Constraint Programming with Ant Colony Optimization

Madjid Khichane¹², Patrick Albert¹, and Christine Solnon²

¹ ILOG ² LIRIS, UMR 5205 CNRS / University of Lyon

CP-AI-OR'08

Motivations

Constraint Programming (CP)

- High level languages for modelling problems declaratively
- Branch & Propagate search engine
 may spend unacceptable time to solve some instances

Ant Colony Optimization (ACO)

Efficient algorithms for solving specific problems
 ...but solving a new problem involves a lot of programming

Our goal: use ACO to guide a CP search

- Describe the problem with ILOG Solver
- Use ILOG Solver to propagate and check constraints
- Use ACO to guide the search

- initialize pheromone trails to τ_{max}
- repeat
 - each ant builds a solution
- update pheromone trails
- until optimal solution found or stagnation

- initialize **pheromone trails** to τ_{max}
- repeat
 - each ant builds a solution
 - update pheromone trails
- <u>until</u> optimal solution found <u>or</u> stagnation

Pheromone trails

A pheromone trail τ_c is associated with every solution component c \leadsto learnt desirability of using c when building a solution

Basic principle of ACO

- initialize pheromone trails to τ_{max}
- repeat
 - each ant builds a solution
- update pheromone trails
- until optimal solution found or stagnation

Greedy randomized construction of a solution

- Let S =partial solution and *cand* = candidate solution components
- Choose $c_i \in cand$ with probability

$$p(c_j) = \frac{[\tau_{\mathcal{S}}(c_j)]^{\alpha} \cdot [\eta_{\mathcal{S}}(c_j)]^{\beta}}{\sum_{c_k \in cand} [\tau_{\mathcal{S}}(s_k)]^{\alpha} \cdot [\eta_{\mathcal{S}}(s_k)]^{\beta}}$$

Basic principle of ACO

- initialize pheromone trails to τ_{max}
- repeat
 - each ant builds a solution
 - update pheromone trails
- <u>until</u> optimal solution found <u>or</u> stagnation

Greedy randomized construction of a solution

- Let S = partial solution and cand = candidate solution components
- Choose $c_i \in cand$ with probability

$$p(c_j) = \frac{[\tau_{\mathcal{S}}(c_j)]^{\alpha} \cdot [\eta_{\mathcal{S}}(c_j)]^{\beta}}{\sum_{c_k \in cand} [\tau_{\mathcal{S}}(s_k)]^{\alpha} \cdot [\eta_{\mathcal{S}}(s_k)]^{\beta}}$$

 $\tau_{\mathcal{S}}(\mathbf{c}_i) \rightsquigarrow$ pheromone factor (past experience of the colony)

Basic principle of ACO

- ullet initialize pheromone trails to au_{max}
- repeat
 - each ant builds a solution
 - update pheromone trails
- <u>until</u> optimal solution found <u>or</u> stagnation

Greedy randomized construction of a solution

- Let S = partial solution and cand = candidate solution components
- Choose $c_i \in cand$ with probability

$$p(c_j) = \frac{[\tau_{\mathcal{S}}(c_j)]^{\alpha} \cdot [\eta_{\mathcal{S}}(c_j)]^{\beta}}{\sum_{c_k \in cand} [\tau_{\mathcal{S}}(s_k)]^{\alpha} \cdot [\eta_{\mathcal{S}}(s_k)]^{\beta}}$$

 $\eta_{\mathcal{S}}(\mathbf{c}_i) \rightsquigarrow$ heuristic factor (problem-dependent)

Basic principle of ACO

- ullet initialize pheromone trails to au_{max}
- repeat
 - each ant builds a solution
 - update pheromone trails
- <u>until</u> optimal solution found <u>or</u> stagnation

Greedy randomized construction of a solution

- Let S = partial solution and cand = candidate solution components
- Choose $c_i \in cand$ with probability

$$p(c_j) = \frac{[\tau_{\mathcal{S}}(c_j)]^{\alpha} \cdot [\eta_{\mathcal{S}}(c_j)]^{\beta}}{\sum_{c_k \in cand} [\tau_{\mathcal{S}}(s_k)]^{\alpha} \cdot [\eta_{\mathcal{S}}(s_k)]^{\beta}}$$

