pour spécifier I'ordre de son évaluation.

Les opérations arithmétiques unaires sont le plus unaire, noté “+”, et le moins unaire, noté “-”.

Ces opérations prennnent en argument une expression numérique et rendent une valeur numérique.

2.4.2 Opérations de comparaison

Une opération de comparaison prend en argument deux expressions de méme type élémentaire (2 entiers,
2 réels, 2 caractéres ou 2 chaines de caractéres), et rend une valeur logique (vrai ou faux). On utilisera
les opérations de comparaison suivantes : <, <,=,#, > et >.

Les entiers et les réels sont comparés selon 'ordre numérique usuel. Les caractéres sont comparés selon
l’ordre défini par le code ASCII : chaque caractére est codé par un entier compris entre 0 et 255, appelé
code ASCII, et pour comparer deux caractéres, on compare leur code ASCII. Dans ce code, les chiffres
sont inférieurs aux caractéres majuscules qui sont eux-mémes inférieurs au caractéres minuscules.

20n rappelle que le modulo est le reste de la division entiére. Autrement dit, z mod y = = — y * (x div y) Par exemple,
23mod 7=2car23div7=3et 23 -3%7=2.
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Les chaines de caractéres sont comparées selon 'ordre lexicographique : un texte ¢1 est inférieur & un
texte t2 s’il existe un caractére c de t1 tel que

— pour chaque caractére se trouvant avant ¢ dans t1, le caractére correspondant de t2 soit identique,

— le caractére correspondant & ¢ dans t2 soit supérieur a c.

Par exemple, "aabed” < "aax” et 710”7 < 797,

2.4.3 Opérations logiques

Les opérations logiques binaires sont la disjonction, notée ou, et la conjonction, notée et. Ces
opérateurs prennent en argument 2 expressions de valeur logique et rendent une valeur logique.

La signification des opérateurs logiques binaires est donnée par la table suivante :

A B AetB || AouB
vrai | vrai vrai vrai
vrai | faux faux vrai
faux | vrai faux vrai
faux | faux faux faux

L’opération logique unaire est la négation, notée non. Cet opérateur prend en argument une expres-
sion de valeur logique et rend une valeur logique, selon la table suivante :

A non A

vral faux

faux vral

2.4.4 Exemple

Soient les variables suivantes :

entier eq, es,
réel 1,
logique b1, by

Apreés I'exécution de 'instruction
e1 < (10 mod 3) + (5 div 2)

la variable e; a pour valeur 1+ 2 = 3;
aprés I'exécution de l'instruction

62(—61*2

la variable e a pour valeur 3 %2 = 6;
aprés l'exécution de l'instruction

r1«—4.5%2.0

la variable r; a pour valeur 9.0;
aprés l'exécution de l'instruction

ry < 1r1/3.0

la variable r; a pour valeur 9.0/3.0 = 3.0;
aprés I'exécution de l'instruction

by «— (7"1 > 42) ou (61 = 62)

la variable b; a pour valeur faux;
apreés l'exécution de l'instruction

by < non(by) et r; < 4.2

la variable by a pour valeur vrai.
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2.5 Saisie et affichage de données

Un algorithme calcule les valeurs des paramétres en sortie, en fonction des valeurs des paramétres en
entrée. Les valeurs des paramétres en entrée sont “données” a l'algorithme, tandis que les valeurs des
paramétres en sortie sont fournies comme résultat de Ialgorithme & celui qui 'exécutera. Ainsi, on ne
s’occupe pas a priori de la saisie des valeurs des paramétres en entrée ni de ’affichage des valeurs calculées
pour les paramétres en sortie. De fait, il est possible que les valeurs calculées par un algorithme ne soient
pas affichées, mais par exemple qu’elles soient fournies comme valeurs d’entrée d’un autre algorithme.

Dans certains cas, on peut cependant souhaiter saisir au clavier une valeur pour 'affecter & une variable.
Pour cela, on pourra utiliser 'instruction “saisir(x)” qui lit au clavier une valeur de méme type que la

variable x et affecte cette valeur & x. De méme, pour afficher & ’écran la valeur d’une variable x, on
pourra utiliser I'instruction “afficher(x)”.



Chapitre 3

Enchainement d’instructions

Les instructions d’un algorithme sont enchainées selon un ordre déterminé. Il existe trois facons différentes
d’enchainer des instructions : en séquence, de facon alternative ou répétitive.

3.1 Enchainement séquentiel

L’enchainement séquentiel d’une suite d’instructions permet d’exécuter les instructions les unes a la suite
des autres. Syntaxiquement, les instructions seront notées les unes en dessous des autres (une instruction
par ligne). Dans le cas d’instructions courtes, on pourra noter plusieurs instructions les unes a coté des
autres, séparées par un point virgule. Dans ce cas, les instructions sont tout naturellement exécutées de
la gauche vers la droite.

Exercice 1 Calcul du diamétre, du périmeétre et de la surface d’un cercle & partir de son rayon
Exercice 2 Calcul des coefficients d’une droite a partir de deuzx points

Exercice 3 Résolution d’une équation du second degré admettant exactement 2 solutions

3.2 Enchainement alternatif

L’enchainement alternatif permet d’exécuter alternativement une premiére suite d’instructions, si une
certaine condition est vérifiée, ou bien une autre série d’instructions, si la condition n’est pas vérifiée.

La syntaxe d’un enchainement alternatif est

si condition alors
| suite-1
sinon

| suite-2

finsi

ol condition est une expression logique, et suite-1 et suite-2 sont des suites d’expressions. Cet énoncé
alternatif est interprété de la fagon suivante :

“si 'expression logique condition est évaluée & vrai, alors la suite d’instructions suite-1 est
exécutée, sinon (si I’expression logique condition est évaluée a faux), la suite d’instructions
suite-2 est exécutée.”

17



18 CHAPITRE 3. ENCHAINEMENT D’INSTRUCTIONS

Une version simplifiée de ce schéma est

si condition alors
| suite-1
finsi

Cet énoncé est interprété de la fagon suivante :

“si I’expression logique condition est évaluée & vrai, alors la suite d’instructions suite-1
est exécutée, sinon (si 'expression logique condition est évaluée & faux), on ne fait rien.”

