Constraint Programming with
Ant Colony Optimization

Madijid Khichane'?, Patrick Albert', and Christine Solnon?

TILOG
2 LIRIS, UMR 5205 CNRS / University of Lyon

CP-AI-OR’08

Introduction

Motivations

Constraint Programming (CP)
@ High level languages for modelling problems declaratively

@ Branch & Propagate search engine
~~ may spend unacceptable time to solve some instances

Ant Colony Optimization (ACO)

@ Efficient algorithms for solving specific problems
...but solving a new problem involves a lot of programming

Our goal: use ACO to guide a CP search

@ Describe the problem with ILOG Solver

@ Use ILOG Solver to propagate and check constraints

@ Use ACO to guide the search

Introduction

Basic principle of ACO

@ initialize pheromone trails to 7nax
@ repeat

@ each ant builds a solution
© update pheromone trails

@ until optimal solution found or stagnation

Introduction

Basic principle of ACO

@ initialize pheromone trails t0 7.«
@ repeat
@ each ant builds a solution
@ update pheromone trails
@ until optimal solution found or stagnation

Pheromone trails

A pheromone trail 7 is associated with every solution component ¢
~ learnt desirability of using ¢ when building a solution

Introduction

Basic principle of ACO

@ initialize pheromone trails to 7nax
@ repeat

@ each ant builds a solution
© update pheromone trails

@ until optimal solution found or stagnation

Greedy randomized construction of a solution

@ Let S = partial solution
and cand = candidate solution components

@ Choose ¢; € cand with probability

[7s(c)]* .[ns(g)])’

p(Cj) - z:c;(ECand[TS(Sk)]a'[n‘s(sk)]/8

Introduction

Basic principle of ACO

@ initialize pheromone trails to 7nax
@ repeat

@ each ant builds a solution
© update pheromone trails

@ until optimal solution found or stagnation

Greedy randomized construction of a solution

@ Let S = partial solution
and cand = candidate solution components

@ Choose ¢; € cand with probability

[7s(c)]* [ns(g)])?

p(Cj) - z:c;(ECand[TS(Sk)]a'[n‘s(sk)]/8

TS(Cj)W pheromone factor (past experience of the colony)

Introduction

Basic principle of ACO

@ initialize pheromone trails to 7nax
@ repeat

@ each ant builds a solution
© update pheromone trails

@ until optimal solution found or stagnation

Greedy randomized construction of a solution

@ Let S = partial solution
and cand = candidate solution components

@ Choose ¢; € cand with probability

[7s(c)]* [ns(c)])?

p(Cj) - z:c;(ECand[TS(Sk)]a'[n‘s(sk)]/8

ns(Cj)~ heuristic factor (problem-dependent)

Introduction

Basic principle of ACO

@ initialize pheromone trails to 7nax
@ repeat

@ each ant builds a solution
© update pheromone trails

@ until optimal solution found or stagnation

Greedy randomized construction of a solution

@ Let S = partial solution
and cand = candidate solution components

@ Choose ¢; € cand with probability

[7s(c)]* .[ns(g)])’

p(Cj) - z:c;(ECand[TS(Sk)]a'[n‘s(sk)]/8

«, 3~ factor weights (parameters)

Introduction

Basic principle of ACO

@ initialize pheromone trails to 7nax
@ repeat

@ each ant builds a solution
© update pheromone trails

@ until optimal solution found or stagnation

Pheromone updating step

@ Evaporation: multiply pheromone trails by (1 — p)
~» p = evaporation rate (0 < p < 1)

@ Reward: add pheromone on components of the best solutions

@ Bound pheromone trails between 7, and 7oy
~ prevent from premature stagnation

Introduction

Using ACO to solve CSPs

Build complete assignments ~~ minimize constraint violations
@ Repeat

@ Assign a variable to a value chosen w.r.t. ACO
@ Until all variables have been assigned

~ very competitive results... but ad hoc algorithms

Introduction

Using ACO to solve CSPs

Build complete assignments ~~ minimize constraint violations
@ Repeat

@ Assign a variable to a value chosen w.r.t. ACO
@ Until all variables have been assigned

~ very competitive results... but ad hoc algorithms

New proposition: CP with ants
Build partial consistent assignments ~~ maximize nb of assigned var.
@ Repeat
@ Assign a variable to a value chosen w.r.t. ACO

@ Propagate to remove inconsistent values from domains
@ Until propagation detects a failure or all variables assigned

~ straightforward integration within a CP language

Description of Ant-CP

Table of contents

9 Description of Ant-CP

Description of Ant-CP

Ant-CP procedure

@ initialize pheromone trails to 7max

® repeat
@ each ant builds a partial consistent assignment
© update pheromone trails

@ until solution found or max cycles reached

Description of Ant-CP

Ant-CP procedure

@ initialize pheromone trails 10 7.«

® repeat
@ each ant builds a partial consistent assignment
@ update pheromone trails

@ until solution found or max cycles reached

Default pheromone structure associated with a CSP (X, D, C)

Pheromone is laid on variable/value couples:
T(x,v = quantity of pheromone associated with (X;, v;)
~ learnt desirability of assigning v; to X;

Description of Ant-CP

Ant-CP procedure

@ initialize pheromone trails to 7max

® repeat
@ each ant builds a partial consistent assignment
© update pheromone trails