 α , $\beta \sim$ factor weights (parameters)

Basic principle of ACO

- ullet initialize pheromone trails to au_{max}
- repeat
 - each ant builds a solution
 - 2 update pheromone trails
- <u>until</u> optimal solution found <u>or</u> stagnation

Pheromone updating step

- Evaporation: multiply pheromone trails by (1ρ) $\rightarrow \rho$ = evaporation rate $(0 \le \rho \le 1)$
- Reward: add pheromone on components of the best solutions
- Bound pheromone trails between τ_{min} and τ_{max}

 ⇒ prevent from premature stagnation

Using ACO to solve CSPs

Existing work

Build complete assignments --> minimize constraint violations

- Repeat
 - Assign a variable to a value chosen w.r.t. ACO
- Until all variables have been assigned
- → very competitive results... but ad hoc algorithms

Using ACO to solve CSPs

Existing work

Build complete assignments --> minimize constraint violations

- Repeat
 - Assign a variable to a value chosen w.r.t. ACO
- Until all variables have been assigned
- → very competitive results... but ad hoc algorithms

New proposition: CP with ants

Build partial consistent assignments \rightsquigarrow maximize nb of assigned var.

- Repeat
 - Assign a variable to a value chosen w.r.t. ACO
 - Propagate to remove inconsistent values from domains
- Until propagation detects a failure or all variables assigned
- → straightforward integration within a CP language

- 1 Introduction
- 2 Description of Ant-CP
- Application to the Car sequencing
- Experimental Results
- Conclusion

- ullet initialize pheromone trails to au_{max}
- repeat
 - each ant builds a partial consistent assignment
 - update pheromone trails
- <u>until</u> solution found <u>or</u> max cycles reached

- initialize pheromone trails to τ_{max}
- repeat
 - each ant builds a partial consistent assignment
- update pheromone trails
- <u>until</u> solution found <u>or</u> max cycles reached

Default pheromone structure associated with a CSP (X, D, C)

Pheromone is laid on variable/value couples:

 $\tau_{\langle X_i, v_i \rangle}$ = quantity of pheromone associated with $\langle X_i, v_i \rangle$

 \rightarrow learnt desirability of assigning v_i to X_i

Ant-CP procedure

Introduction

- initialize pheromone trails to τ_{max}
- repeat
 - each ant builds a partial consistent assignment
 - update pheromone trails
- until solution found or max cycles reached

Construction of a partial consistent assignment A

Iteratively assign variables until all variables assigned or Failure:

- Choose a non assigned variable X_i
- Choose a value $v_i \in D(X_i)$ with probability

$$p(v_i) = \frac{[\tau_{\langle X_i, v_i \rangle}]^{\alpha} \cdot [\eta(X_i, v_i)]^{\beta}}{\sum_{v_k \in D(X_i)} [\tau_{\langle X_i, v_k \rangle}]^{\alpha} \cdot [\eta(X_i, v_k)]^{\beta}}$$

where $\eta(X_i, v_i)$ is a problem-dependent heuristic factor

Propagate to remove inconsistent values from domains

Ant-CP procedure

Introduction

- ullet initialize pheromone trails to $au_{\it max}$
- repeat
 - each ant builds a partial consistent assignment
- update pheromone trails
- until solution found or max cycles reached

Pheromone updating step

- Evaporation: multiply pheromone trails by (1ρ) $\rightarrow \rho$ = evaporation rate $(0 \le \rho \le 1)$
- Reward the best assignment A of the cycle: $\forall \langle X_i, v_i \rangle \in A$, increment $\tau_{\langle X_i, v_i \rangle}$ by $1/(1 + |A_{best}| |A|)$ where A_{best} is the best assignment found so far

Table of contents

- 1 Introduction
- Description of Ant-CP
- Application to the Car sequencing
- 4 Experimental Results
- Conclusion

The car sequencing problem

Goal: Sequence cars along an assembly line

- Each car requires a set of options
- Space cars requiring a same option

Example

Introduction

Set of cars to be sequenced:

Sequencing contraints:

Solution:

