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Chapitre 1

Introduction

1.1 Notion d'algorithme

L'algorithmique est une notion ancienne (apparue bien avant les premiers ordinateurs) qui peut se dé�nir
comme

�une méthode de résolution d'un problème sous la forme d'une suite d'opérations élémentaires
obéissant à un enchaînement déterminé.�

Considérons par exemple le problème suivant :

Plusieurs dossiers, classés par ordre alphabétique sur le nom, sont empilés sur une table. Il
s'agit de déterminer si une personne de nom X a bien un dossier à son nom dans la pile.

Avant de chercher à résoudre ce problème, on commence par le spéci�er plus précisément. Pour celà, on
identi�e :
� les données du problème (ce qu'on a en entrée avant de commencer la résolution) ;
� les résultats (ce qu'on fournit en sortie à la �n de la résolution) ;
� les éventuelles préconditions sur les données (des informations sur la nature des données en entrée) ;
� les postconditions (une relation dé�nissant ce qu'on doit fournir en sortie en fonction de ce qu'on a en
entrée).

Pour notre problème de recherche de dossier, on peut dé�nir la spéci�cation suivante :

Algorithme : Recherche linéaire
Entrées :

Une pile de dossiers P
Un nom X

Sorties :
Une réponse R

Précondition :
Les dossiers de P sont empilés par ordre alphabétique sur le nom, le dossier comportant le
plus petit nom se trouvant au sommet de la pile.

Postcondition :
Si P contient un dossier au nom de X alors R doit être égal à oui sinon R doit être égal à non

On peut maintenant chercher une méthode pour résoudre ce problème. Une première solution consiste
à regarder successivement chaque dossier de la pile de façon linéaire, à partir du dossier se trouvant
au sommet de la pile, jusqu'à trouver soit le dossier ayant pour nom X, soit un dossier ayant un nom
supérieur à X (auquel cas X n'a pas de dossier). L'algorithme correspondant peut s'exprimer de la façon
suivante :
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6 CHAPITRE 1. INTRODUCTION

début
tant que la pile de dossiers P n'est pas vide
et le nom du dossier au sommet de P est inférieur à X faire

Prendre le dossier au sommet de P
Le poser à coté de P

�ntq
si P est vide ou le nom du dossier au sommet de P est di�érent de X alors

R← non
sinon

R← oui
�nsi

�n

La nature des opérations élémentaires utilisées pour résoudre le problème dépend des capacités de la
personne (ou machine) qui va exécuter l'algorithme.

Ici, on suppose que l'algorithme s'adresse à une personne capable d'e�ectuer les opérations suivantes :
� comparer (selon l'ordre alphabétique) le nom du dossier au sommet de la pile avec X,
� prendre le dossier au sommet de la pile,
� poser un dossier à coté de la pile,
� regarder si la pile de dossiers est vide.
Cet algorithme introduit 3 types d'enchaînement d'opérations.

1. L'enchaînement en séquence consiste à e�ectuer les opérations en séquence les unes à la suite des
autres. Par exemple, les lignes 4 et 5 s'enchaînent en séquence et, par conséquent, l'opération
élémentaire de la ligne 5 n'est commencée qu'une fois que celle de la ligne 4 est terminée.

2. L'enchaînement alternatif consiste à e�ectuer alternativement soit une première suite d'opérations,
soit une autre, en fonction d'une condition. Par exemple, en fonction de la condition de la ligne 7,
on e�ectuera alternativement l'opération élémentaire de la ligne 8, ou celle de la ligne 10.

3. L'enchaînement répétitif consiste à e�ectuer plusieurs fois une même suite d'opérations élémentaires
tant qu'une condition donnée est véri�ée. Par exemple, les opérations des lignes 4 et 5 sont répétées
tant que les deux conditions des lignes 2 et 3 sont véri�ées.

Notons en�n que cet algorithme termine, c'est à dire qu'il s'exécute en un temps �ni. En e�et, si la pile
contient n dossiers, les opérations des lignes 4 et 5 seront exécutées au plus n fois : à chaque fois, un
dossier est enlevé de la pile ; au bout de n fois, la pile est vide et la condition de la ligne 1 n'est plus
véri�ée.

L'algorithme de recherche séquentielle permet e�ectivement de résoudre notre problème. Il est cependant
relativement ine�cace : si la pile contient 1000 dossiers, il faudra en moyenne regarder le nom de 500
dossiers avant de pouvoir résoudre le problème, et dans le pire des cas, il faudra en regarder 1000.

De fait, une personne sensée se trouvant face à une pile de 1000 dossiers triés par ordre alphabétique ne
regardera pas chaque dossier linéairement, du premier au dernier, mais partagera la pile de dossiers en 2
piles de tailles comparables et, en fonction du nom du dossier au sommet de la deuxième pile, continuera sa
recherche soit dans la première pile, soit dans la seconde. Elle répètera ainsi ce processus �dichotomique�
jusqu'à trouver le bon dossier ou bien jusqu'à ce que la pile soit vide. L'algorithme correspondant peut
être formulé de la façon suivante :
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début
tant que la pile de dossiers P n'est pas vide
et le nom du dossier au sommet de P est di�érent de X faire

Couper la pile de dossiers P en 2 parties
(On appellera Psup la moitié supérieure, et Pinf la moitié inférieure)
si le nom du dossier au sommet de Pinf = X alors

Ne garder que le premier dossier de Pinf dans P
sinon si le nom du dossier au sommet de Pinf > X alors

Enlever de P tous les dossiers de Pinf
sinon

Enlever de P le premier dossier de Pinf
Enlever de P tous les dossiers de Psup

�nsi

�ntq
si P est vide alors

R← non
sinon

R← oui
�nsi

�n

Ce deuxième algorithme, plus compliqué dans son énoncé que le premier est néanmoins nettement plus
e�cace. En e�et, si la pile contient 1000 dossiers, on la séparera en 2 piles de 500 dossiers puis une des
2 piles de 500 dossiers sera séparée en 2 piles de 255 dossiers, ... de telle sorte qu'en répétant (au plus)
10 fois ce processus dichotomique, soit on aura trouvé le dossier, soit la pile sera vide. Ainsi, alors que
l'algorithme de recherche séquentiel demandera en moyenne de consulter 500 dossiers, celui de recherche
dichotomique ne demandera que 10 consultations (dans le pire des cas).

Ce premier exemple permet d'introduire un point fondamental de l'algorithmique, à savoir la complexité.
En e�et, étant donné un même problème, il existe généralement plusieurs algorithmes le résolvant. Ces
algorithmes seront notamment comparés sur leur complexité en temps, c'est à dire sur le nombre d'opé-
rations élémentaires qui devront être e�ectuées pour résoudre un même problème. Cette complexité
est calculée �approximativement� dans le sens où l'on donnera simplement un ordre de grandeur : sur
l'exemple précédent on dira que l'algorithme de recherche linéaire est d'ordre linéaire, noté O(n), ce qui
signi�e que si l'on a n dossiers il faudra faire de l'ordre de n opérations, tandis que l'algorithme de re-
cherche dichotomique est d'ordre logarithmique, noté O(log2(n)), ce qui signi�e que si l'on a n dossiers
il faudra faire de l'ordre de log2(n) opérations.

1.2 Introduction à la structure d'un ordinateur

Dans le contexte de ce cours, un algorithme est conçu pour être exécuté par un ordinateur. La notion
d'opération élémentaire dépend donc des capacités d'un ordinateur. De façon très schématique, un ordi-
nateur est composé des éléments suivants :
� une mémoire, chargée de conserver l'information ;
La mémoire est composée d'une suite d'informations élémentaires appelées bit. Un bit peut prendre
deux valeurs (généralement symbolisées par 0 et 1). Une suite de 8 bits forme un octet. Chaque octet
a une adresse dans la mémoire permettant d'y accéder.

� une unité centrale (CPU), chargée de traiter l'information ;
L'unité centrale est capable d'exécuter un nombre �ni (et très limité) d'instructions simples. L'ensemble
des instructions que l'unité centrale est capable d'exécuter forme le langage machine.

� plusieurs unités d'entrée/sortie, chargées d'échanger des informations avec l'environnement extérieur
(le clavier, la souris, l'écran, ...) ;

� un bus, chargé de transférer l'information entre la mémoire, les unités d'entrée/sortie et l'unité centrale.
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1.3 Démarche pour la résolution d'un problème

Pour résoudre un problème à l'aide d'un ordinateur, il est assez vite apparu indispensable d'ajouter des
niveaux de description et d'abstraction entre l'homme, qui pose le problème, et la machine, qui est chargée
de le résoudre. En e�et, l'homme dé�nit le problème en langue naturelle (par exemple en français), de
façon informelle et souvent ambigüe et incomplète. A l'autre extrémité du processus, un ordinateur n'est
capable d'exécuter que des instructions de très bas niveau, où l'information est codée sous la forme d'une
suite de 0 et de 1.

