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Abstract. The Time-Dependent Traveling Salesman Problem (TDTSP)
is the extended version of the TSP where arc costs depend on the time
when the arc is traveled. When we consider urban deliveries, travel times
vary considerably during the day and optimizing a delivery tour comes
down to solving an instance of the TDTSP. In this paper we propose a
set of benchmarks for the TDTSP based on real traffic data and show the
interest of handling time dependency in the problem. We then present a
new global constraint (an extension of no-overlap) that integrates time-
dependent transition times and show that this new constraint outper-
forms the classical CP approach.

1 Introduction

When we consider real world optimization problems, time is usually an impor-
tant dimension to take into account. This is particularly the case for Delivery
Problems for which time is typically present in different forms: travel times are
associated with consecutive deliveries; time windows may be associated with de-
liveries; precedence constraints may exist between deliveries. We are interested
in the Time-Dependent Traveling Salesman Problem (TDTSP), an extended ver-
sion of the Traveling Salesman Problem (TSP) where the travel time between
deliveries (visits) depends on the date of the travel. The TDTSP is at the core
of many real-world scheduling problems such as urban delivery problems, for ex-
ample, since traffic conditions in urban areas usually vary a lot during the day.
In these real-world problems, there are frequently additional constraints such as
time-windows or precedence constraints.

Since the availability of extensive real-world data in this area is quite recent,
the TDTSP has not been much studied in the literature and Constraint Pro-
gramming (CP) approaches are even rarer. One reason for this is that CP is
usually less efficient than Integer Linear Programming or Meta-heuristics (Local
Search, Evolutionary Algorithms, Ant Colonies) for pure (non time-dependent)
vehicle routing problems. On the other hand, Constraint-Based Scheduling [4],
that is the application of CP to scheduling problems, is one of the biggest indus-
trial success of CP and has shown that CP technologies can be very efficient for
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solving temporal problems. A variety of specialized variable types (interval vari-
ables, sequence variables) and related global constraints and search algorithms
have been developed until recently [21, 22, 23] to improve the expressiveness and
efficiency of CP-based models involving temporal domains.

In this paper, we start by giving an alternative definition of the TDTSP in
Section 2. Then, we introduce a new benchmark for this problem in Section 3.
This benchmark has been generated from real-world traffic data, coming from the
city of Lyon, and we study the interest of handling time-dependent data on this
benchmark. In Section 4, we describe related work. In Section 5, we introduce a
basic CP model for the TDTSP and we show some of its limitations. In Section 6,
we describe a new global constraint (called TDnoOverlap) for efficiently tackling
time-dependent data while ensuring that visits are not overlapping. This global
constraint has been implemented on top of the CP Optimizer engine of IBM
ILOG CPLEX Optimization Studio, and we experimentally evaluate it on our
new benchmark in Section 7.

2 Definition of the TDTSP

The real world problem we address is the problem of scheduling a sequence of
deliveries in a urban zone. The city of Lyon and other partners started a project
called Optimod [1] with the goal to leverage city data to improve urban mobility.
Traffic predictions are made from historic data and these predictions can be used
to optimize moves in the city. In our case, we optimize delivery tours.

The theoretical problem involved is the TDTSP, an extension of the TSP
where arc costs depend on the time when the arc is traveled.

In the TSP we are given a list of locations and the distances between every
two of them. We are asked to find the tour minimizing the total traveled dis-
tance while visiting every location exactly once and coming back to the point of
departure (depot).

In some cases though we are interested in minimizing the total travel time
instead of distance or we simply need to schedule interventions or deliveries in
certain time-windows predefined by the client. So we need to know the travel
times between consecutive deliveries but in urban zones travel times usually
vary a lot during the day. In order to take this variation into account we must
know at which time the travel between two addresses starts and we must have
time-dependent information about travel times.

We start by formally defining the concepts of path, travel time function and
timed-path in a graph and finally we give an alternative formal definition of the
TDTSP.

Definition 1 (Path). A path P = (v1, ..., vk) in a graph G = (V,A) is a se-
quence of vertices such that (vi, vi+1) ∈ A,∀i ∈ {1, ..., k − 1}, k ≥ 2.