@ until solution found or max cycles reached

Construction of a partial consistent assignment A

Iteratively assign variables until all variables assigned or Failure:
@ Choose a non assigned variable X;
@ Choose a value v; € D(X;) with probability

N [1 [n(Xi,vi))?
p(VI) - kaeD(X,)[7'<X,-,vk>]°"[77(Xi7Vk)]ﬁ

where n(X, v;) is a problem-dependent heuristic factor
@ Propagate to remove inconsistent values from domains

Description of Ant-CP

Ant-CP procedure

@ initialize pheromone trails to 7max

® repeat
@ each ant builds a partial consistent assignment
©Q update pheromone trails

@ until solution found or max cycles reached

Pheromone updating step

@ Evaporation: multiply pheromone trails by (1 — p)
~» p = evaporation rate (0 < p < 1)

@ Reward the best assignment A of the cycle:
V(Xi, vi) € A, increment 7x ,y by 1/(1 + |Apest| — |Al)
where Apeg is the best assignment found so far

Application to the Car sequencing

Table of contents

e Application to the Car sequencing

Application to the Car sequencing

The car sequencing problem

Goal: Sequence cars along an assembly line

@ Each car requires a set of options

@ Space cars requiring a same option

Set of cars to be sequenced:

N VN BN BN ¥y SN U N N

Sequencing contraints:

o s 5 e < 13
Solution:

W Ny N SN N S N N N N

Application to the Car sequencing

CP model for the car sequencing problem

First model of the User’s manual of ILOG Solver

@ For each position i in the sequence, car; = class of the ith car

@ For each position i in the sequence and each option j,
opt; = 1 if car; requires option j and opt; = 0 otherwise

@ Constraints on the number of cars to be produced:
V car class ¢, #{car; = ¢} = nb of cars of class ¢ to be produced
~ lloDistribute
@ Constraint between car and opt variables:
V car j and V option j, opt; = 1 iff car; requires option j
~ lloBoolAbstraction

@ Capacity constraints:
V option j, V subseq. s of g; cars, > ;. optj < p

Application to the Car sequencing

Pheromone structures

Default vs specific pheromone structures
@ Default ~~ pheromone is laid on variable/value couples

@ Specific ~~ the user has to define

@ a set of pheromone trails
@ a function 7 ~ pheromone factors
e a function comp ~~ rewarded components

Comparison of 4 pheromone structures

@ Default

@ Classes [Gravel et al 04]
~» pheromone is laid on couples of consecutive car classes

@ Cars [Solnon 00]
~~ pheromone is laid on couples of consecutive cars

@ Empty
~» pheromone is not used

Application to the Car sequencing

Heuristics

Utilisation rate UR(o;) of an option o; [Smith 97]

@ UR(o0;) = number of required slots / number of available slots

@ UR(0;) > 1 ~> no solution

Comparison of 2 heuristics

@ DSU = sum of utilization rates of required options
~ favor cars that require options with high utilisation rates

@ DSU+P = sum of utilization rates of required options
+ failure when UR(0;) > 1
-+ filter domains when UR(o;) = 1

Experimental Results

Table of contents

0 Experimental Results

Experimental Results

Test suites

Instances of [Lee et al. 95] available in CSP lib

@ 70 satisfiable instances with 200 cars

@ All solved by Ant-CP in a few cycles and less than one second
(whatever the pheromone strategy and the heuristic factor)

~ these instances are too easy to evaluate Ant-CP

v

Instances of [Perron & Shaw 04]

@ 82 instances

@ from 100 to 500 cars; 8 options; 20 car classes

@ all satisfiable

~ nearly half of these instances are difficult

Experimental Results

Comparison of the 4 pheromone structures with the DSU heuristic

Success rate (for 10 runs per instance)

80

75

70

65

60

55

50

Cars —

Default

Classes

no pheromone

0 500 1000 1500 2000 2500 3000

Experimental Results

Comparison of the 2 heuristics

— DSU+P
= = = psuU
Default — _ . DSU+P
= = = DsU
— DSU+P
- = = DSU
— DSU+P
= = = DSU

Cars

Success rate (for 10 runs per instance)

Classes

no pheromone
! ! ! | |

T T }
0 500 1000 1500 2000 2500 3000

Conclusion
Table of contents

e Conclusion

Conclusion

Using ACO to guide a CP search

Complementarity of CP and ACO

@ Use CP for modelling the problem and for propagating and
checking constraints

@ Use ACO for guiding the search as a generic value ordering
heuristic

First results on the car sequencing problem

@ Ant-CP outperforms complete approaches:

Complete approaches still have difficulties to solve the 70
instances of Lee (see CP’06, CP’07)

...Whereas these instances are all quickly solved by Ant-CP.

@ Ant-CP is an order slower than heuristic approaches dedicated
to the car sequencing problem

...but the programming effort is also much smaller

Conclusion

Further work

@ Validate our approach on other CSPs

@ Adaptive parameter tuning ~~ towards reactive ACO

o use resampling and similarity ratio to dynamically tune
parameters

@ Use filtering procedures dedicated to a non backtracking search

	Main Part
	Introduction
	Description of Ant-CP
	Application to the Car sequencing
	Experimental Results
	Conclusion