Du problème à la spéci�cation formelle

A partir de la description informelle, ambigüe et incomplète du problème, l'analyste élabore une spéci-
�cation formelle, qui décrit de façon non ambigüe et (si possible) complète et correcte ce que doit faire
le programme, c'est à dire le �quoi�. Cette description est faite indépendemment d'une solution. Il s'agit
notamment de préciser
� les paramètres en entrée, c'est à dire la nature des questions ou données du problème,
� les paramètres en sortie, c'est à dire la nature des solutions ou résultats au problème,
� les préconditions, c'est à dire les conditions portant sur les paramètres en entrée sous lesquelles le
problème est dé�ni,

� la relation entre les paramètres en entrée et les paramètres en sortie, c'est à dire la valeur des paramètres
en sortie en fonction de celle des paramètres en entrée,

� les contraintes à respecter pour la résolution du problème (notamment les contraintes de ressources).

De la spéci�cation formelle à l'algorithme

A partir de la spéci�cation formelle, l'analyste/programmeur élabore un algorithme, qui spéci�e le �com-
ment�, c'est à dire l'enchaînement d'opérations élémentaires à e�ectuer pour résoudre le problème.

Un algorithme est généralement élaboré selon une démarche descendante, qui consiste à décomposer le
problème en sous-problèmes, chaque sous-problème devant être de nouveau clairement spéci�é puis résolu.
Cette décomposition permet d'aborder le problème progressivement en créant des niveaux de description
de plus en plus détaillés. Chacun des sous-problèmes sera d'autant plus compréhensible que dans sa
description il n'y a que quelques idées simples. En général, la taille d'un algorithme ne doit pas dépasser
une vingtaine de lignes.

Véri�cation de l'algorithme

Une fois conçu, un algorithme doit être validé. Il s'agit de véri�er que l'algorithme répond e�ectivement
au problème spéci�é, et plus particulièrement qu'il est
� correct, c'est-à-dire que les valeurs des paramètres de sortie calculées par l'algorithme sont e�ectivement
celles que l'on souhaitait calculer ;

� complet, c'est-à-dire que les bonnes valeurs des paramètres de sortie sont trouvées pour toutes les
valeurs possibles des paramètres en entrée (dans les limites spéci�ées par les préconditions) ;

� �ni, c'est-à-dire que le nombre d'opérations élémentaires à e�ectuer pour résoudre le problème est �ni,
autrement dit, que l'algorithme ne �boucle� pas indé�niment sur une série d'instructions.

Cette véri�cation peut être e�ectuée de façon théorique par une preuve. Elle doit généralement être
validée expérimentalement par des tests, c'est à dire une simulation de l'exécution de l'algorithme sur
un certain nombre de données. Ces données utilisées pour tester la solution sont appelées jeux d'essai.
Elles doivent être les plus complètes possibles, de façon à tester l'algorithme sur tous les cas possibles
d'utilisation.

Il s'agit par ailleurs d'évaluer la complexité en temps de l'algorithme, c'est à dire un ordre de grandeur
du nombre d'opérations élémentaires qui devront être e�ectuées en fonction des valeurs des paramètres
en entrée. En�n, il faut également évaluer la complexité en espace de l'algorithme, c'est à dire la taille
mémoire nécessaire à l'exécution de l'algorithme.
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De l'algorithme au programme

L'algorithme est ensuite codé par le programmeur dans un langage de programmation. On distingue
usuellement 3 styles de langages de programmation, correspondant à 3 paradigmes de programmation :
� les langages impératifs (par exemple C, Ada, Cobol, Fortran, Pascal), où les opérations élémentaires
sont des a�ectations et appels de procédures ;

� les langages fonctionnels (par exemple Lisp, Scheme, Haskell, CAML), où les opérations élémentaires
sont des appels de fonctions ;

� les langages logiques (par exemple Prolog), où les opérations élémentaires sont des a�rmations logiques.
Dans ces 3 catégories de langages de programmation, les programmes sont essentiellement structurés en
termes de décomposition fonctionnelle et de traitements. Il existe un quatrième paradigme de program-
mation, orthogonal aux 3 premiers qui consiste à structurer les programmes en termes de données : la
programmation orientée objet. Ainsi, il existe des langages impératifs orientés objet (par exemple C++,
Java, Ei�el), des langages fonctionnels orientés objet (par exemple Clos, Smalltalk, Loops) et des langages
logiques orientés objet (par exemple L&O, Login, Life).

Les opérations élémentaires utilisées pour coder un algorithme dépendent du langage de programmation
choisi. Néanmoins, tous ces langages permettent de coder facilement les di�érents types d'enchaînements
(en séquence, alternatif et répétitif) apparaissant dans un algorithme. La structuration et la gestion des
données varie aussi d'un langage à l'autre. Il est alors nécessaire d'adapter en conséquence l'algorithme
au moment du codage.

Du programme au code exécutable

Le code écrit dans un langage de programmation, appelé le code source, est ensuite traduit par un
compilateur ou un interpréteur en un code en langage machine, appelé le code objet et exécutable par
l'ordinateur. Un compilateur traduit la totalité du programme source pour générer un code objet qui
sera ensuite exécuté, tandis qu'un interpréteur traduit une par une les instructions du code source et les
exécute au fur et à mesure de la traduction. Cette phase de compilation ou d'interprétation est entièrement
automatique et est e�ectuée par un programme. Vous en apprendrez plus sur ce sujet à l'occasion du
cours de théorie des langages, en deuxième année.
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Chapitre 2

Variables, Expressions et A�ectations

2.1 Les variables

Un problème est spéci�é par une relation entre les valeurs des paramètres en entrée (les données) et les
valeurs des paramètres en sortie (les résultats). Pour calculer les valeurs des paramètres en sortie à partir
des valeurs en entrée, un algorithme peut utiliser des données intermédiaires, appelées variables locales.

Ainsi, un algorithme manipule 3 catégories de données, plus généralement appelées variables : les para-
mètres en entrée, les paramètres en sortie et les variables locales ; ce qui peut être schématisé de la façon
suivante :

Algorithme :
paramètres relation entre entrées et sorties paramètres
en −→ ������������������� −→ en
entrée variables locales sortie

Par exemple, le problème consistant à résoudre une équation du second degré peut être décrit par :

Résolution d'une équation du second degré :
ar2

1 + br1 + c = ar2
2 + br2 + c = 0

a, b, c −→ ������������������� −→ r1, r2

variable locale : delta

Chaque variable (paramètre en entrée, paramètre en sortie ou variable locale) peut être vue comme une
boite contenant une information. Elle est caractérisée par un nom, permettant de référencer la boite, un
type, permettant de caractériser la nature des informations que l'on pourra déposer dans la boite, et une
valeur, désignant l'information e�ectivement contenue dans la boite.

2.1.1 Nom d'une variable

Le nom d'une variable, aussi appelé identi�cateur, est la représentation symbolique de l'adresse où est
stockée la valeur de la variable dans la mémoire. En e�et, les données sont conservées dans la mémoire
de l'ordinateur. Cette mémoire est constituée d'une suite de bits (informations binaires) regroupés par
groupe de 8 en octets. Chaque octet a une adresse permettant de le retrouver. Au lieu de désigner une
variable par son adresse en mémoire, on donne un nom symbolique à cette adresse.

Syntaxiquement, le nom d'une variable est une suite de caractères alpha-numériques, commençant par
une lettre (majuscule ou minuscule). Le nom de la variable doit être choisi judicieusement a�n de donner
une indication sur la nature et le rôle de la donnée. Ainsi, si la variable correspond au total d'une facture,
il est préférable de l'appeler total-facture plutôt que toto ou X23.

11
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2.1.2 Type d'une variable

Toutes les données sont stockées en mémoire sous la forme d'une suite de 0 et de 1. En fonction du type
(de la nature) de la donnée, cette suite de 0 et de 1 sera interprétée (décodée) di�éremment. Par exemple,
� un entier relatif peut être codé sur 2 octets consécutifs (soit 16 bits) de telle sorte que le bit le plus
à gauche indique le signe de l'entier (positif si le bit est à 0, négatif sinon), tandis que les autres bits
correspondent à l'entier codé en base 2 ;

� un nombre �ottant peut être codé sur 4 octets consécutifs de telle sorte que l'octet le plus à gauche
représente l'exposant (en base 2) et les 3 octets suivants la mantisse (en base 2) ;

� un caractère est codé sur un octet par son code ASCII en base 2 ;
� etc, . . .
Pour connaître la valeur d'une variable, il est alors indispensable de connaître au préalable son type pour
savoir sur combien d'octets elle est codée et comment interpréter correctement la suite correspondante
de 0 et de 1.

Ainsi, il faut déclarer le type de chaque variable (paramètres et variables locales) avant de l'utiliser. A
la suite de cette déclaration, on ne pourra mettre dans la variable que des informations appartenant au
type déclaré.

La déclaration d'une donnée s'e�ectuera en faisant suivre le type de la variable de son nom. On utilisera
dans la suite les types de données suivants :
� Les types de données élémentaires :
� le type entier, désignant l'ensemble des entiers relatifs ;
En pratique, le nombre d'entiers que l'on peut représenter est limité par le nombre d'octets utilisés
pour les représenter, et les entiers trop grands (en valeur absolue) doivent être codés di�éremment.