Definition 2 (Travel Time Function). A travel time function f : A×R+ →
R+ is a function such that for a given arc (vi, vj) ∈ A, f(vi, vj , t) is the travel
time from vi to vj when leaving vi at time t.
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In the case of deliveries and specially of interventions, the duration of visits
is generally not the same so we consider that each visit vi is associated with a
given duration d(vi). The notion of Timed-Path extends the notion of path in
the context of TDTSP.

Definition 3 (Timed-Path). Given a graph G = (V,A), a starting time τ ∈
R+, a travel time function f : A × R+ → R+ and a duration function d : V →
R+, a timed-path Pτ,f in G is a path (v1, . . . , vk) such that each vertex vi has
an associated start time t(vi, Pτ,f ), corresponding to the time of arrival at vi.
Furthermore start times must respect:

t(v1, Pτ,f ) ≥ τ

t(vi+1, Pτ,f ) ≥ t(vi, Pτ,f ) + d(vi) + f(vi, vi+1, t(vi, Pτ,f ) + d(vi)),∀i ∈ {1, ..., k}

Definition 4 (TDTSP). Given a graph G = (V,A), a depot s ∈ V , a start-
ing time τ ∈ R+ and a travel time function f : A × R+ → R+, the Time-
Dependent Traveling Salesman Problem is the problem of finding the timed-path
Pτ,f = (v1, . . . , vk) which starts from the depot (v1 = s) and visits each vertex
exactly once ({v1, . . . , vk} = V ), and such that the returning time to the depot,
t(vk, Pτ,f ) + d(vk) + f(vk, s, t(vk, Pτ,f ) + d(vk)), is minimal.

We could consider minimizing different objective functions but for our appli-
cation’s purpose we consider that minimizing the end time is a good objective.

3 A new benchmark for the TDTSP

In the context of the Optimod project we had access to real traffic data measured
from 630 sensors installed in the main axes of Lyon for 6 years. Those sensors
measure vehicle’s speed and estimations are made for the neighboring streets
where there are no sensors. Given this data, a predictive model has been built,
which gives predicted speeds on every street section, by 6-minute time steps.

We propose a benchmark generated using this model. The benchmark is built
from 255 addresses randomly chosen from a list of delivery tours of transporters
from Lyon, we can see their distribution in the city on Fig. 1.

Since the predictive model considers 6-minute time steps we produced a (step-
wise) travel time function giving predicted travel times between every two ad-
dresses in the list for every 6-minute time step from 6h00 to 12h30 so that we
have m = 65 time steps.

Travel times are calculated using a time-dependent version of Dijkstra’s
point-to-point shortest path algorithm for every time step [27]. One limitation
of our approach though is that we do not take into consideration the time spent
in vertices in the path, where vertices are junctions between two or more street
sections. We know from experience that the time it takes to traverse a crossroad
or to turn left, for example, is an important factor in the augmentation of travel
times during rush hours.
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Fig. 1. 255 delivery addresses in Lyon

The travel time functions given in the benchmark are represented as stepwise
functions1. Examples of time-dependent travel time functions generated by this
approach are depicted on Fig. 2.
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Fig. 2. Example of time-dependent travel time functions

We randomly generated 500 instances for each problem size n (10, 20 and
30 visits) by randomly selecting n locations among the 255 positions referenced
in the travel time function. The duration of each visit is randomly selected in
the interval [60s,300s]. Because the transition function tends to underestimate
the travel time in congested areas, we generated two additional versions of the
function with a dilatation of travel times of respectively 10% and 20% centered
on the average travel time. So we end up with 3 functions: T00 (the original one)
and T10, T20.

In a preliminary study, we want to evaluate the potential gain of using a
time-dependent travel time model compared to a less precise TSP model that
rules out time dependency. Given a stepwise travel time function T , we com-
puted a TSP matrix MedianTSPT such that for every couple (i, j) of vertices,

1 This was a choice made to simplify the usage of the benchmark. We could generate
piecewise linear functions from the same data by using the algorithm described in
[19] in the travel time calculation section.
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MedianTSPT (i, j) is the median value over the set of all time-dependent values
associated with (i, j) in the stepwise travel time function T .

