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Motivations

Constraint Programming (CP)

High level languages for modelling problems declaratively

Branch & Propagate search engine
 may spend unacceptable time to solve some instances

Ant Colony Optimization (ACO)

Efficient algorithms for solving specific problems
...but solving a new problem involves a lot of programming

Our goal: use ACO to guide a CP search

Describe the problem with ILOG Solver

Use ILOG Solver to propagate and check constraints

Use ACO to guide the search
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Basic principle of ACO

initialize pheromone trails to τmax
repeat

1 each ant builds a solution
2 update pheromone trails

until optimal solution found or stagnation

Pheromone trails
A pheromone trail τc is associated with every solution component c
 learnt desirability of using c when building a solution

Greedy randomized construction of a solution

Let S = partial solution
and cand = candidate solution components

Choose cj ∈ cand with probability

p(cj) =
[τS(cj )]

α.[ηS(cj )]
βP

ck∈cand [τS(sk )]α.[ηS(sk )]β

τS(cj) pheromone factor (past experience of the colony)ηS(cj) heuristic factor (problem-dependent)α, β factor weights (parameters)

Pheromone updating step

Evaporation: multiply pheromone trails by (1− ρ)
 ρ = evaporation rate (0 ≤ ρ ≤ 1)

Reward: add pheromone on components of the best solutions

Bound pheromone trails between τmin and τmax
 prevent from premature stagnation
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Using ACO to solve CSPs

Existing work

Build complete assignments minimize constraint violations
Repeat

Assign a variable to a value chosen w.r.t. ACO
Until all variables have been assigned

 very competitive results... but ad hoc algorithms

New proposition: CP with ants

Build partial consistent assignments maximize nb of assigned var.
Repeat

Assign a variable to a value chosen w.r.t. ACO
Propagate to remove inconsistent values from domains

Until propagation detects a failure or all variables assigned

 straightforward integration within a CP language



Introduction Description of Ant-CP Application to the Car sequencing Experimental Results Conclusion

Using ACO to solve CSPs

Existing work

Build complete assignments minimize constraint violations
Repeat

Assign a variable to a value chosen w.r.t. ACO
Until all variables have been assigned

 very competitive results... but ad hoc algorithms

New proposition: CP with ants

Build partial consistent assignments maximize nb of assigned var.
Repeat

Assign a variable to a value chosen w.r.t. ACO
Propagate to remove inconsistent values from domains

Until propagation detects a failure or all variables assigned

 straightforward integration within a CP language



Introduction Description of Ant-CP Application to the Car sequencing Experimental Results Conclusion

Table of contents

1 Introduction

2 Description of Ant-CP

3 Application to the Car sequencing

4 Experimental Results

5 Conclusion



Introduction Description of Ant-CP Application to the Car sequencing Experimental Results Conclusion

Ant-CP procedure

initialize pheromone trails to τmax

repeat
1 each ant builds a partial consistent assignment
2 update pheromone trails

until solution found or max cycles reached

Default pheromone structure associated with a CSP (X ,D,C)

Pheromone is laid on variable/value couples:
τ〈Xi ,vi〉 = quantity of pheromone associated with 〈Xi , vi〉

 learnt desirability of assigning vi to Xi

Construction of a partial consistent assignment A

Iteratively assign variables until all variables assigned or Failure:
Choose a non assigned variable Xi
Choose a value vi ∈ D(Xi) with probability

p(vi) =
[τ〈Xi ,vi 〉]

α·[η(Xi ,vi)]
β∑

vk∈D(Xi )
[τ〈Xi ,vk 〉]

α·[η(Xi ,vk )]β

where η(Xi , vi) is a problem-dependent heuristic factor
Propagate to remove inconsistent values from domains

Pheromone updating step

Evaporation: multiply pheromone trails by (1− ρ)
 ρ = evaporation rate (0 ≤ ρ ≤ 1)

Reward the best assignment A of the cycle:
∀〈Xi , vi〉 ∈ A, increment τ〈Xi ,vi〉 by 1/(1 + |Abest | − |A|)
where Abest is the best assignment found so far
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The car sequencing problem

Goal: Sequence cars along an assembly line

Each car requires a set of options

Space cars requiring a same option

Example

Set of cars to be sequenced:

Sequencing contraints:

≤ 1/2 ; ≤ 2/5 ; ≤ 1/5 ; ≤ 1/3

Solution:
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CP model for the car sequencing problem

First model of the User’s manual of ILOG Solver

Variables

For each position i in the sequence, cari = class of the ith car
For each position i in the sequence and each option j ,
optij = 1 if cari requires option j and optij = 0 otherwise

Constraints

Constraints on the number of cars to be produced:
∀ car class c, #{cari = c} = nb of cars of class c to be produced
 IloDistribute
Constraint between car and opt variables:
∀ car i and ∀ option j , optij = 1 iff cari requires option j
 IloBoolAbstraction
Capacity constraints:
∀ option j , ∀ subseq. s of qj cars,

∑
i∈s optij ≤ pj
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Pheromone structures

Default vs specific pheromone structures

Default pheromone is laid on variable/value couples
Specific the user has to define

a set of pheromone trails
a function τ  pheromone factors
a function comp  rewarded components

Comparison of 4 pheromone structures

Default
Classes [Gravel et al 04]
 pheromone is laid on couples of consecutive car classes
Cars [Solnon 00]
 pheromone is laid on couples of consecutive cars
Empty
 pheromone is not used
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Heuristics

Utilisation rate UR(oi) of an option oi [Smith 97]

UR(oi) = number of required slots / number of available slots

UR(oi) > 1 no solution

Comparison of 2 heuristics

DSU = sum of utilization rates of required options
 favor cars that require options with high utilisation rates

DSU+P = sum of utilization rates of required options
+ failure when UR(oi) > 1
+ filter domains when UR(oi) = 1
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Test suites

Instances of [Lee et al. 95] available in CSP lib

70 satisfiable instances with 200 cars

All solved by Ant-CP in a few cycles and less than one second
(whatever the pheromone strategy and the heuristic factor)

 these instances are too easy to evaluate Ant-CP

Instances of [Perron & Shaw 04]

82 instances

from 100 to 500 cars; 8 options; 20 car classes

all satisfiable

 nearly half of these instances are difficult
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Comparison of the 4 pheromone structures with the DSU heuristic
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Using ACO to guide a CP search

Complementarity of CP and ACO

Use CP for modelling the problem and for propagating and
checking constraints

Use ACO for guiding the search as a generic value ordering
heuristic

First results on the car sequencing problem

Ant-CP outperforms complete approaches:
Complete approaches still have difficulties to solve the 70
instances of Lee (see CP’06, CP’07)
...whereas these instances are all quickly solved by Ant-CP.

Ant-CP is an order slower than heuristic approaches dedicated
to the car sequencing problem
...but the programming effort is also much smaller
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Further work

Validate our approach on other CSPs

Adaptive parameter tuning towards reactive ACO

use resampling and similarity ratio to dynamically tune
parameters

Use filtering procedures dedicated to a non backtracking search
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