Enfin, dans le cas ot ’on a plus de deux alternatives dont toutes les conditions sont exclusives, on pourra
utiliser I’énoncé suivant :

si conditionl alors

| suite-1

sinon si condition?2 alors
| suite-2

sinon si condition3 alors
| suite-3

sinon si condition/ alors
| suite-4

sinon

| suite-5

finsi

Cet énoncé est équivalent a I’énoncé suivant, imbriquant 4 énoncés alternatifs & deux alternatives :

si conditionl alors

| suite-1

sinon

si condition2 alors

| suite-2

sinon

si condition3 alors

| suite-3

sinon
si condition/ alors
| suite-4
sinon
| suite-5
finsi

finsi

finsi

finsi

Exercice 4 Recherche du nombre de solutions d’une équation du second degré quelconque

Exercice 5 Recherche du plus petit nombre parmi trois nombres
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3.3 Enchainement répétitif

L’enchainement répétitif permet d’exécuter plusieurs fois une méme suite d’instructions; le nombre de
fois ou la suite d’instructions est exécutée étant déterminé par une condition logique.

La syntaxe d’un enchainement répétitif est

tant que cond faire
| suite-inst

fintq

Cet énoncé est interprété par 'ordinateur de la facon suivante :

“tant que l’expression logique cond est évaluée a vrai, exécuter les instructions suite-inst,
et recommencer ; arréter ce processus itératif quand cond est évaluée a faux.”

Exemple 1 : répétition d’un traitement k fois

Parfois, le nombre de fois ou le traitement doit étre répété est connu dans le sens ot une variable du
programme contient le nombre d’itérations a faire. Dans ce cas, une solution consiste a utiliser un compteur
de boucle, que 'on incrémente de 1 & chaque passage dans la boucle. La condition cond de continuation
de la boucle dépend alors de la valeur initialement mise dans ce compteur : on peut par exemple initialiser
le compteur a 1 et continuer tant qu’il est inférieur ou égal au nombre d’itérations souhaitées; on peut
tout aussi bien initialiser le compteur & 0 et continuer tant qu’il est strictement inférieur au nombre
d’itérations souhaitées.

Considérons par exemple le probléme consistant a calculer x & la puissance n, ol n est un nombre entier
naturel. Pour résoudre ce probléme, il s’agit de faire n multiplications par x. Pour cela, on peut par
exemple compter de 0 & n — 1. On obtient ’algorithme suivant :

Procédure : puissance(n, x, p)
Entrées :

entier n

réel x
Sorties :

réel p
Précondition :

n>0
Postcondition :

p=a"
Déclarations :

entier cpt
début
pe1
cpt «— 0
tant que cpt < n faire

/* invariant : p = P! */

P—pxT

cpt «— cpt + 1
fintq
/* Nombre de passages dans la boucle = n; cpt =n et p= Pt = 2" */

fin

On peut simuler I’exécution de cet algorithme en remplissant un tableau donnant les valeurs successive-
ment prises par les variables. Par exemple, siz =2 et n=4:



20

CHAPITRE 3. ENCHAINEMENT D’INSTRUCTIONS

p | cpt
Avant le premier passage 1 0
Aprés le premier passage 2 1
Apreés le deuxiéme passage 4 2
Aprés le troisiéme passage 8 3
Aprés le quatriéme passage || 16 4

On peut vérifier qu’a chaque passage on a bien p = zP*. On peut également vérifier qu’aprés le dernier
passage, on a bien cpt = n et p = xPt.

On peut imaginer d’autres algorithmes pour calculer z & la puissance n. On aurait par exemple pu compter

de1lan..
Procédure : puissance(n,z, p)
Déclarations :
entier cpt
début
p—1
cpt +— 1
tant que cpt < n faire
/* invariant : p= g1 */
p—pxT
cpt «— cpt + 1
fintq
/* Nombre de passages dans la boucle = n; cpt =n+1 et p= P~ =" */
fin
...ou encore de n a 1.
Procédure : puissance(n,z, p)
Déclarations :
entier cpt
début
p—1
cpt —n
tant que cpt > 0 faire
/* invariant : p = " ¢P! */
P p*rT
cpt «— cpt — 1
fintq
/* Nombre de passages dans la boucle = n; c¢pt =0 et p =" Pt =" */
fin

Quelques conseils au sujet des enchainements répétitifs

Quand, pour résoudre un probléme, on se rend compte que I'on va avoir besoin d’'un énoncé répétitif, on

cherche & identifier les “blocs” suivants :

— Instructions d’initialisation : ce sont les instructions qui permettent d’initialiser les variables sur les-
quelles on va travailler dans 1’énoncé répétitif. Dans I’exemple précédent du calcul de x a la puissance
n, ce sont les deux instructions qui initialisent p et cpt.

— Condition d’arrét : c’est la condition qui doit étre satisfaite pour arréter de boucler. Dans 'exemple
précédent, on doit arréter de boucler lorsqu’on a exécuté n fois les instructions & répéter. Notons que la
condition mise derriére le mot clé tant que est la négation de la condition d’arrét : on doit continuer

tant

qu'on n’a pas encore exécuté n fois les instructions a répéter. On prendra ’habitude de mettre

en commentaire aprés le fintq la condition d’arrét (en vérifiant qu’il s’agit bien de la négation de la
condition mise derriére tant que).
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— Instructions & répéter : ce sont les instructions qui sont exécutées & chaque passage dans la boucle. On
distinguera généralement deux sous blocs dans ce bloc d’instructions : les instructions “de traitement”
et les instructions “de passage”.

— Les instructions “de traitement” sont celles & 'origine du fait que I’on écrit un enchainement répétitif.
Dans ’exemple précédent, il s’agit de l'instruction p « p * x.