For each instance, we have solved the TSP defined by this median matrix
MedianTSP (T ). Then, we have computed costMedianTSP , which is the cost of
the TSP solution found previously when considering the time-dependent travel
time function T as transition cost. We denote optTDTSP the cost of the opti-
mal solution of the TDTSP. Obviously, costMedianTSP gives an upper bound of
optTDTSP . To evaluate the tightness of this bound, Fig. 3 gives the cactus plot
of the relative gain defined as:

gain =
costMedianTSP − optTDTSP

optTDTSP
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Fig. 3. Relative gain of TDTSP, instances ordered by decreasing gain

This figure shows that for more than 10% of the instances, the gain is greater
than 5%, whereas for 40% of the instances it is equal to 0%. Note that a gain of
5% is considered as very important in our context. Furthermore, real-world deliv-
ery problems usually have time-window constraints. In this case, it is mandatory
to consider time-dependent data. As expected, the gain tends to increase to more
than 13% and 21% when using functions T10 and T20 with larger amplitude. A
similar behavior was observed for larger problems with 20 and 30 visits although
the gain was slightly smaller, probably due to the fact that the peaks of traffic
congestion occur between 06:00 and 09:00 which more or less corresponds to the
time frame of a 10 visit problem so, for larger problems, part of the route is
executed on less congested time windows.

For each problem size n (10, 20 and 30 visits) we selected a smaller set of 60
instances that is representative of the different types of gains between TSP and
TDTSP (20 instances with the largest estimated gains, 20 instances with inter-
mediate gains, 20 instances with negligible/zero gains). These instances are used
in the experimental section to compare two models for solving the TDTSP prob-
lem. The benchmark is available on liris.cnrs.fr/christine.solnon/TDTSP.html.

4 Related work

The name TSDTSP is used in the literature for two different problems. In 1978,
[28] used the term TDTSP to describe the problem of scheduling jobs on a single
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machine with costs depending on the position of the job in the sequence. Since
then, [17, 2, 8, 16] also addressed this version of the problem.

We are interested in the actual time dependent problem introduced by [26]
in 1992. They give several simple heuristics for the TDTSP and for the more
general Time Dependent Vehicle Routing Problem (TDVRP) where a whole fleet
must be routed instead of a single vehicle. Other heuristic approaches like ant
colony systems [11], monte carlo [7], tabu search [19], simulated annealing [29]
and others [24, 18, 25, 13] are proposed for the TDTSP and TDVRP. Integer
programming approaches are used in [8, 9, 30], some of these papers also take
time-window constraints into account. To our knowledge, the only paper using a
Constraint Programming approach for a time-dependent problem is [20], treating
two scheduling problems with time-dependent task costs.

Aside from [14, 25], the papers cited here consider instances which are ran-
domly generated by applying some congestion rates during rush hours. The num-
ber of time steps considered is usually 3 but can go up to 16. In most cases, not
more than 4 different congestion patterns are considered. The number of visits
per tour varies between 10 and 65 but optimality is rarely proven for the largest
instances.

Solutions used to tackle real time-dependent vehicle routing problems in Ger-
many are presented in [14] and in the United Kingdom in [25]. In [25] they con-
sider 96 time steps of 15 minutes and in [14] they use 217 time steps to model a
whole day but test instances are not provided. In this sense, the benchmark pro-
vided by us offers a new testing parameter for the Time-Dependent VRP/TSP.
In this new benchmark, we have to deal with a much larger number of time steps
(i.e., 65), compared to what is usually considered in existing work.

5 Classical CP model for the TDTSP and its limitations

5.1 CP model

In this section we consider that f is a step function where each (time-)step has
the same length l so that f is modeled with a cost matrix T . The input data is :

– A number n > 0 of visits, by convention the first (resp. last) visited vertex
is 1 (resp. n+ 1).

– A time horizon H > 0, a number of time steps m > 0 and a duration l > 0
of time steps so that H = lm.

– A cost matrix T : [1, n+ 1]× [1, n+ 1]× [0,m]→ R+ so that the travel time
from vertex i to vertex j when leaving i at time t is given by T [i][j][t/l].