� le type réel, désignant l'ensemble des réels ;
Là encore, il n'est pas possible de coder l'ensemble de tous les réels. En pratique, les réels sont
approximés par des nombres �ottants (ce qui peut provoquer des erreurs numériques).

� le type car, désignant l'ensemble des caractères du clavier (caractères alpha-numériques et caractères
spéciaux) ;

� le type logique (aussi appelé booléen), désignant les deux valeurs vrai et faux ;
� le type pointeur, désignant l'ensemble des adresses mémoires (ce type sera étudié au deuxième
semestre) ;

� le type texte, aussi appelé chaîne, désignant l'ensemble des chaînes de caractères1

� Les types de données composés :
� le type tableau, désignant une suite indexée comportant un nombre variable mais borné de données
de même type ;

� le type structure, désignant une suite comportant un nombre �xé de données de types di�érents ;
� le type fichier, désignant une suite comportant un nombre variable mais non borné a priori de
données de même type (ce type sera étudié au deuxième semestre).

2.1.3 Valeur d'une variable

La valeur d'une variable est contenue dans l'emplacement mémoire se trouvant à l'adresse représentée par
le nom de la variable. Ce contenu (une suite de 0 et de 1) doit être interprété correctement en fonction
du type de la variable.

Attention : à la suite de sa déclaration, la valeur d'une variable n'est pas dé�nie.

Données constantes : Certaines variables ont une valeur constante, qui ne change pas pendant toute
l'exécution de l'algorithme. Ces variables sont appelées constantes. Elles sont déclarées au début de
l'algorithme en faisant suivre le nom de la variable par sa valeur.

1Dans de nombreux langages, le type texte est représenté par un tableau de caractères.
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2.2 Description des variables dans un algorithme

Par la suite, la partie statique d'un algorithme, spéci�ant les paramètres et déclarant les variables, sera
décrite selon le formalisme suivant :

Procédure : nom-de-la-procédure(<noms-des-paramètres>)
Entrées :

pour chaque paramètre en entrée, préciser son type et son nom
Sorties :

pour chaque paramètre en sortie, préciser son type et son nom
Précondition :

Conditions sur les paramètres en entrée
Postcondition :

Relation entre les paramètres en entrée et ceux en sortie
Déclarations :

pour chaque variable locale, préciser son type et son nom
const : pour chaque constante, préciser son nom et sa valeur

début
Suite d'opérations élémentaires permettant de calculer les paramètres en sortie en fonction des
paramètres en entrée (partie dynamique de l'algorithme)

�n

Par exemple, l'algorithme calculant les racines d'une équation du second degré peut être spéci�é de la
façon suivante :

Procédure : racines(a, b, c, r1, r2)
Entrées :

réel a
réel b
réel c

Sorties :
réel r1

réel r2

Précondition :
b2 − 4ac ≥ 0 et a 6= 0

Postcondition :
ar2

1 + br1 + c = ar2
2 + br2 + c = 0 ou autrement dit, r1 et r2 sont les deux solutions de

l'équation ax2 + bx + c = 0
Déclarations :

réel delta
début

Suite d'opérations élémentaires
permettant de calculer r1 et r2 à partir de a, b et c.

�n

Pour abbréger, on pourra regrouper plusieurs déclarations de paramètres sur une même ligne lorsqu'ils
ont le même mode de passage (entrée ou sortie) et le même type :

Procédure : racines(a, b, c, r1, r2)
Entrées :

réel a, b, c
Sorties :

réel r1, r2
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2.3 L'a�ectation

Pour résoudre un problème, un algorithme décrit la suite d'instructions à e�ectuer pour calculer les valeurs
des paramètres en sortie à partir des valeurs des paramètres en entrée. Il existe 2 instructions di�érentes :
l'a�ectation, qui permet de changer la valeur d'une variable, et l'appel de procédure, qui permet d'appeler
(d'utiliser) un algorithme dans un autre. On étudie ici l'a�ectation ; l'appel de procédure sera étudié au
chapitre 4.

L'a�ectation permet de changer la valeur d'une variable, autrement dit de modi�er le contenu de la
mémoire à l'adresse symbolisée par le nom de la variable. Syntaxiquement, une a�ectation sera représentée
par :

nom-var ← expr

et a pour signi�cation : la variable de nom nom-var prend pour valeur la valeur de l'expression expr,
autrement dit, la valeur de l'expression expr est stockée dans la mémoire à l'adresse symbolisée par le
nom nom-var. La valeur de l'expression expr doit appartenir au type déclaré pour la variable nom-var.

2.4 Dé�nition d'une expression

L'expression a�ectée à une variable peut être une valeur explicite :

par exemple, l'instruction a← 25 a�ecte la valeur 25 à la variable de nom a.

L'expression a�ectée à une variable peut également être la valeur contenue dans une autre variable :

par exemple, l'instruction a ← b a�ecte à la variable de nom a la valeur contenue dans la
variable de nom b.

En�n, l'expression a�ectée à une variable peut être le résultat d'une opération entre d'autres expressions.
Il existe 3 types d'opérations : les opérations arithmétiques, les opérations de comparaison et les opérations
logiques.

2.4.1 Opérations arithmétiques

Les opérations arithmétiques binaires sont : l'addition, notée �+�, la soustraction, notée �-�, la
multiplication, notée �*�, la division réelle, notée �/�, la division entière notée �div� et le modulo2, noté
�mod�. Ces opérations prennent en argument deux expressions numériques et rendent la valeur numérique
correspondant à l'application de l'opération sur les valeurs des expressions en argument.

Ces opérations sont dé�nies sur les réels et sur les entiers, sauf �div� et �mod� qui ne sont dé�nies que
sur les entiers.

En�n, les opérateurs de multiplication, de division et de modulo sont plus prioritaires que (et donc évalués
avant) les opérateurs d'addition et de soustraction. Une expression arithmétique peut être parenthésée
pour spéci�er l'ordre de son évaluation.

Les opérations arithmétiques unaires sont le plus unaire, noté �+�, et le moins unaire, noté �-�.
Ces opérations prennnent en argument une expression numérique et rendent une valeur numérique.

2.4.2 Opérations de comparaison

Une opération de comparaison prend en argument deux expressions de même type élémentaire (2 entiers,
2 réels, 2 caractères ou 2 chaînes de caractères), et rend une valeur logique (vrai ou faux). On utilisera
les opérations de comparaison suivantes : <,≤, =, 6=,≥ et >.

Les entiers et les réels sont comparés selon l'ordre numérique usuel. Les caractères sont comparés selon
l'ordre dé�ni par le code ASCII : chaque caractère est codé par un entier compris entre 0 et 255, appelé
code ASCII, et pour comparer deux caractères, on compare leur code ASCII. Dans ce code, les chi�res
sont inférieurs aux caractères majuscules qui sont eux-mêmes inférieurs au caractères minuscules.

2On rappelle que le modulo est le reste de la division entière. Autrement dit, x mod y = x− y ∗ (x div y) Par exemple,

23 mod 7 = 2 car 23 div 7 = 3 et 23− 3 ∗ 7 = 2.
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Les chaînes de caractères sont comparées selon l'ordre lexicographique : un texte t1 est inférieur à un
texte t2 s'il existe un caractère c de t1 tel que
� pour chaque caractère se trouvant avant c dans t1, le caractère correspondant de t2 soit identique,
� le caractère correspondant à c dans t2 soit supérieur à c.
Par exemple, ”aabcd” < ”aax” et ”10” < ”9”.

2.4.3 Opérations logiques

Les opérations logiques binaires sont la disjonction, notée ou, et la conjonction, notée et. Ces
opérateurs prennent en argument 2 expressions de valeur logique et rendent une valeur logique.

La signi�cation des opérateurs logiques binaires est donnée par la table suivante :

A B A et B A ou B
vrai vrai vrai vrai
vrai faux faux vrai
faux vrai faux vrai
faux faux faux faux

L'opération logique unaire est la négation, notée non. Cet opérateur prend en argument une expres-
sion de valeur logique et rend une valeur logique, selon la table suivante :

A non A
vrai faux
faux vrai

2.4.4 Exemple

Soient les variables suivantes :

entier e1, e2,
réel r1,
logique b1, b2

Après l'exécution de l'instruction

e1 ← (10 mod 3) + (5 div 2)

la variable e1 a pour valeur 1 + 2 = 3 ;
après l'exécution de l'instruction

e2 ← e1 ∗ 2

la variable e2 a pour valeur 3 ∗ 2 = 6 ;
après l'exécution de l'instruction

r1 ← 4.5 ∗ 2.0

la variable r1 a pour valeur 9.0 ;
après l'exécution de l'instruction

r1 ← r1/3.0

la variable r1 a pour valeur 9.0/3.0 = 3.0 ;
après l'exécution de l'instruction

b1 ← (r1 > 4.2) ou (e1 = e2)

la variable b1 a pour valeur faux ;
après l'exécution de l'instruction

b2 ← non(b1) et r1 ≤ 4.2

la variable b2 a pour valeur vrai.
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2.5 Saisie et a�chage de données

Un algorithme calcule les valeurs des paramètres en sortie, en fonction des valeurs des paramètres en
entrée. Les valeurs des paramètres en entrée sont �données� à l'algorithme, tandis que les valeurs des
paramètres en sortie sont fournies comme résultat de l'algorithme à celui qui l'exécutera. Ainsi, on ne
s'occupe pas a priori de la saisie des valeurs des paramètres en entrée ni de l'a�chage des valeurs calculées
pour les paramètres en sortie. De fait, il est possible que les valeurs calculées par un algorithme ne soient
pas a�chées, mais par exemple qu'elles soient fournies comme valeurs d'entrée d'un autre algorithme.