— Les instructions “de passage” sont celles qui permettent de modifier les variables sur lesquelles porte
la condition d’arrét (les variables qui permettent de controler le nombre de passages dans la boucle).
Dans ’exemple précédent, il s’agit de I'instruction cpt < cpt + 1.

En général, on commence par identifier les instructions “de traitement”. Ensuite, il s’agit d’écrire les

instructions d’initialisation, la condition d’arrét et les instructions de passage. Ces trois blocs dépendent

les uns des autres, comme l'illustre 'exemple précédent (ou I'on a proposé 3 algorithmes différents pour
résoudre un méme probléme). Ils doivent donc étre congus en méme temps. A ce moment, on se posera
les questions suivantes :

— Est-on certain que la condition d’arrét est atteinte ?

— Combien de fois les instructions a répéter sont-elles exécutées ?

Cette information est & mettre en commentaires.

— Quelles sont les valeurs des variables lorsqu’on sort de la boucle.

Cette information est & mettre en commentaires.

Exemple 2 : calcul du produit des n premiers entiers positifs

Il s’agit maintenant de calculer factorielle n, c’est-a-dire, 1 %2 % 3 *...*n. On peut spécifier ce probléme
de la facon suivante :

Procédure : factorielle(n, f)
Entrées :
entier n
Sorties :
entier f
Précondition :
n>0
Postcondition :
f = n! ot n! est la fonction récursivement définie par :
=1
nl=nx(n-1,V¥n>1
ou, autrement dit, f =1%x2x3*...xn

Pour cela, on se rend compte que I'on a besoin de faire n multiplications, mais contrairement & I’exemple
précédent (puissance), le facteur multiplicatif change & chaque fois : il faut d’abord multiplier par 1, puis
par 2, puis par 3, ... jusque n. On va donc d’abord écrire une boucle ot une variable (par exemple i) va
prendre successivement les valeurs 1, 2, 3, ... jusque n, soit :

i1
tant que i < n faire
| 4—i+1
fintq
/* Nombre de passages dans la boucle = n; i=n+1 */

On peut ensuite ajouter les instructions permettant de multiplier une variable f par les valeurs successi-
vement prises par i. On obtient I’algorithme suivant :
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Procédure : factorielle(n, f)

Déclarations :
entier ¢

début

fe1

1+ 1

tant que i < n faire
/* invariant : f=(i—1)! */
i—1i+1

fintq

/* Nombre de passages dans la boucle =n; i=n+1et p=(i—1)=n! */

fin

Exemple d’exécution pourn =4 :

’ nb de passages dans la boucle H 0 \ 1 \ 2 \ 3 \ 4 H

valeur de 1121314 5
valeur de f 1112|624

Terminaison : La terminaison de l’algorithme est assurée par le fait que la valeur de ¢ augmente de 1
4 chaque passage dans la boucle “tant que” et que l'on s’arréte quand elle devient supérieure ou égale a
celle de n.

Complexité : Pour calculer f a partir de n, il faut d’abord effectuer 2 affectations, puis il faut répéter
n fois la boucle “tant que”. A chaque passage dans la boucle, on effectue 1 test (i < n), 1 addition,
1 multiplication, et 2 affectations. Au total, on effectuera donc 2 x n + 2 affectations, n additions, n
multiplications et n tests. Par conséquent, la complexité de factorielle est linéaire, en O(n).

Correction : La correction de ’algorithme peut étre démontrée a ’aide de la propriété invariante. En
effet, & chaque passage dans la boucle, la propriété invariante f = (i —1)! est vérifiée (on vérifie facilement
qu’elle est vraie au premier passage, et que si elle est vraie & un passage, alors elle est encore vraie au
passage suivant). On arréte de boucler lorsque la condition ¢ < n n’est plus vérifiée, autrement dit lorsque
i=mn+1. A ce moment, du fait de la propriété invariante, on sait que fact = (i — 1)! = nl.

Enoncé pour

Quand il y a une seule instruction d’initialisation et une seule instruction de passage concernant une
variable sur laquelle porte la condition d’arrét, alors on peut utiliser ’énoncé “pour” suivant :

pour (init; cond; passage) faire
| traitement
finpour

Cet énoncé est équivalent a I’énoncé suivant :

init

tant que cond faire
traitement
passage

fintq

Par exemple, les 3 algorithmes permettant de calculer = & la puissance n peuvent étre écrits :
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Procédure : puissance(n, z,p)

début

pe1
pour (cpt — 0; cpt < n; cpt «— cpt + 1) faire
/* invariant : p = z°P! */
p—px*xx
finpour
/* Nombre de passages dans la boucle = n; cpt=n et p= TPt = g™ */
fin

Procédure : puissance(n,z, p)

début

p1
pour (cpt < 1; cpt < n; cpt « cpt + 1) faire
/* invariant : p =zl x/
p—DpxT
finpour
/* Nombre de passages dans la boucle = n; cpt =n+1 et p=z®P 1 =" */
fin

Procédure : puissance(n,z, p)

début

p—1
pour (cpt — n; cpt > 0; cpt «— cpt — 1) faire
/* invariant : p = " °P! x/
p—pxxT
finpour
/* Nombre de passages dans la boucle = n; cpt =0 et p=a" P =" */
fin

L’intéret d’un énoncé pour est de rendre plus lisible I’algorithme en regroupant sur une méme ligne les
instructions et la condition déterminant le nombre de passages dans une boucle : on peut, sans lire les
instructions de traitement & répéter, savoir combien de fois sera exécutée la boucle... sous réserve que les
instructions de traitement ne modifient pas des variables sur lesquelles porte la condition d’arrét (dans
ce cas, il est probablement plus lisible de ne pas utiliser une boucle pour).

Exercice 6 Calcul de la somme des n premiers entiers
Exercice 7 Déterminer si un nombre est premier
Exercice 8 Calcul de la n-éme valeur de la suite de Fibonacci

Exercice 9 Calcul de cos(x)
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Chapitre 4

Appels de procédures et fonctions

Un algorithme est généralement élaboré par une démarche descendante, qui consiste & décomposer le
probléme en sous-problémes, chaque sous-probléme devant étre de nouveau spécifié puis résolu. Cette
décomposition permet d’aborder le probléme progressivement en créant des niveaux de description de
plus en plus détaillés. Elle permet également de réutiliser la résolution de certains sous-problémes pour
résoudre de nouveaux problémes.