– A visit duration vector D : [1, n]→ R+.

We present here a TDTSP model adapted from the classic CP model used
to solve the TSP (see [6]). We added variables time[i], which give the arrival
time at each vertex i, and modified constraints to take into account the fact
that a duration Di is associated with every vertex i, and that travel durations
are time-dependent.
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intVar position[1..n] ∈ 1..n

next[1..n+ 1] ∈ 1..n+ 1, prev[1..n+ 1] ∈ 1..n+ 1

time[1..n+ 1] ∈ 0..H

minimize time[n+ 1]

subject to alldifferent(position), alldifferent(next), alldifferent(prev)

inverse(prev, next)

position[1] = 1, time[1] = 0, prev[1] = n+ 1, next[n+ 1] = 1

∀i ∈ 1..n+ 1 : next[i] 6= i, prev[i] 6= i

∀i ∈ 1..n : position[next[i]] = position[i] + 1

∀i ∈ 2..n+ 1 : position[prev[i]] + 1 = position[i]

∀i ∈ 1..n+ 1 : time[i] ≥ time[prev[i]] +D[prev[i]] + T [prev[i]][i][time[prev[i]]/l] (1)

∀i ∈ 1..n+ 1 : time[next[i]] ≥ time[i] +D[i] + T [i][next[i]][time[i]/l] (2)

Note that the numbers of positions in a path is n+ 1 since we have to return
to the depot. For each visit i: next[i] and prev[i] give the next and previous
visits, position[i] the position of the visit in the path and time[i] the time of
arrival at i. Beside constraints at the extremities of the tour to fix initial and end
visits and the start time, an alldifferent constraint is posted on each group of
variables whereas prev/next variables are linked with inverse constraints. The
relation between time and relative positions of visits is modeled with constraints
(1) and (2). For a stronger propagation, the term T[...] in these constraints is
modeled using a table constraint.

We also added the following redundant constraints to help improving the
lower bound on the objective term time[n+1]. We noticed that these redundant
constraints help reducing the number of branches by a factor close to 2 and the
CPU time by a factor varying between 1 and 2.

time[n+ 1] ≥
∑

i∈1..n

D[i] +
∑

i∈1..n

T [i][next[i]][time[i]/l] (3)

time[n+ 1] ≥
∑

i∈1..n

D[i] +
∑

i∈2..n+1

T [prev[i]][i][time[prev[i]]/l] (4)

In the search branching scheme used to compare the performance of the
propagation in section 7, we use a search that builds the sequence of visits in a
chronological order. For this reason, we added a new set of variables atPosition[j]
that represent the vertex at the jth position in the sequence. These variables are
related with the rest of the model thanks to the following constraints:

intVar atPosition[1..n] ∈ 1..n+ 1

constraints alldifferent(atPosition)

inverse(position, atPosition)

atPosition[1] = 1, next[atPosition[n]] = n+ 1, atPosition[n] = prev[n+ 1]

∀j ∈ 1..n : next[atPosition[j]] = atPosition[j + 1]

∀j ∈ 1..n : prev[atPosition[j + 1]] = atPosition[j]

5.2 Model limitations

In the context of TDTSP, time variables time[i] representing the dates of a visit
are very important and their domain should be as tight as possible because the
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value of the travel time depends on the actual time value. An important limita-
tion of the model presented above is the weakness of the propagation between
temporal variables time and sequencing variables (like next and prev). For in-
stance, it should be clear from their formulation that constraints like (1) and (2)
would benefit from some more global reasoning over the travel time between i
and prev[i] (resp. between i and next[i]). Furthermore, reasoning only locally on
direct successors of a visit (next, prev) may miss some important propagation
as illustrated by the following example.

We call a visit a a successor of another visit b if a comes somewhere after b
in the path, we call it next of b if it is visited exactly after b. We can see from
our variables that all the propagation is done reasoning with direct neighbors of
a visit (next, prev).