Dans certains cas, on peut cependant souhaiter saisir au clavier une valeur pour l'a�ecter à une variable.
Pour cela, on pourra utiliser l'instruction �saisir(x)� qui lit au clavier une valeur de même type que la
variable x et a�ecte cette valeur à x. De même, pour a�cher à l'écran la valeur d'une variable x, on
pourra utiliser l'instruction �a�cher(x)�.



Chapitre 3

Enchaînement d'instructions

Les instructions d'un algorithme sont enchainées selon un ordre déterminé. Il existe trois façons di�érentes
d'enchaîner des instructions : en séquence, de façon alternative ou répétitive.

3.1 Enchaînement séquentiel

L'enchaînement séquentiel d'une suite d'instructions permet d'exécuter les instructions les unes à la suite
des autres. Syntaxiquement, les instructions seront notées les unes en dessous des autres (une instruction
par ligne). Dans le cas d'instructions courtes, on pourra noter plusieurs instructions les unes à coté des
autres, séparées par un point virgule. Dans ce cas, les instructions sont tout naturellement exécutées de
la gauche vers la droite.

Exercice 1 Calcul du diamètre, du périmètre et de la surface d'un cercle à partir de son rayon

Exercice 2 Calcul des coe�cients d'une droite à partir de deux points

Exercice 3 Résolution d'une équation du second degré admettant exactement 2 solutions

3.2 Enchaînement alternatif

L'enchaînement alternatif permet d'exécuter alternativement une première suite d'instructions, si une
certaine condition est véri�ée, ou bien une autre série d'instructions, si la condition n'est pas véri�ée.

La syntaxe d'un enchaînement alternatif est

si condition alors
suite-1

sinon
suite-2

�nsi

où condition est une expression logique, et suite-1 et suite-2 sont des suites d'expressions. Cet énoncé
alternatif est interprété de la façon suivante :

�si l'expression logique condition est évaluée à vrai, alors la suite d'instructions suite-1 est
exécutée, sinon (si l'expression logique condition est évaluée à faux), la suite d'instructions
suite-2 est exécutée.�

17
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Une version simpli�ée de ce schéma est

si condition alors
suite-1

�nsi

Cet énoncé est interprété de la façon suivante :

�si l'expression logique condition est évaluée à vrai, alors la suite d'instructions suite-1

est exécutée, sinon (si l'expression logique condition est évaluée à faux), on ne fait rien.�

En�n, dans le cas où l'on a plus de deux alternatives dont toutes les conditions sont exclusives, on pourra
utiliser l'énoncé suivant :

si condition1 alors
suite-1

sinon si condition2 alors
suite-2

sinon si condition3 alors
suite-3

sinon si condition4 alors
suite-4

sinon
suite-5

�nsi

Cet énoncé est équivalent à l'énoncé suivant, imbriquant 4 énoncés alternatifs à deux alternatives :

si condition1 alors
suite-1

sinon
si condition2 alors

suite-2
sinon

si condition3 alors
suite-3

sinon
si condition4 alors

suite-4
sinon

suite-5
�nsi

�nsi

�nsi

�nsi

Exercice 4 Recherche du nombre de solutions d'une équation du second degré quelconque

Exercice 5 Recherche du plus petit nombre parmi trois nombres
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3.3 Enchaînement répétitif

L'enchaînement répétitif permet d'exécuter plusieurs fois une même suite d'instructions ; le nombre de
fois où la suite d'instructions est exécutée étant déterminé par une condition logique.

La syntaxe d'un enchaînement répétitif est

tant que cond faire
suite-inst

�ntq

Cet énoncé est interprêté par l'ordinateur de la façon suivante :

�tant que l'expression logique cond est évaluée à vrai, exécuter les instructions suite-inst,
et recommencer ; arrêter ce processus itératif quand cond est évaluée à faux.�

Exemple 1 : répétition d'un traitement k fois

Parfois, le nombre de fois où le traitement doit être répété est connu dans le sens où une variable du
programme contient le nombre d'itérations à faire. Dans ce cas, une solution consiste à utiliser un compteur
de boucle, que l'on incrémente de 1 à chaque passage dans la boucle. La condition cond de continuation
de la boucle dépend alors de la valeur initialement mise dans ce compteur : on peut par exemple initialiser
le compteur à 1 et continuer tant qu'il est inférieur ou égal au nombre d'itérations souhaitées ; on peut
tout aussi bien initialiser le compteur à 0 et continuer tant qu'il est strictement inférieur au nombre
d'itérations souhaitées.

Considérons par exemple le problème consistant à calculer x à la puissance n, où n est un nombre entier
naturel. Pour résoudre ce problème, il s'agit de faire n multiplications par x. Pour cela, on peut par
exemple compter de 0 à n− 1. On obtient l'algorithme suivant :

Procédure : puissance(n, x, p)
Entrées :

entier n
réel x

Sorties :
réel p

Précondition :
n ≥ 0

Postcondition :
p = xn

Déclarations :
entier cpt

début
p← 1
cpt← 0
tant que cpt < n faire

/* invariant : p = xcpt */

p← p ∗ x
cpt← cpt + 1

�ntq
/* Nombre de passages dans la boucle = n ; cpt = n et p = xcpt = xn */

�n

On peut simuler l'exécution de cet algorithme en remplissant un tableau donnant les valeurs successive-
ment prises par les variables. Par exemple, si x = 2 et n = 4 :
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p cpt
Avant le premier passage 1 0
Après le premier passage 2 1
Après le deuxième passage 4 2
Après le troisième passage 8 3
Après le quatrième passage 16 4

On peut véri�er qu'à chaque passage on a bien p = xcpt. On peut également véri�er qu'après le dernier
passage, on a bien cpt = n et p = xcpt.

On peut imaginer d'autres algorithmes pour calculer x à la puissance n. On aurait par exemple pu compter
de 1 à n...

Procédure : puissance(n, x, p)
...
Déclarations :

entier cpt
début

p← 1
cpt← 1
tant que cpt ≤ n faire

/* invariant : p = xcpt−1 */

p← p ∗ x
cpt← cpt + 1

�ntq
/* Nombre de passages dans la boucle = n ; cpt = n + 1 et p = xcpt−1 = xn */

�n

...ou encore de n à 1.

Procédure : puissance(n, x, p)
...
Déclarations :

entier cpt
début

p← 1
cpt← n
tant que cpt > 0 faire

/* invariant : p = xn−cpt */

p← p ∗ x
cpt← cpt− 1

�ntq
/* Nombre de passages dans la boucle = n ; cpt = 0 et p = xn−cpt = xn */

�n

Quelques conseils au sujet des enchaînements répétitifs

Quand, pour résoudre un problème, on se rend compte que l'on va avoir besoin d'un énoncé répétitif, on
cherche à identi�er les �blocs� suivants :
� Instructions d'initialisation : ce sont les instructions qui permettent d'initialiser les variables sur les-
quelles on va travailler dans l'énoncé répétitif. Dans l'exemple précédent du calcul de x à la puissance
n, ce sont les deux instructions qui initialisent p et cpt.

� Condition d'arrêt : c'est la condition qui doit être satisfaite pour arréter de boucler. Dans l'exemple
précédent, on doit arréter de boucler lorsqu'on a exécuté n fois les instructions à répéter. Notons que la
condition mise derrière le mot clé tant que est la négation de la condition d'arrêt : on doit continuer
tant qu'on n'a pas encore exécuté n fois les instructions à répéter. On prendra l'habitude de mettre
en commentaire après le �ntq la condition d'arrêt (en véri�ant qu'il s'agit bien de la négation de la
condition mise derrière tant que).
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� Instructions à répéter : ce sont les instructions qui sont exécutées à chaque passage dans la boucle. On
distinguera généralement deux sous blocs dans ce bloc d'instructions : les instructions �de traitement�
et les instructions �de passage�.
� Les instructions �de traitement� sont celles à l'origine du fait que l'on écrit un enchaînement répétitif.
Dans l'exemple précédent, il s'agit de l'instruction p← p ∗ x.

� Les instructions �de passage� sont celles qui permettent de modi�er les variables sur lesquelles porte
la condition d'arrêt (les variables qui permettent de contrôler le nombre de passages dans la boucle).
Dans l'exemple précédent, il s'agit de l'instruction cpt← cpt + 1.