Ainsi, un algorithme peut étre “appelé” dans le corps d’un autre algorithme afin de résoudre un sous-
probléme.

4.1 Paramétres effectifs

Lors de ’appel d’un algorithme, il faut préciser les valeurs des paramétres en entrée et, en retour, récupérer
les valeurs des paramétres en sortie. Les parameétres utilisés pour cela sont appelés paramétres effectifs.

Exemple : Considérons le probléme “somme-cos”, qui consiste & calculer la somme cos(1) + cos(2) +
cos(3) + ... 4 cos(n).

Procédure : somme-cos(n, sc)
Entrées :
entier n
Sorties :
entier sc
Précondition :
n>1
Postcondition :
sc=y"_, cos(i)

ou, autrement dit, sc = cos(1) + cos(2) + cos(3) + ... + cos(n)

Pour résoudre ce probléme, on a successivement besoin de calculer cos(1), cos(2), ..., jusque cos(n). Or
on a justement déja résolu ce probléme, qui avait été spécifié de la fagon suivante au chapitre précédent :

25
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Procédure : cos(z, eps, cosx)
Entrées :
réel z, eps
Sorties :
réel cosx
Précondition :
eps >0
Postcondition :
cosx = cos(x), avec une précision de eps

(utilise le développement en série : cos(z) = Zfio(—l)l(%.)

On va donc réutiliser la résolution de cos pour résoudre somme-cos. On dira que la procédure somme-cos
appelle 1la procédure cos. Lors de cet appel, somme-cos doit préciser & cos les paramétres effectifs, c’est a
dire :
1. la valeur de x pour laquelle on souhaite calculer cos(z),
2. la valeur de eps, donnant la précision avec laquelle on veut calculer cos(z),
3. la variable de somme-cos dans laquelle on souhaite récupérer le résultat du calcul de cos(x) (résultat
contenu dans le paramétre cosx de cos).
Ces paramétres sont précisés dans 'ordre de leur déclaration. Ainsi, 'appel de “factorielle” se fera par
I’instruction
cos(exprl,expr2var)
ou exprl et expr2 sont deux expressions dont I’évaluation donne deux réels et var est une variable de
type réel. L’exécution de cette instruction a pour conséquence d’affecter & var la valeur de cosx calculée
par cos pour x = exprl et eps = expr2. Le probléme somme-cos peut alors étre résolu par l’algorithme
suivant :

Procédure : somme-cos(n, sc)

Déclarations :

réel i, cosi
const eps = 0.0001
début
sc«+— 0
pour (i —1;i<n;i«< i+ 1) faire
/* invariant : sc= 22;11 cos(k) */

cos(i, eps, cost)
Sc +— sc + cost
finpour

/* Nombre de passages dans la boucle = n; i=n+1 et sc= Z;c_:ll cos(k) */
fin

D’une fagon plus générale, quand un algorithme est appelé dans un autre algorithme, on précise la
liste des paramétres effectifs, en respectant ’ordre donné lors de la définition de ’algorithme appelé. Le
type d’un paramétre effectif doit étre le méme que celui du paramétre formel correspondant. L’exécution
d’un tel appel de procédure s’effectue alors en 3 étapes :

1. Affectation des valeurs des parameétres effectifs aux paramétres en entrée correspondants

2. Exécution de la procédure appelée dans un nouvel environnement

3. Affectation des valeurs des paramétres en sortie de la procédure appelée aux parameétres effectifs
correspondants

Remarques.

— Le paramétre effectif correspondant & un paramétre en entrée peut étre une valeur, une variable conte-
nant une valeur ou une expression retournant une valeur. Dans tous les cas, la valeur doit étre de méme
type que le paramétre formel correspondant.
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— Le paramétre effectif correspondant & un paramétre en sortie doit toujours étre une variable. De plus,
g’il y a plusieurs paramétres en sortie, alors lors de I’appel de la procédure, il faudra utiliser des variables
différentes comme parameétres effectifs.

Exercice 10 Réutilisation d’algorithmes
Exercice 11 Appels successifs de 3 algorithmes

Exercice 12 Calcul de la somme des n premiéres factorielles.

4.2 Paramétres en entrée et en sortie

Lors de 'appel d’un algorithme, une méme variable peut étre utilisée pour passer une valeur en entrée et
en récupérer une autre en sortie. Considérons par exemple la suite d’instructions :

n«—4
factorielle(n,n)

La valeur 4 de la variable n est passée comme paramétre en entrée de factorielle; tandis qu’a la fin de
I’exécution de factorielle, la valeur du parameétre en sortie est affectée & n. Ainsi, a la suite de I’exécution
de ces 2 instructions, la variable n aura pour valeur 24.

1l s’agit 1a d’une utilisation particuliére de factorielle qu’il n’est probablement pas intéressant de généra-
liser. En revanche, certains problémes consistent systématiquement a modifier la valeur d’un paramétre,
autrement dit, le parameétre doit étre passé a la fois en entrée, pour connaitre sa valeur de départ, et en
sortie, pour modifier cette valeur. Dans ce cas, plutot que de dupliquer ce paramétre (en le faisant appa-
raitre & la fois en entrée et en sortie), on dira qu’il s’agit d’'un paramétre en entrée/sortie. Un paramétre
en entrée/sortie sera déclaré par :

Procédure : nom-algo(var)
Entrée/Sortie :
type-de-var var

Cet algorithme pourra étre appelé par :
nom-algo(z)

de telle sorte que le paramétre effectif x soit une variable de méme type que la variable var. Lors de 'appel
de “nom-algo(z)”, la valeur du paramétre effectif x est affectée a var, tandis qu’au retour de I’appel, la
valeur de var est affectée a x.