We can show that reasoning with successors (besides prev/next variables)
allows to obtain tighter bounds on the time of visits, as soon as the problem is
asymmetric2. For simplification we will work here with a TSP example. Consider
the following slightly asymmetric TSP problem where D is the depot, A,B,C
are visits and the distance matrix T is as shown on Table 1. We suppose that
the upper-bound of the objective is 100, therefore only two paths are feasible
(D,B,C,A,D) and (D,C,B,A,D), each with a total length of 100. Given these
two feasible solutions, the tightest possible domains of prev and next variables
can be seen in Table 2.

In what follows we use dom(a) to refer to the domain of a variable a, a for
the smallest value in its domain and ā for the biggest. If a is fixed then a= ā
and dom(a) is a singleton.

Table 1. Distance Matrix T

D A B C
D 0 9 46 8
A 8 0 46 8
B 46 46 0 38
C 8 8 38 0

Table 2. Next & Prev Domains

visit dom(next) dom(prev)

D {B,C}
A {D} {B,C}
B {A,C} {C,D}
C {A,B} {B,D}

If time bounds are computed using only prev/next variables, the best we can
do boils down to apply the following formulas to compute the minimum time
bounds (smallest value in the domain) until a fix point is reached:

time[A] = max(time[A],min(time[B] + T [B][A], time[C] + T [C][A]))

time[B] = max(time[B],min(time[C] + T [C][B], time[D] + T [D][B]))

time[C] = max(time[C],min(time[B] + T [B][C], time[D] + T [D][C]))

2 Asymmetric in the sense that reversing a solution may change its total travel time
or its feasibility. Some common causes of asymmetry are: asymmetric travel times
(like time-dependent travel times), time windows constraints or precedences between
visits.
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It gives time[A] = 16, time[B] = 46 and time[C] = 8. Let’s now look at how
we could propagate by also considering (indirect) successors. The distances in
matrix T satisfy the triangle inequality3 so we know that if A comes before B in
the path the total length of any path starting from D, passing through A and B
and returning back toD will be at least T [D][A]+T [A][B]+T [B][D] = 101, which
is infeasible. Thus B must be visited before A and we can infer a precedence
B → A. This corresponds to the so-called disjunctive constraint in scheduling.
With this, we know that A cannot start before time[A] = T [D][B] + T [B][A] =
92, which is a lot better than the value of time[A] = 16 found when reasoning
only with prev and next variables.

If the TSP was purely symmetric we would not be able to deduce any suc-
cessor links (indirect precedence) since any solution would be reversible and give
the same cost. This type of reasoning is interesting as soon as solutions are
asymmetric, which is usually the case for time-dependent travel times.

6 Time-Dependent No-Overlap constraint

In order to integrate this kind of reasoning we use the concepts of interval and
sequence variables in CP Optimizer [22, 23]. Each visit i is modeled as an interval
variable with start time denoted time[i]. The tour is modeled as a sequence
variable over the set of visits. This variable maintains a precedence graph to
propagate temporal relations between visits [15]. The vertices of this graph are
the time variables associated to each visit. Two types of arcs are considered:

1. A next arc between two visits i⇒ j means that we pass through j directly
after visiting i.

2. A successor arc between two visits i→ j means that we visit j after i but
we can go through other visits in between.

During the search, new next and successor arcs are added into the prece-
dence graph because of search decisions (like when chronologically building a
route) or as the result of constraint propagation (for instance by the extended
disjunctive constraint sketched in subsection 6.3). The precedence graph incre-
mentally maintains the transitive closure of the arcs.

In CP Optimizer the NoOverlap constraint allows to enforce a minimal tran-
sition time between vertices on the precedence graph. In this paper, we ex-
tended the NoOverlap into a TDNoOverlap constraint to take into account time-
dependent transition times. The resulting model using the new TDNoOverlap

constraint is sketched below.

3 If the triangle inequality is not satisfied, one can easily pre-compute a smaller tran-
sition time corresponding to the length of the shortest path (using Floyd-Warshall
algorithm) to provide a lower bound on travel times. That is what the noOverlap

constraint of CP Optimizer is doing internally.
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intervalVar visit[i ∈ 1..n+ 1] sizeD[i]

sequenceVar tour in all(i ∈ 1..n) visit[i]

minimize startOf(visit[n+ 1])

subject to first(tour, visit[1])

last(tour, visit[n+ 1])

tdnooverlap(tour, T )

To propagate the bounds of time variable domains we need lower bound
functions for the time-dependent transition time functions. Given two visits i
and j, such that there exists a next arc or a successor arc going from i to j, we
define two lower bound functions for each type of arc:

1. fnextearliest(i, j, td) and fsuccearliest(i, j, td), are the transition times giving the ear-
liest arrival time at j if we leave i at time td or after.