En général, on commence par identi�er les instructions �de traitement�. Ensuite, il s'agit d'écrire les
instructions d'initialisation, la condition d'arrêt et les instructions de passage. Ces trois blocs dépendent
les uns des autres, comme l'illustre l'exemple précédent (où l'on a proposé 3 algorithmes di�érents pour
résoudre un même problème). Ils doivent donc être conçus en même temps. A ce moment, on se posera
les questions suivantes :
� Est-on certain que la condition d'arrêt est atteinte ?
� Combien de fois les instructions à répéter sont-elles exécutées ?
Cette information est à mettre en commentaires.

� Quelles sont les valeurs des variables lorsqu'on sort de la boucle.
Cette information est à mettre en commentaires.

Exemple 2 : calcul du produit des n premiers entiers positifs

Il s'agit maintenant de calculer factorielle n, c'est-à-dire, 1 ∗ 2 ∗ 3 ∗ . . . ∗ n. On peut spéci�er ce problème
de la façon suivante :

Procédure : factorielle(n, f)
Entrées :

entier n
Sorties :

entier f
Précondition :

n ≥ 0
Postcondition :

f = n! où n! est la fonction récursivement dé�nie par :
0! = 1
n! = n ∗ (n− 1)!, ∀n ≥ 1
ou, autrement dit, f = 1 ∗ 2 ∗ 3 ∗ ... ∗ n

Pour cela, on se rend compte que l'on a besoin de faire n multiplications, mais contrairement à l'exemple
précédent (puissance), le facteur multiplicatif change à chaque fois : il faut d'abord multiplier par 1, puis
par 2, puis par 3, ... jusque n. On va donc d'abord écrire une boucle où une variable (par exemple i) va
prendre successivement les valeurs 1, 2, 3, ... jusque n, soit :

i← 1
tant que i ≤ n faire

i← i + 1
�ntq
/* Nombre de passages dans la boucle = n ; i = n + 1 */

On peut ensuite ajouter les instructions permettant de multiplier une variable f par les valeurs successi-
vement prises par i. On obtient l'algorithme suivant :
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Procédure : factorielle(n, f)
Déclarations :

entier i
début

f ← 1
i← 1
tant que i ≤ n faire

/* invariant : f = (i− 1)! */

f ← f ∗ i
i← i + 1

�ntq
/* Nombre de passages dans la boucle = n ; i = n + 1 et p = (i− 1)! = n! */

�n

Exemple d'exécution pour n = 4 :

nb de passages dans la boucle 0 1 2 3 4

valeur de i 1 2 3 4 5
valeur de f 1 1 2 6 24

Terminaison : La terminaison de l'algorithme est assurée par le fait que la valeur de i augmente de 1
à chaque passage dans la boucle �tant que� et que l'on s'arrête quand elle devient supérieure ou égale à
celle de n.

Complexité : Pour calculer f à partir de n, il faut d'abord e�ectuer 2 a�ectations, puis il faut répéter
n fois la boucle �tant que�. A chaque passage dans la boucle, on e�ectue 1 test (i ≤ n), 1 addition,
1 multiplication, et 2 a�ectations. Au total, on e�ectuera donc 2 ∗ n + 2 a�ectations, n additions, n
multiplications et n tests. Par conséquent, la complexité de factorielle est linéaire, en O(n).

Correction : La correction de l'algorithme peut être démontrée à l'aide de la propriété invariante. En
e�et, à chaque passage dans la boucle, la propriété invariante f = (i−1)! est véri�ée (on véri�e facilement
qu'elle est vraie au premier passage, et que si elle est vraie à un passage, alors elle est encore vraie au
passage suivant). On arrête de boucler lorsque la condition i ≤ n n'est plus véri�ée, autrement dit lorsque
i = n + 1. A ce moment, du fait de la propriété invariante, on sait que fact = (i− 1)! = n!.

Enoncé pour

Quand il y a une seule instruction d'initialisation et une seule instruction de passage concernant une
variable sur laquelle porte la condition d'arrêt, alors on peut utiliser l'énoncé �pour� suivant :

pour (init ; cond ; passage) faire
traitement

�npour

Cet énoncé est équivalent à l'énoncé suivant :

init
tant que cond faire

traitement
passage

�ntq

Par exemple, les 3 algorithmes permettant de calculer x à la puissance n peuvent être écrits :
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Procédure : puissance(n, x, p)
...
début

p← 1
pour (cpt← 0 ; cpt < n ; cpt← cpt + 1) faire

/* invariant : p = xcpt */

p← p ∗ x
�npour
/* Nombre de passages dans la boucle = n ; cpt = n et p = xcpt = xn */

�n

Procédure : puissance(n, x, p)
...
début

p← 1
pour (cpt← 1 ; cpt ≤ n ; cpt← cpt + 1) faire

/* invariant : p = xcpt−1 */

p← p ∗ x
�npour
/* Nombre de passages dans la boucle = n ; cpt = n + 1 et p = xcpt−1 = xn */

�n

Procédure : puissance(n, x, p)
...
début

p← 1
pour (cpt← n ; cpt > 0 ; cpt← cpt− 1) faire

/* invariant : p = xn−cpt */

p← p ∗ x
�npour
/* Nombre de passages dans la boucle = n ; cpt = 0 et p = xn−cpt = xn */

�n

L'intéret d'un énoncé pour est de rendre plus lisible l'algorithme en regroupant sur une même ligne les
instructions et la condition déterminant le nombre de passages dans une boucle : on peut, sans lire les
instructions de traitement à répéter, savoir combien de fois sera exécutée la boucle... sous réserve que les
instructions de traitement ne modi�ent pas des variables sur lesquelles porte la condition d'arrêt (dans
ce cas, il est probablement plus lisible de ne pas utiliser une boucle pour).

Exercice 6 Calcul de la somme des n premiers entiers

Exercice 7 Déterminer si un nombre est premier

Exercice 8 Calcul de la n-ème valeur de la suite de Fibonacci

Exercice 9 Calcul de cos(x)
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Chapitre 4

Appels de procédures et fonctions

Un algorithme est généralement élaboré par une démarche descendante, qui consiste à décomposer le
problème en sous-problèmes, chaque sous-problème devant être de nouveau spéci�é puis résolu. Cette
décomposition permet d'aborder le problème progressivement en créant des niveaux de description de
plus en plus détaillés. Elle permet également de réutiliser la résolution de certains sous-problèmes pour
résoudre de nouveaux problèmes.

Ainsi, un algorithme peut être �appelé� dans le corps d'un autre algorithme a�n de résoudre un sous-
problème.

4.1 Paramètres e�ectifs

Lors de l'appel d'un algorithme, il faut préciser les valeurs des paramètres en entrée et, en retour, récupérer
les valeurs des paramètres en sortie. Les paramètres utilisés pour cela sont appelés paramètres e�ectifs.

Exemple : Considérons le problème �somme-cos�, qui consiste à calculer la somme cos(1) + cos(2) +
cos(3) + . . . + cos(n).

Procédure : somme-cos(n, sc)
Entrées :

entier n
Sorties :

entier sc
Précondition :

n ≥ 1
Postcondition :

sc =
∑n

i=1 cos(i)
ou, autrement dit, sc = cos(1) + cos(2) + cos(3) + . . . + cos(n)

Pour résoudre ce problème, on a successivement besoin de calculer cos(1), cos(2), ..., jusque cos(n). Or
on a justement déjà résolu ce problème, qui avait été spéci�é de la façon suivante au chapitre précédent :

25
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Procédure : cos(x, eps, cosx)
Entrées :

réel x, eps
Sorties :

réel cosx
Précondition :

eps > 0
Postcondition :

cosx = cos(x), avec une précision de eps

(utilise le développement en série : cos(x) =
∑∞

i=0(−1)i x2i

(2i)! )

On va donc réutiliser la résolution de cos pour résoudre somme-cos. On dira que la procédure somme-cos
appelle la procédure cos. Lors de cet appel, somme-cos doit préciser à cos les paramètres e�ectifs, c'est à
dire :

1. la valeur de x pour laquelle on souhaite calculer cos(x),
2. la valeur de eps, donnant la précision avec laquelle on veut calculer cos(x),
3. la variable de somme-cos dans laquelle on souhaite récupérer le résultat du calcul de cos(x) (résultat

contenu dans le paramètre cosx de cos).