Pour spécifier le role d’un tel algorithme, c’est & dire la relation entre la valeur initiale du paramétre en
entrée/sortie, et sa valeur finale, on a besoin de distinguer ces deux valeurs. Ainsi, on notera var™ la
valeur du paramétre var en entrée et var®® sa valeur en sortie.
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Exemple : Echanger les valeurs de 2 variables

Procédure : échanger(a, b)
Entrée/Sortie :

entier a, b
Postcondition :

aout — b’L’rL

bout — ain
Déclarations :

entier aux
début

aux < a
a<—b
b — aux

fin

4.3 Procédures et fonctions

On distingue deux types d’algorithmes :

— les algorithmes dont le but est de calculer une (et une seule) valeur & partir d’'un certain nombre
d’autres valeurs données en entrée; ces algorithmes seront implémentés par des fonctions,

— les autres algorithmes, ayant un nombre quelconque de paramétres en entrée et en sortie; ces algo-
rithmes seront implémentés par des procédures.

Une fonction calcule une (et une seule) valeur & partir d’un certain nombre d’autres valeurs. Autrement

dit, une fonction prend en entrée 0, 1 ou plusieurs parameétres et retourne en sortie une valeur. Par exemple,

lalgorithme “factorielle” calcule n! pour une valeur de n donnée; 'algorithme “puissance” calcule ™ &

partir de valeurs données pour z et n.

La déclaration d’une fonction s’effectuera de la fagon suivante :

Fonction : type-fct nom-fct(< paramétres >)
Entrées :
liste des paramétres (types et noms)
Précondition :
Conditions sur les paramétres en entrée
Postcondition :
relation entre la valeur retournée par la fonction et ses paramétres en entrée

La valeur retournée en sortie par la fonction sera spécifiée dans le corps de la fonction par 'instruction

’ retourner expr

ol expr est une expression (une valeur, une variable contenant une valeur, ou une opération entre ex-
pressions) de type type-fct.

Attention : les instructions se trouvant aprés une instruction de retour de fonction ne sont pas exécutées.
Autrement dit, 'exécution de la fonction se termine avec la premiére instruction de retour trouvée.

Une fonction peut étre appelée dans un autre algorithme. Un appel de fonction retourne une valeur et
est donc assimilé & une valeur du type de la fonction.
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Exemple 1 : reprise de factorielle.
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Fonction : entier factorielle(n)
Entrées :
entier n
Précondition :
n>0
Postcondition :
retourne n!
Déclarations :
entier i, f
début
fe1
pour (i —1;i<n;i«< i+ 1) faire
/* invariant : f=(i—1)!
finpour
/* Nombre de passages =n; i=n+1et f=(i—1)=n!
retourner f

fin

*/

*/

La fonction “factorielle” peut alors étre appelée dans une expression. Par exemple, aprés ’exécution des

instructions

x «— factorielle(4)
y « factorielle(z — 3  factorielle(3))

la variable = a pour valeur 4! = 24, et la variable y a pour valeur (24 — 3 3!)! = 6! = 240.

Exemple 2 : reprise de ’exercice “plus petit de trois nombres”

Fonction : entier plus-petit(n)
Entrées :
entier a,b, c
Postcondition :
retourne le plus petit nombre de I’ensemble {a,b, c}
début
si a < b alors

sl a < c alors
| retourner a

sinon
| retourner c

finsi
sinon

si b < c alors
| retourner b

sinon
| retourner c

finsi

finsi

fin
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Sachant que les instructions suivant un retourner ne sont pas exécutées, on aurait tout aussi bien pu
écrire :

Fonction : entier plus-petit(n)
Entrées :
entier a, b, c
Postcondition :
retourne le plus petit nombre de ’ensemble {a, b, ¢}
début
si a < b alors

si a < ¢ alors
| retourner a

finsi

retourner c
finsi

si b < ¢ alors
| retourner b

finsi
retourner c

fin

4.4 Modes de passage des paramétres

Lorsque 'on congoit un algorithme, on a juste besoin de spécifier, pour chaque paramétre, s’il est donné

en

entrée, ou s’il est calculé en sortie, ou s’il est donné en entrée puis modifié par 'algorithme pour

étre ensuite retourné en sortie. Ainsi, au niveau de ’algorithme, on spécifie pour chaque paramétre son
mode (entrée, sortie ou entrée/sortie). Au moment de programmer ’algorithme, il s’agit de trouver un
mécanisme permettant d’implémenter le comportement correspondant au mode choisi :

pour un paramétre en entrée : lors de 'appel de la procédure, il faut passer la valeur du paramétre
effectif au paramétre formel ; pendant ’exécution de la procédure appelée, si le paramétre formel est
modifié, il ne faut pas répercuter cette modification sur le paramétre effectif.

pour un paramétre en sortie : & la fin de I'exécution de la procédure appelée, il faut transmettre la
valeur du paramétre en sortie au paramétre effectif correspondant.

pour un parameétre en entrée/sortie : lors de ’appel de la procédure, il faut passer la valeur du parameétre
effectif au parameétre formel; & la fin de 'exécution de la procédure appelée, il faut transmettre la
nouvelle valeur du paramétre formel au paramétre effectif correspondant.

Pour implémenter ces comportements, on dispose (dans la plupart des langages de programmation) de
deux mécanismes de passage de paramétres : le passage par valeur et le passage par référence.

Considérons par exemple une procédure g qui appelle une procédure p, et supposons que la procédure p
a un seul paramétre x.

Si x est passé par valeur :

— lors de 'appel de p, on crée un nouvel environnement au dessus de ’environnement de q. Ce nouvel
environnement contient une nouvelle variable, de nom z, et on recopie la valeur du paramétre effectif
correspondant & x dans cette nouvelle variable.

— Lors de l’exécution de p, on utilise cette nouvelle variable dont la valeur peut éventuellement étre
modifiée.

— A la fin de l'exécution de p, son environnement est détruit (et la valeur du paramétre aussi). En
revanche, ’environnement de la procédure ¢ n’est pas modifié.