CP model for the car sequencing problem

First model of the User's manual of ILOG Solver

Variables

- For each position i in the sequence, car_i = class of the ith car
- For each position i in the sequence and each option j,
 opt_{ij} = 1 if car_i requires option j and opt_{ij} = 0 otherwise

Constraints

- Constraints on the number of cars to be produced:
 ∀ car class c, #{car_i = c} = nb of cars of class c to be produced
 → IloDistribute
- Constraint between car and opt variables:
 ∀ car i and ∀ option j, opt_{ij} = 1 iff car_i requires option j
 → IloBoolAbstraction
- Capacity constraints: \forall option j, \forall subseq. s of q_i cars, $\sum_{i \in s} opt_{ij} \leq p_i$

Pheromone structures

Default vs specific pheromone structures

- Default → pheromone is laid on variable/value couples
- Specific

 → the user has to define
 - a set of pheromone trails
 - a function $\tau \leadsto$ pheromone factors
 - a function comp → rewarded components

Comparison of 4 pheromone structures

- Default
- Classes [Gravel et al 04]
 - --- pheromone is laid on couples of consecutive car classes
- Cars [Solnon 00]
 - → pheromone is laid on couples of consecutive cars
- Empty
 - → pheromone is not used

Heuristics

Utilisation rate $UR(o_i)$ of an option o_i [Smith 97]

- $UR(o_i)$ = number of required slots / number of available slots
- $UR(o_i) > 1 \rightsquigarrow \text{no solution}$

Comparison of 2 heuristics

- DSU = sum of utilization rates of required options
 favor cars that require options with high utilisation rates
- DSU+P = sum of utilization rates of required options
 - + failure when $UR(o_i) > 1$
 - + filter domains when $UR(o_i) = 1$

Table of contents

- **Description of Ant-CP**
- **Application to the Car sequencing**
- **Experimental Results**

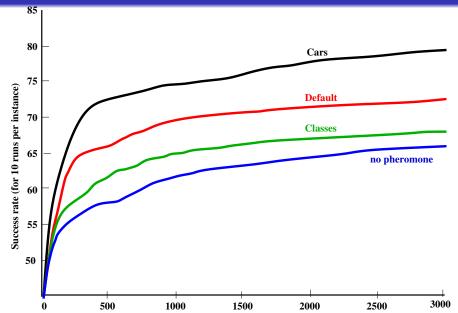
Test suites

Instances of [Lee et al. 95] available in CSP lib

- 70 satisfiable instances with 200 cars
- All solved by Ant-CP in a few cycles and less than one second (whatever the pheromone strategy and the heuristic factor)

Instances of [Perron & Shaw 04]

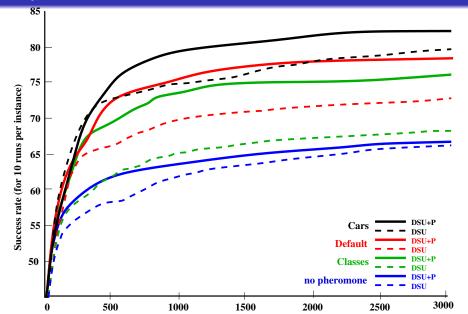
- 82 instances
- from 100 to 500 cars; 8 options; 20 car classes
- all satisfiable
- → nearly half of these instances are difficult



Conclusion

Comparison of the 2 heuristics

Introduction



Experimental Results

- **Description of Ant-CP**
- **Application to the Car sequencing**
- Conclusion

Complementarity of CP and ACO

- Use CP for modelling the problem and for propagating and checking constraints
- Use ACO for guiding the search as a generic value ordering heuristic

First results on the car sequencing problem

- Ant-CP outperforms complete approaches:
 Complete approaches still have difficulties to solve the 70 instances of Lee (see CP'06, CP'07)
 - ...whereas these instances are all quickly solved by Ant-CP.
- Ant-CP is an order slower than heuristic approaches dedicated to the car sequencing problem
 - ...but the programming effort is also much smaller

- Validate our approach on other CSPs
- Adaptive parameter tuning → towards reactive ACO
 - use resampling and similarity ratio to dynamically tune parameters
- Use filtering procedures dedicated to a non backtracking search