Ces paramètres sont précisés dans l'ordre de leur déclaration. Ainsi, l'appel de �factorielle� se fera par
l'instruction

cos(expr1,expr2,var)

où expr1 et expr2 sont deux expressions dont l'évaluation donne deux réels et var est une variable de
type réel. L'exécution de cette instruction a pour conséquence d'a�ecter à var la valeur de cosx calculée
par cos pour x = expr1 et eps = expr2. Le problème somme-cos peut alors être résolu par l'algorithme
suivant :

Procédure : somme-cos(n, sc)
...
Déclarations :

réel i, cosi
const eps = 0.0001

début
sc← 0
pour (i← 1 ; i ≤ n ; i← i + 1) faire

/* invariant : sc =
∑i−1

k=1 cos(k) */

cos(i, eps, cosi)
sc← sc + cosi

�npour

/* Nombre de passages dans la boucle = n ; i = n + 1 et sc =
∑i−1

k=1 cos(k) */

�n

D'une façon plus générale, quand un algorithme est appelé dans un autre algorithme, on précise la
liste des paramètres e�ectifs, en respectant l'ordre donné lors de la dé�nition de l'algorithme appelé. Le
type d'un paramètre e�ectif doit être le même que celui du paramètre formel correspondant. L'exécution
d'un tel appel de procédure s'e�ectue alors en 3 étapes :

1. A�ectation des valeurs des paramètres e�ectifs aux paramètres en entrée correspondants

2. Exécution de la procédure appelée dans un nouvel environnement

3. A�ectation des valeurs des paramètres en sortie de la procédure appelée aux paramètres e�ectifs
correspondants

Remarques.
� Le paramètre e�ectif correspondant à un paramètre en entrée peut être une valeur, une variable conte-
nant une valeur ou une expression retournant une valeur. Dans tous les cas, la valeur doit être de même
type que le paramètre formel correspondant.
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� Le paramètre e�ectif correspondant à un paramètre en sortie doit toujours être une variable. De plus,
s'il y a plusieurs paramètres en sortie, alors lors de l'appel de la procédure, il faudra utiliser des variables
di�érentes comme paramètres e�ectifs.

Exercice 10 Réutilisation d'algorithmes

Exercice 11 Appels successifs de 3 algorithmes

Exercice 12 Calcul de la somme des n premières factorielles.

4.2 Paramètres en entrée et en sortie

Lors de l'appel d'un algorithme, une même variable peut être utilisée pour passer une valeur en entrée et
en récupérer une autre en sortie. Considérons par exemple la suite d'instructions :

n← 4
factorielle(n, n)

La valeur 4 de la variable n est passée comme paramètre en entrée de factorielle ; tandis qu'à la �n de
l'exécution de factorielle, la valeur du paramètre en sortie est a�ectée à n. Ainsi, à la suite de l'exécution
de ces 2 instructions, la variable n aura pour valeur 24.

Il s'agit là d'une utilisation particulière de factorielle qu'il n'est probablement pas intéressant de généra-
liser. En revanche, certains problèmes consistent systématiquement à modi�er la valeur d'un paramètre,
autrement dit, le paramètre doit être passé à la fois en entrée, pour connaître sa valeur de départ, et en
sortie, pour modi�er cette valeur. Dans ce cas, plutôt que de dupliquer ce paramètre (en le faisant appa-
raitre à la fois en entrée et en sortie), on dira qu'il s'agit d'un paramètre en entrée/sortie. Un paramètre
en entrée/sortie sera déclaré par :

Procédure : nom-algo(var)
Entrée/Sortie :

type-de-var var

Cet algorithme pourra être appelé par :

nom-algo(x)

de telle sorte que le paramètre e�ectif x soit une variable de même type que la variable var. Lors de l'appel
de �nom-algo(x)�, la valeur du paramètre e�ectif x est a�ectée à var, tandis qu'au retour de l'appel, la
valeur de var est a�ectée à x.

Pour spéci�er le rôle d'un tel algorithme, c'est à dire la relation entre la valeur initiale du paramètre en
entrée/sortie, et sa valeur �nale, on a besoin de distinguer ces deux valeurs. Ainsi, on notera varin la
valeur du paramètre var en entrée et varout sa valeur en sortie.
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Exemple : Echanger les valeurs de 2 variables

Procédure : échanger(a, b)
Entrée/Sortie :

entier a, b
Postcondition :

aout = bin

bout = ain

Déclarations :
entier aux

début
aux← a
a← b
b← aux

�n

4.3 Procédures et fonctions

On distingue deux types d'algorithmes :
� les algorithmes dont le but est de calculer une (et une seule) valeur à partir d'un certain nombre
d'autres valeurs données en entrée ; ces algorithmes seront implémentés par des fonctions,

� les autres algorithmes, ayant un nombre quelconque de paramètres en entrée et en sortie ; ces algo-
rithmes seront implémentés par des procédures.

Une fonction calcule une (et une seule) valeur à partir d'un certain nombre d'autres valeurs. Autrement
dit, une fonction prend en entrée 0, 1 ou plusieurs paramètres et retourne en sortie une valeur. Par exemple,
l'algorithme �factorielle� calcule n! pour une valeur de n donnée ; l'algorithme �puissance� calcule xn à
partir de valeurs données pour x et n.

La déclaration d'une fonction s'e�ectuera de la façon suivante :

Fonction : type-fct nom-fct(< paramètres >)
Entrées :

liste des paramètres (types et noms)
Précondition :

Conditions sur les paramètres en entrée
Postcondition :

relation entre la valeur retournée par la fonction et ses paramètres en entrée

La valeur retournée en sortie par la fonction sera spéci�ée dans le corps de la fonction par l'instruction

retourner expr

où expr est une expression (une valeur, une variable contenant une valeur, ou une opération entre ex-
pressions) de type type-fct.

Attention : les instructions se trouvant après une instruction de retour de fonction ne sont pas exécutées.
Autrement dit, l'exécution de la fonction se termine avec la première instruction de retour trouvée.

Une fonction peut être appelée dans un autre algorithme. Un appel de fonction retourne une valeur et
est donc assimilé à une valeur du type de la fonction.
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Exemple 1 : reprise de factorielle.

Fonction : entier factorielle(n)
Entrées :

entier n
Précondition :

n ≥ 0
Postcondition :

retourne n!
Déclarations :

entier i, f
début

f ← 1
pour (i← 1 ; i ≤ n ; i← i + 1) faire

/* invariant : f = (i− 1)! */

f ← f ∗ i
�npour
/* Nombre de passages = n ; i = n + 1 et f = (i− 1)! = n! */

retourner f
�n

La fonction �factorielle� peut alors être appelée dans une expression. Par exemple, après l'exécution des
instructions

x← factorielle(4)
y ← factorielle(x− 3 ∗ factorielle(3))

la variable x a pour valeur 4! = 24, et la variable y a pour valeur (24− 3 ∗ 3!)! = 6! = 240.

Exemple 2 : reprise de l'exercice �plus petit de trois nombres�

Fonction : entier plus-petit(n)
Entrées :

entier a, b, c
Postcondition :

retourne le plus petit nombre de l'ensemble {a, b, c}
début

si a < b alors
si a < c alors

retourner a
sinon

retourner c
�nsi

sinon
si b < c alors

retourner b
sinon

retourner c
�nsi

�nsi

�n
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Sachant que les instructions suivant un retourner ne sont pas exécutées, on aurait tout aussi bien pu
écrire :

Fonction : entier plus-petit(n)
Entrées :

entier a, b, c
Postcondition :

retourne le plus petit nombre de l'ensemble {a, b, c}
début

si a < b alors
si a < c alors

retourner a
�nsi
retourner c

�nsi
si b < c alors

retourner b
�nsi
retourner c

�n

4.4 Modes de passage des paramètres

Lorsque l'on conçoit un algorithme, on a juste besoin de spéci�er, pour chaque paramètre, s'il est donné
en entrée, ou s'il est calculé en sortie, ou s'il est donné en entrée puis modi�é par l'algorithme pour
être ensuite retourné en sortie. Ainsi, au niveau de l'algorithme, on spéci�e pour chaque paramètre son
mode (entrée, sortie ou entrée/sortie). Au moment de programmer l'algorithme, il s'agit de trouver un
mécanisme permettant d'implémenter le comportement correspondant au mode choisi :
� pour un paramètre en entrée : lors de l'appel de la procédure, il faut passer la valeur du paramètre
e�ectif au paramètre formel ; pendant l'exécution de la procédure appelée, si le paramètre formel est
modi�é, il ne faut pas répercuter cette modi�cation sur le paramètre e�ectif.

� pour un paramètre en sortie : à la �n de l'exécution de la procédure appelée, il faut transmettre la
valeur du paramètre en sortie au paramètre e�ectif correspondant.

� pour un paramètre en entrée/sortie : lors de l'appel de la procédure, il faut passer la valeur du paramètre
e�ectif au paramètre formel ; à la �n de l'exécution de la procédure appelée, il faut transmettre la
nouvelle valeur du paramètre formel au paramètre e�ectif correspondant.

Pour implémenter ces comportements, on dispose (dans la plupart des langages de programmation) de
deux mécanismes de passage de paramètres : le passage par valeur et le passage par référence.

Considérons par exemple une procédure q qui appelle une procédure p, et supposons que la procédure p
a un seul paramètre x.
� Si x est passé par valeur :
� lors de l'appel de p, on crée un nouvel environnement au dessus de l'environnement de q. Ce nouvel
environnement contient une nouvelle variable, de nom x, et on recopie la valeur du paramètre e�ectif
correspondant à x dans cette nouvelle variable.

� Lors de l'exécution de p, on utilise cette nouvelle variable dont la valeur peut éventuellement être
modi�ée.

� A la �n de l'exécution de p, son environnement est détruit (et la valeur du paramètre aussi). En
revanche, l'environnement de la procédure q n'est pas modi�é.