Si z est passé par référence :

— lors de 'appel de p, on ne crée pas un nouvel emplacement mémoire pour stocker z. A la place, on crée
un lien (une référence!) entre le paramétre formel de nom x et le paramétre effectif correspondant,
de sorte que p peut accéder au paramétre effectif correspondant a x.

— Lors de I’exécution de p, les modifications faites sur x sont directement effectuées dans I’environne-
ment de ¢ sur le paramétre effectif correspondant a x.

— A la fin de 'exécution de p, on détruit le lien entre = et le paramétre effectif de ¢ correspondant,
mais les modifications faites par p sur ce paramétre effectif restent.
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Ainsi, lors de I'implémentation d’un algorithme dans un langage de programmation,

— un paramétre en sortie ou en entrée/sortie sera nécessairement passé par référence;

— un paramétre en entrée sera généralement passé par valeur.

Cependant, lorsque le paramétre en entrée est codé sur un grand nombre d’octets (ce sera le cas des
tableaux par exemple), on ne le passera pas par valeur mais par référence afin d’éviter d’avoir & recopier
sa valeur, ce qui peut étre long et couteux en place mémoire.
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Chapitre 5

Les tableaux

Un tableau est une suite de n données de méme type, rangées consécutivement. On dira que n est la
taille du tableau et que les données sont ses éléments. Chaque élément est repéré dans le tableau par son
indice. Un indice correspond & un numéro d’ordre dans le tableau, les éléments étant rangés par ordre
d’indices consécutifs croissants.

Déclaration d’un tableau : une variable de type tableau est déclarée selon la syntaxe suivante

’ type-elem nom-tableau[d..f]

ou type-elem est le type des éléments du tableau, nom-tableau est le nom du tableau, et d et f repré-
sentent respectivement les indices du premier et du dernier élément du tableau. Si d > f alors le tableau
est vide (il n’a aucun élément), sinon il a £-d+1 éléments de type type-elem.

Par exemple, & la suite des déclarations suivantes :

Déclarations :
entier tab1[1..10]
réel tab2[12..44|

tabl est un tableau de 10 entiers indicés de 1 & 10 et tab2 est un tableau de 33 réels indicés de 12 a 44.
Remarque : quand on déclare un tableau en C, on ne donne que le nombre d’éléments du tableau, ’indice
du premier élément du tableau étant toujours 0. Ainsi, l'instruction C suivante

int tabl[10] ;

déclare un tableau tab de 10 entiers, dont le premier élément est & 'indice 0 et le dernier a l'indice 9, ce
qui correspond & la déclaration algorithmique suivante

Déclarations :
entier tab[0..9]

Accés a un élément du tableau : on accéde & un élément dans un tableau a partir de son indice,
la valeur de cet indice devant étre comprise entre les indices de début et de fin du tableau. Par exemple,
tab1/8] désigne I’élément d’indice 8 dans le tableau tabl, autrement dit le 8¢me élément du tableau ; tandis
que tab2[14] désigne I’élément d’indice 14 dans le tableau tab2, autrement dit le 3éme élément du tableau.

Précondition implicite aux algorithmes ayant des tableaux passés en parameétres : quand un tableau
est déclaré en paramétre formel d’une procédure, les indices du premier et du dernier élément du tableau
ne seront pas toujours précisés dans le type mais passés en paramétre. Ainsi, dans les exercices suivants,
on déclarera souvent un paramétre de type tableau de la fagon suivante :
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Procédure : nom-algo(tad, d, f)
Entrées :

Telt tab[?..7]

entier d, f

Dans ce cas, on supposera en précondition que le tableau physique passé en paramétre effectif & la place
de tab sera défini pour les indices compris entre d et f. Notons que le tableau passé en paramétre effectif
pourra avoir été défini pour un intervalle d’indices [d...f.] supérieur (tel que d — e < d et f < f.). Dans
ce cas, la procédure appelée ne travaillera que sur une partie du tableau passé en parameétre (la partie
entre d et f).

Parcours des éléments d’un tableau : dans de nombreux algorithmes, on doit parcourir le tableau
pour faire un traitement sur chaque élément du tableau. L’algorithme générique pour le parcours d’un
tableau tab indicé de d & f est le suivant :

Déclarations :
entier 7
début
i d
tant que i < f faire
/* invariant : les é&léments d’indice j < i ont déja été traités */
/* Traitement de 1’é&lément d’indice i */
1+—1+1
fintq
/* Nombre de passages = f—d+1; i=f+1 */
fin

Cet algorithme peut étre exprimé de facon équivalente de la facon suivante :

Déclarations :
entier
début
pour (i« d;i< f;i« i+ 1) faire
/* invariant : les éléments d’indice j < i ont déja été traités */
/* Traitement de 1’é&lément d’indice i */
finpour
/* Nombre de passages = f—d+1; i=f+1 */
fin

Exercice 13 Calcul de la somme des éléments d’un tableau
Exercice 14 Calcul de la moyenne des éléments d’un tableau

Exercice 15 Calcul des moyennes par groupe pour un tableau contenant toutes les notes d’une promotion
d’étudiants

Exercice 16 Compter le nombre d’occurrences d’un élément dans un tableau
Exercice 17 Déterminer si un tableau est un palindrome

Exercice 18 Calcul des n premiéres valeurs de la suite de Fibonacci
Exercice 19 Inversion des éléments d’un tableau

Exercice 20 Crible d’Eratosthéeme



Chapitre 6

Etude de quelques algorithmes sur les
tableaux

Les tableaux ont été introduits au chapitre précédant. On étudie maintenant un certain nombre d’algo-
rithmes “classiques” sur les tableaux.

Comme au chapitre 5, ces algorithmes impliqueront souvent de parcourir le tableau pour faire un traite-
ment sur chaque élément du tableau. Cependant, dans certain cas on ne devra pas parcourir le tableau
jusqu’a son dernier élément, mais jusqu’a trouver un élément satisfaisant une certaine condition. On peut
alors écrire

Déclarations :
entier 7
début
1+d
tant que tab[i] ne satisfait pas la condition d’arrét faire
/* Les éléments d’indice j < i ont déja été traités x/
/* Traitement de 1’élément d’indice ¢ */
i—1+1
fintq
/* Nombre de passages < f—d+1; i< f */
fin

Cependant, il peut arriver qu’aucun élément du tableau ne satisfasse la condition d’arrét (par exemple,
on cherche un élément de valeur donnée... et aucun élément du tableau n’a cette valeur). Dans ce cas,
Palgorithme précédent va provoquer une erreur a l'exécution (une erreur de segmentation en C). En
effet, quand ¢ = f, la condition d’arrét n’étant pas satisfaite par tab[f], on entre dans la boucle et on
incrémente i. A I'itération suivante, ¢ = f 4+ 1, et une erreur survient quand on accéde a tabli]. En C, il
peut méme arriver que le probléme ne soit pas détecté, et que l'ordinateur accéde aux octets suivant le
dernier élément du tableau, en croyant qu’il s’agit encore d’un élément du tableau. On peut alors avoir
des résultats d’exécution particuliérement déroutants, ou des variables sont modifiées sans que ’on ne
comprenne pourquoi !

Ainsi, quand on parcourt un tableau, on s’assure toujours que l’on ne peut pas sortir des bornes du
tableau ; s’il est possible que la condition d’arrét ne soit satisfaite par aucun élément, on ajoute un test
pour vérifier que I'on n’est pas sorti des bornes du tableau. Ce test devra étre fait AVANT d’accéder a
I’élément :
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Déclarations :
entier ¢
début
i—d
tant que i < f et tabli] ne satisfait pas la condition d’arrét faire
/* Les éléments d’indice j < ¢ ont déja été traités x/
/* Traitement de 1’élément d’indice ¢ */
i—1i+1
fintq
/* Nombre de passages < f—d+1; i> f ou tab[i] satisfait la condition d’arrét
*/
fin

Exercice 21

Exercice 22

Exercice 23
tableau trié

Exercice 24

Exercice 25

Exercice 26

Exercice 27

Recherche de lindice du plus petit élément d’un tableau
Recherche séquentielle de l'indice de la premiére occurrence d’un élément dans un tableau

Recherche dichotomique de l'indice d’une occurrence (quelconque) d’un élément dans un

Insertion d’un élément dans un tableau trié
Suppression d’un élément a un indice donné
Suppression de tous les doublons d’un tableau trié

Interclassement de 2 tableaux



Chapitre 7

La récursivité

La récursivité peut se définir comme la résolution d’un probléme & partir de versions plus simples de lui-
méme. De fait, de nombreux problémes se définissent tout naturellement de fagon récursive. Par exemple,
la fonction factorielle se définit récursivement par :

1. définition de factorielle pour un cas élémentaire (régle de base)
ol=1

2. définition de factorielle pour un cas non élémentaire, en fonction de la définition de factorielle pour
un cas plus simple (régle récursive)

nl=nx*(n—1) pour n>1

De méme, la suite de Fibonacci se définit récursivement par les 3 régles suivantes :
1. premiére régle de base
fibo(0) =1

2. deuxiéme régle de base
fibo(1) =1

3. régle récursive
fibo(n) = fibo(n — 1) + fibo(n —2) pour n > 2

La terminaison de ce genre de définition est garantie par le fait qu’un “critére” (en l’occurrence la valeur
de n) est modifié d’un appel récursif a ’autre et converge (en un nombre d’étapes finies) vers un des cas
de base.

D’une fagon similaire, un algorithme peut résoudre un probléme de fagon récursive. Dans ce cas, on
procédera toujours selon les deux étapes suivantes :
1. résolution du probléme dans les cas élémentaires (les cas de base) ;

2. résolution du probléme pour les cas non élémentaires en faisant appel a la résolution du probléme
pour des cas plus simples.

Pour s’assurer de la terminaison de ce genre d’algorithme, il faut vérifier que d’un appel récursif a 'autre,
les valeurs d’un ou plusieurs paramétres changent de telle sorte que ’on converge, en un nombre d’appels
fini, vers un cas élémentaire.

Considérons par exemple Palgorithme de calcul récursif d’une factorielle.
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Fonction : entier fact rec(n)
Entrées :
entier n
Précondition :
n>0
Postcondition :
retourne n!
début
si n = 0 alors
/* résolution pour le cas de base n=0 */

retourner I
sinon

/* résolution récursive */
retourner (nxfact_rec(n — 1))
finsi

fin

Cet algorithme termine (sous la précondition que n soit effectivement positif ou nul au départ, autrement,
¢a boucle!!!). En effet, & chaque appel récursif la valeur de n est décrémentée de 1 de telle sorte que n
converge (au bout de n appels successifs) vers le cas de base n = 0.

L’énoncé de cet algorithme est plus “élégant” que sa version répétitive, notamment parce qu’il est plus
concis et qu’il reproduit la définition récursive usuelle de la fonction mathématique factorielle.

La complexité théorique de cet algorithme est la méme que celle de sa version répétitive : en effet, pour
calculer la factorielle de n, on effectuera n appels successifs a fact _rec, chaque appel se résumant a une
affectation pour le passage du parameétre en entrée, un test (n = 0), une multiplication et une affectation
pour le passage du paramétre en sortie. Au total, on effectuera donc 2 x n affectations, n tests et n
multiplications. Par conséquent, la complexité de fact rec est linéaire en O(n).

En pratique, chaque appel récursif nécessite d’empiler un nouvel environnement au moment de I’exécution,
cet environnement étant ensuite dépilé au retour de I'appel. Ces empilements et dépilements successifs
prennent un peu de temps et de place mémoire. Par conséquent, un algorithme récursif pourra étre
trés légérement moins efficace qu’un algorithme itératif effectuant le méme traitement. Cependant, de
nombreux compilateurs peuvent optimiser un code récursif pour éviter ces empilements et dépilements
d’environnements (on parle de “dérécursification”). Dans ce cas, le code exécutable optimisé obtenu a
partir d’un algorithme récursif est aussi efficace que le code exécutable obtenu & partir d’un algorithme
itératif.