� Si x est passé par référence :
� lors de l'appel de p, on ne crée pas un nouvel emplacement mémoire pour stocker x. A la place, on crée
un lien (une référence !) entre le paramètre formel de nom x et le paramètre e�ectif correspondant,
de sorte que p peut accéder au paramètre e�ectif correspondant à x.

� Lors de l'exécution de p, les modi�cations faites sur x sont directement e�ectuées dans l'environne-
ment de q sur le paramètre e�ectif correspondant à x.

� A la �n de l'exécution de p, on détruit le lien entre x et le paramètre e�ectif de q correspondant,
mais les modi�cations faites par p sur ce paramètre e�ectif restent.
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Ainsi, lors de l'implémentation d'un algorithme dans un langage de programmation,
� un paramètre en sortie ou en entrée/sortie sera nécessairement passé par référence ;
� un paramètre en entrée sera généralement passé par valeur.
Cependant, lorsque le paramètre en entrée est codé sur un grand nombre d'octets (ce sera le cas des
tableaux par exemple), on ne le passera pas par valeur mais par référence a�n d'éviter d'avoir à recopier
sa valeur, ce qui peut être long et couteux en place mémoire.
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Chapitre 5

Les tableaux

Un tableau est une suite de n données de même type, rangées consécutivement. On dira que n est la
taille du tableau et que les données sont ses éléments. Chaque élément est repéré dans le tableau par son
indice. Un indice correspond à un numéro d'ordre dans le tableau, les éléments étant rangés par ordre
d'indices consécutifs croissants.

Déclaration d'un tableau : une variable de type tableau est déclarée selon la syntaxe suivante

type-elem nom-tableau[d..f]

où type-elem est le type des éléments du tableau, nom-tableau est le nom du tableau, et d et f repré-
sentent respectivement les indices du premier et du dernier élément du tableau. Si d > f alors le tableau
est vide (il n'a aucun élément), sinon il a f-d+1 éléments de type type-elem.

Par exemple, à la suite des déclarations suivantes :

Déclarations :
entier tab1[1..10]
réel tab2[12..44]

tab1 est un tableau de 10 entiers indicés de 1 à 10 et tab2 est un tableau de 33 réels indicés de 12 à 44.

Remarque : quand on déclare un tableau en C, on ne donne que le nombre d'éléments du tableau, l'indice
du premier élément du tableau étant toujours 0. Ainsi, l'instruction C suivante

int tab[10] ;

déclare un tableau tab de 10 entiers, dont le premier élément est à l'indice 0 et le dernier à l'indice 9, ce
qui correspond à la déclaration algorithmique suivante

Déclarations :
entier tab[0..9]

Accès à un élément du tableau : on accède à un élément dans un tableau à partir de son indice,
la valeur de cet indice devant être comprise entre les indices de début et de �n du tableau. Par exemple,
tab1[8] désigne l'élément d'indice 8 dans le tableau tab1, autrement dit le 8ème élément du tableau ; tandis
que tab2[14] désigne l'élément d'indice 14 dans le tableau tab2, autrement dit le 3ème élément du tableau.

Précondition implicite aux algorithmes ayant des tableaux passés en paramètres : quand un tableau
est déclaré en paramètre formel d'une procédure, les indices du premier et du dernier élément du tableau
ne seront pas toujours précisés dans le type mais passés en paramètre. Ainsi, dans les exercices suivants,
on déclarera souvent un paramètre de type tableau de la façon suivante :
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Procédure : nom-algo(tab, d, f)
Entrées :

Telt tab[?..?]
entier d, f

Dans ce cas, on supposera en précondition que le tableau physique passé en paramêtre e�ectif à la place
de tab sera dé�ni pour les indices compris entre d et f . Notons que le tableau passé en paramètre e�ectif
pourra avoir été dé�ni pour un intervalle d'indices [de..fe] supérieur (tel que d− e ≤ d et f ≤ fe). Dans
ce cas, la procédure appelée ne travaillera que sur une partie du tableau passé en paramètre (la partie
entre d et f).

Parcours des éléments d'un tableau : dans de nombreux algorithmes, on doit parcourir le tableau
pour faire un traitement sur chaque élément du tableau. L'algorithme générique pour le parcours d'un
tableau tab indicé de d à f est le suivant :

Déclarations :
entier i

début
i← d
tant que i ≤ f faire

/* invariant : les éléments d'indice j < i ont déjà été traités */

/* Traitement de l'élément d'indice i */

i← i + 1
�ntq
/* Nombre de passages = f − d + 1 ; i = f + 1 */

�n

Cet algorithme peut être exprimé de façon équivalente de la façon suivante :

Déclarations :
entier i

début
pour (i← d ; i ≤ f ; i← i + 1) faire

/* invariant : les éléments d'indice j < i ont déjà été traités */

/* Traitement de l'élément d'indice i */

�npour
/* Nombre de passages = f − d + 1 ; i = f + 1 */

�n

Exercice 13 Calcul de la somme des éléments d'un tableau

Exercice 14 Calcul de la moyenne des éléments d'un tableau

Exercice 15 Calcul des moyennes par groupe pour un tableau contenant toutes les notes d'une promotion
d'étudiants

Exercice 16 Compter le nombre d'occurrences d'un élément dans un tableau

Exercice 17 Déterminer si un tableau est un palindrome

Exercice 18 Calcul des n premières valeurs de la suite de Fibonacci

Exercice 19 Inversion des éléments d'un tableau

Exercice 20 Crible d'Eratosthème



Chapitre 6

Etude de quelques algorithmes sur les

tableaux

Les tableaux ont été introduits au chapitre précédant. On étudie maintenant un certain nombre d'algo-
rithmes �classiques� sur les tableaux.

Comme au chapitre 5, ces algorithmes impliqueront souvent de parcourir le tableau pour faire un traite-
ment sur chaque élément du tableau. Cependant, dans certain cas on ne devra pas parcourir le tableau
jusqu'à son dernier élément, mais jusqu'à trouver un élément satisfaisant une certaine condition. On peut
alors écrire

Déclarations :
entier i

début
i← d
tant que tab[i] ne satisfait pas la condition d'arrêt faire

/* Les éléments d'indice j < i ont déjà été traités */

/* Traitement de l'élément d'indice i */

i← i + 1
�ntq
/* Nombre de passages ≤ f − d + 1 ; i ≤ f */

�n

Cependant, il peut arriver qu'aucun élément du tableau ne satisfasse la condition d'arrêt (par exemple,
on cherche un élément de valeur donnée... et aucun élément du tableau n'a cette valeur). Dans ce cas,
l'algorithme précédent va provoquer une erreur à l'exécution (une erreur de segmentation en C). En
e�et, quand i = f , la condition d'arrêt n'étant pas satisfaite par tab[f ], on entre dans la boucle et on
incrémente i. A l'itération suivante, i = f + 1, et une erreur survient quand on accède à tab[i]. En C, il
peut même arriver que le problème ne soit pas détecté, et que l'ordinateur accède aux octets suivant le
dernier élément du tableau, en croyant qu'il s'agit encore d'un élément du tableau. On peut alors avoir
des résultats d'exécution particulièrement déroutants, où des variables sont modi�ées sans que l'on ne
comprenne pourquoi !

Ainsi, quand on parcourt un tableau, on s'assure toujours que l'on ne peut pas sortir des bornes du
tableau ; s'il est possible que la condition d'arrêt ne soit satisfaite par aucun élément, on ajoute un test
pour véri�er que l'on n'est pas sorti des bornes du tableau. Ce test devra être fait AVANT d'accéder à
l'élément :
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Déclarations :
entier i

début
i← d
tant que i ≤ f et tab[i] ne satisfait pas la condition d'arrêt faire

/* Les éléments d'indice j < i ont déjà été traités */

/* Traitement de l'élément d'indice i */

i← i + 1
�ntq
/* Nombre de passages ≤ f − d + 1 ; i > f ou tab[i] satisfait la condition d'arrêt

*/
�n

Exercice 21 Recherche de l'indice du plus petit élément d'un tableau

Exercice 22 Recherche séquentielle de l'indice de la première occurrence d'un élément dans un tableau

Exercice 23 Recherche dichotomique de l'indice d'une occurrence (quelconque) d'un élément dans un
tableau trié

Exercice 24 Insertion d'un élément dans un tableau trié

Exercice 25 Suppression d'un élément à un indice donné

Exercice 26 Suppression de tous les doublons d'un tableau trié

Exercice 27 Interclassement de 2 tableaux



Chapitre 7

La récursivité

La récursivité peut se dé�nir comme la résolution d'un problème à partir de versions plus simples de lui-
même. De fait, de nombreux problèmes se dé�nissent tout naturellement de façon récursive. Par exemple,
la fonction factorielle se dé�nit récursivement par :

1. dé�nition de factorielle pour un cas élémentaire (règle de base)

0! = 1

2. dé�nition de factorielle pour un cas non élémentaire, en fonction de la dé�nition de factorielle pour
un cas plus simple (règle récursive)

n! = n ∗ (n− 1)! pour n ≥ 1

De même, la suite de Fibonacci se dé�nit récursivement par les 3 règles suivantes :

1. première règle de base
fibo(0) = 1

2. deuxième règle de base
fibo(1) = 1

3. règle récursive
fibo(n) = fibo(n− 1) + fibo(n− 2) pour n ≥ 2

La terminaison de ce genre de dé�nition est garantie par le fait qu'un �critère� (en l'occurrence la valeur
de n) est modi�é d'un appel récursif à l'autre et converge (en un nombre d'étapes �nies) vers un des cas
de base.