Exercice 28 Calcul récursif de la n-iéme valeur de la suite de Fibonacci

Exercice 29 Affichage de caractéres saisis au clavier dans lordre inverse de leur saisie
Exercice 30 Calcul récursif de x¥

Exercice 31 Palindrome récursif

Exercice 32 Recherche dichotomique récursive

Exercice 33 Afficher l’ensemble des nombres de n chiffres ne comportant que des 1 et des 2. Par exemple,
l’ensemble des nombres de &8 chiffres ne comportant que des 1 et des 2 est

{222,221, 212,211,122, 121,112, 111}



Chapitre 8

Etude de quelques tris

Les méthodes de tri sont trés importantes en pratique et interviennent dans de nombreux problémes. Le
tri est également un bon exemple de probléme pour lequel de nombreux algorithmes existent.

Spécification du probléme de tri: on dispose en entrée d’une suite (une liste, une séquence, ...) de
n éléments comparables; le résultat en sortie est une suite dont les éléments sont une permutation des
éléments de la suite donnée en entrée et telle que les éléments se succédent par ordre croissant.

On étudie ici les tris sur les tableaux (la suite d’éléments & trier est rangée dans un tableau) ; on étudiera
ultérieurement des tris sur des listes chainées et des fichiers.

On supposera ici que les éléments du tableau a trier sont d’un type “Telt” inconnu pour lequel on dispose
des opérations de comparaison <, >, =, <, > usuelles. On dira que Ialgorithme est générique, c’est-a-dire
qu’il est paramétré sur le type des éléments du tableau et la fonction de comparaison.

La spécification d’une procédure de tri est la suivante :

Procédure : tri(tab, d, f)
Entrée/Sortie :
Telt tab[?..7]
Entrées :
entier d, f
Postcondition :
1)- Le tableau en sortie est une permutation du tableau en entrée.
2)- Les éléments du tableau en sortie sont triés par ordre croissant, i.e.,
Vi € [d..f — 1], tab®"t[i] < tab®“[i + 1]

Exercice 34 Tri par sélection

On trie les éléments d’un tableau en sélectionnant un par un les éléments du tableau, du plus petit au
plus grand :
1. on recherche le plus petit élément du tableau, et on ’échange avec le premier élément du tableau,
puis
2. on recherche le plus petit élément du sous-tableau commencant au deuxiéme indice, et on ’échange
avec le deuxiéme élément du tableau, puis

3. on recherche le plus petit élément du sous-tableau commencant au troisiéme indice, et on ’échange
avec le troisiéme élément du tableau,

4. ...etc...
D’une facon plus générale, on répéte les 3 opérations suivantes :
1. chercher l'indice ipp du plus petit élément du sous-tableau commencant & ’indice 1,

2. échanger I’élément d’indice ipp avec ’élément d’indice ¢ du tableau,
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3. incrémenter

Au départ, ¢ est initialisé & d; on arréte le processus lorsque 7 est égal & f.

Pour chercher I'indice du plus petit élément d’un sous-tableau, on peut utiliser la fonction “indice _plus_ petit”.
Exercice 35 1ri par insertion

Le tri par insertion procéde de la méme fagon qu’un joueur de carte pour trier ses cartes, en insérant
successivement, chaque élément du tableau dans un sous-tableau déja trié : & la "¢ étape, les ¢ — 1
premiers éléments du tableau sont déja triés et on insére le i¢*¢ élément du tableau dans ce sous-tableau
trié.

eme

Pour insérer le 4 élément dans le sous-tableau trié, on peut utiliser la procédure “insere _trie”.

Exercice 36 Tri rapide ou quicksort

Le tri rapide est un exemple de tri par dichotomie. L’idée est de récursivement

1. partitionner le tableau a trier en deux sous-tableaux tels que tous les éléments du premier sous-
tableau soient inférieurs & tous les élements du second tableau,

2. recommencer ce processus sur chacun des sous-tableaux

jusqu’a ce que les sous-tableaux & trier ne contiennent plus qu’un seul élément.



Chapitre 9

Les structures

Le type structure désigne une suite comportant un nombre déterminé de données de types différents,
chaque composant de la structure étant appelé champ.

Déclaration d’une structure : une variable de type structure est déclarée selon la syntaxe suivante

struct
T1 champ
Ts champs

T, champ,
fstruct nom_var

ol n est le nombre de champs de la variable nom_var. Pour chacun des champs, on précise son type T;
et son nom champ _i. Par exemple, la variable date déclarée de la fagon suivante :

struct
entier jour
texte(10) mois
entier annee
fstruct date

est une structure composée de 3 champs : un premier champ de nom jour et de type entier, un deuxiéme
champ de nom mois et de type texte et un troisiéme champ de nom annee et de type entier.

Déclaration d’un type structure : Quand plusieurs variables sont d’un méme type structure, il est
vivement recommandé de définir un nouveau type, puis de déclarer les variables comme appartenant & ce

type.

Par exemple, on peut déclarer les types Tdate et Tpersonne de la fagon suivante :
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type struct
entier jour
texte(10) mois
entier annee
fstruct Tdate
type struct
texte(20) nom
texte(20) prenom
car sexe
Tdate date_naissance
fstruct Tpersonne

et ensuite déclarer les variables toto et durand comme étant de type Tpersonne :

Déclarations : Tpersonne toto, durand

Accés a un champ d’une structure : on accéde & un champ d’une structure en faisant suivre le
nom de la structure d’un point ‘.’ et du nom du champ. Ainsi, toto.nom désigne le champ nom de la
variable structurée toto, tandis que durand.date _naissance.annee désigne le champ annee du champ
date__naissance de la variable structurée durand.

Exercice 37 Comparaison de dates

Exercice 38 FEtant données une date d, une adresse a et une personne p, déterminer si p a plus de 18
ans @ la date d, et si elle habite la méme ville que a.

Exercice 39 Tri indirect d’un tableau de personnes, par age croissant