D'une façon similaire, un algorithme peut résoudre un problème de façon récursive. Dans ce cas, on
procèdera toujours selon les deux étapes suivantes :

1. résolution du problème dans les cas élémentaires (les cas de base) ;

2. résolution du problème pour les cas non élémentaires en faisant appel à la résolution du problème
pour des cas plus simples.

Pour s'assurer de la terminaison de ce genre d'algorithme, il faut véri�er que d'un appel récursif à l'autre,
les valeurs d'un ou plusieurs paramètres changent de telle sorte que l'on converge, en un nombre d'appels
�ni, vers un cas élémentaire.

Considérons par exemple l'algorithme de calcul récursif d'une factorielle.
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Fonction : entier fact_rec(n)
Entrées :

entier n
Précondition :

n ≥ 0
Postcondition :

retourne n!
début

si n = 0 alors
/* résolution pour le cas de base n = 0 */

retourner 1
sinon

/* résolution récursive */

retourner (n∗fact_rec(n− 1))
�nsi

�n

Cet algorithme termine (sous la précondition que n soit e�ectivement positif ou nul au départ, autrement,
ça boucle ! ! !). En e�et, à chaque appel récursif la valeur de n est décrémentée de 1 de telle sorte que n
converge (au bout de n appels successifs) vers le cas de base n = 0.

L'énoncé de cet algorithme est plus �élégant� que sa version répétitive, notamment parce qu'il est plus
concis et qu'il reproduit la dé�nition récursive usuelle de la fonction mathématique factorielle.

La complexité théorique de cet algorithme est la même que celle de sa version répétitive : en e�et, pour
calculer la factorielle de n, on e�ectuera n appels successifs à fact_rec, chaque appel se résumant à une
a�ectation pour le passage du paramètre en entrée, un test (n = 0), une multiplication et une a�ectation
pour le passage du paramètre en sortie. Au total, on e�ectuera donc 2 ∗ n a�ectations, n tests et n
multiplications. Par conséquent, la complexité de fact_rec est linéaire en O(n).

En pratique, chaque appel récursif nécessite d'empiler un nouvel environnement au moment de l'exécution,
cet environnement étant ensuite dépilé au retour de l'appel. Ces empilements et dépilements successifs
prennent un peu de temps et de place mémoire. Par conséquent, un algorithme récursif pourra être
très légèrement moins e�cace qu'un algorithme itératif e�ectuant le même traitement. Cependant, de
nombreux compilateurs peuvent optimiser un code récursif pour éviter ces empilements et dépilements
d'environnements (on parle de �dérécursi�cation�). Dans ce cas, le code exécutable optimisé obtenu à
partir d'un algorithme récursif est aussi e�cace que le code exécutable obtenu à partir d'un algorithme
itératif.

Exercice 28 Calcul récursif de la n-ième valeur de la suite de Fibonacci

Exercice 29 A�chage de caractères saisis au clavier dans l'ordre inverse de leur saisie

Exercice 30 Calcul récursif de xy

Exercice 31 Palindrome récursif

Exercice 32 Recherche dichotomique récursive

Exercice 33 A�cher l'ensemble des nombres de n chi�res ne comportant que des 1 et des 2. Par exemple,
l'ensemble des nombres de 3 chi�res ne comportant que des 1 et des 2 est

{222, 221, 212, 211, 122, 121, 112, 111}



Chapitre 8

Etude de quelques tris

Les méthodes de tri sont très importantes en pratique et interviennent dans de nombreux problèmes. Le
tri est également un bon exemple de problème pour lequel de nombreux algorithmes existent.

Spéci�cation du problème de tri : on dispose en entrée d'une suite (une liste, une séquence, ...) de
n éléments comparables ; le résultat en sortie est une suite dont les éléments sont une permutation des
éléments de la suite donnée en entrée et telle que les éléments se succèdent par ordre croissant.

On étudie ici les tris sur les tableaux (la suite d'éléments à trier est rangée dans un tableau) ; on étudiera
ultérieurement des tris sur des listes chaînées et des �chiers.

On supposera ici que les éléments du tableau à trier sont d'un type �Telt� inconnu pour lequel on dispose
des opérations de comparaison <, >,=,≤,≥ usuelles. On dira que l'algorithme est générique, c'est-à-dire
qu'il est paramétré sur le type des éléments du tableau et la fonction de comparaison.

La spéci�cation d'une procédure de tri est la suivante :

Procédure : tri(tab, d, f)
Entrée/Sortie :

Telt tab[?..?]
Entrées :

entier d, f
Postcondition :

1)- Le tableau en sortie est une permutation du tableau en entrée.
2)- Les éléments du tableau en sortie sont triés par ordre croissant, i.e.,
∀i ∈ [d..f − 1], tabout[i] ≤ tabout[i + 1]

Exercice 34 Tri par sélection

On trie les éléments d'un tableau en sélectionnant un par un les éléments du tableau, du plus petit au
plus grand :

1. on recherche le plus petit élément du tableau, et on l'échange avec le premier élément du tableau,
puis

2. on recherche le plus petit élément du sous-tableau commencant au deuxième indice, et on l'échange
avec le deuxième élément du tableau, puis

3. on recherche le plus petit élément du sous-tableau commencant au troisième indice, et on l'échange
avec le troisième élément du tableau,

4. . . . etc . . .

D'une façon plus générale, on répète les 3 opérations suivantes :

1. chercher l'indice ipp du plus petit élément du sous-tableau commençant à l'indice i,

2. échanger l'élément d'indice ipp avec l'élément d'indice i du tableau,
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3. incrémenter i

Au départ, i est initialisé à d ; on arrête le processus lorsque i est égal à f .

Pour chercher l'indice du plus petit élément d'un sous-tableau, on peut utiliser la fonction �indice_plus_petit�.

Exercice 35 Tri par insertion

Le tri par insertion procède de la même façon qu'un joueur de carte pour trier ses cartes, en insérant
successivement chaque élément du tableau dans un sous-tableau déjà trié : à la ieme étape, les i − 1
premiers éléments du tableau sont déjà triés et on insère le ieme élément du tableau dans ce sous-tableau
trié.

Pour insérer le ieme élément dans le sous-tableau trié, on peut utiliser la procédure �insere_trie�.

Exercice 36 Tri rapide ou quicksort

Le tri rapide est un exemple de tri par dichotomie. L'idée est de récursivement

1. partitionner le tableau à trier en deux sous-tableaux tels que tous les éléments du premier sous-
tableau soient inférieurs à tous les élements du second tableau,

2. recommencer ce processus sur chacun des sous-tableaux

jusqu'à ce que les sous-tableaux à trier ne contiennent plus qu'un seul élément.



Chapitre 9

Les structures

Le type structure désigne une suite comportant un nombre déterminé de données de types di�érents,
chaque composant de la structure étant appelé champ.

Déclaration d'une structure : une variable de type structure est déclarée selon la syntaxe suivante

struct
T1 champ1

T2 champ2

. . .
Tn champn

fstruct nom_var

où n est le nombre de champs de la variable nom_var. Pour chacun des champs, on précise son type Ti

et son nom champ_i. Par exemple, la variable date déclarée de la façon suivante :

struct
entier jour
texte(10) mois
entier annee

fstruct date

est une structure composée de 3 champs : un premier champ de nom jour et de type entier, un deuxième
champ de nom mois et de type texte et un troisième champ de nom annee et de type entier.

Déclaration d'un type structure : Quand plusieurs variables sont d'un même type structure, il est
vivement recommandé de dé�nir un nouveau type, puis de déclarer les variables comme appartenant à ce
type.

Par exemple, on peut déclarer les types Tdate et Tpersonne de la façon suivante :
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type struct
entier jour
texte(10) mois
entier annee

fstruct Tdate
type struct
texte(20) nom
texte(20) prenom
car sexe
Tdate date_naissance

fstruct Tpersonne

et ensuite déclarer les variables toto et durand comme étant de type Tpersonne :

Déclarations : Tpersonne toto, durand

Accès à un champ d'une structure : on accède à un champ d'une structure en faisant suivre le
nom de la structure d'un point `.' et du nom du champ. Ainsi, toto.nom désigne le champ nom de la
variable structurée toto, tandis que durand.date_naissance.annee désigne le champ annee du champ
date_naissance de la variable structurée durand.

Exercice 37 Comparaison de dates

Exercice 38 Etant données une date d, une adresse a et une personne p, déterminer si p a plus de 18
ans à la date d, et si elle habite la même ville que a.

Exercice 39 Tri indirect d'un tableau de personnes, par age croissant