2. fnextlatest(i, j, ta) and fsucclatest(i, j, ta), are the transition times giving the latest
departure time from i in order to arrive at j at time ta or before.

With these functions, the TDNoOverlap constraint propagates the earliest
time for j (5) and the latest time for i (6), by using the adequate lower bound
function depending on whether we propagate a successor arc (x = succ) or a
next arc (x = next):

time[j] ≥ time[i] +D[i] + fxearliest(i, j, time[i] +D[i]) (5)

time[i] +D[i] ≤ time[j]− fxlatest(i, j, time[j]) (6)

Now we introduce the formal definitions of the bounding functions and ex-
plain how to calculate them.

6.1 Propagation of next arcs

Here we consider a next arc i⇒ j in the precedence graph. The earliest arrival
time at j, if we leave i at time td, is propagated by formula (5), using the
transition time function:

fnextearliest(i, j, td) = min
t≥td
{f(i, j, t) + t− td} (7)

In fnextearliest we check if leaving from visit i later (waiting in place) allows to
arrive at j sooner. In the case where waiting is never advantageous we say that
the transition times satisfy the FIFO property.

Definition 5 (FIFO property). A time-dependent transition time function f
is said to satisfy the FIFO (First In First Out) property iff:

∀i, j ∈ V,∀t1, t2,
(
t1 ≤ t2

)
⇒

(
t1 + f(i, j, t1) ≤ t2 + f(i, j, t2)

)
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It follows from Def. 5 and from Eq. (7) that if f satisfies the FIFO property
then fnextearliest and f are equal. Although the FIFO property generally holds in
practice, our approach does not assume that f satisfies the FIFO property for two
reasons: (1) stepwise functions do not satisfy it because of the discretization and
(2) imprecision in data acquisition and time-dependent travel time calculations
may introduce non-FIFO effects.

If f is a stepwise or a piecewise linear function, fnextearliest is a piecewise linear
function. So, as we need in any case to handle piecewise linear functions in the
propagation, in our implementation of the TDNoOverlap constraint we decided
to treat the more general case where the input function f is a piecewise linear
function.

In Algorithm 1 we describe the method used in pre-solve phase to calculate
fnextearliest for each pair of vertices in the graph. We suppose a fixed arc (i, j) and
f a piecewise linear function defined on the time domain T = [tMin, tMax) ∈ R
and we simplify the notation to f(t) instead of f(i, j, t).

Each time interval pk = [tkmin, t
k
max) on which the function is linear is called

a piece. Since pk is open on tkmax, by abuse of notation we write f(tkmax)
for limx→tkmax

f(x). For instance, if f is not continuous on tkmax = tk+1
min then

f(tkmax) 6= f(tk+1
min). The notation f �pk means that f is restricted to interval pk

and therefore all operations are done only in this interval.

Finally, function linear((t, v), (t′, v′)) denotes the linear function defined by
the two points (t, v) and (t′, v′).

In the implementation, we used the class of piece-wise linear function pro-
vided by CP Optimizer4. If ν is the number of pieces of the function, this
class allows for a random access to a given piece with an average complex-
ity of O(log(ν)). Furthermore, when two consecutive pieces of the function are
co-linear, these pieces are automatically merged so that the function is always
represented with the minimal number of pieces.

Algorithm 1 Calculate fnextearliest

Require: f , ν (the number of pieces of f)
1: fnext

earliest ← f
2: for all k ∈ {0, ..., ν} do
3: x0 ← tk+1

min

4: v0 ← f(x0)
5: if v0 < f(tkmax) then
6: for all j ∈ {0, ..., ν}|pj ⊂ [tMin, x0) do
7: fnext

earliest �pj← min(fnext
earliest, linear((x0, v0), (v0, x0)) �pj )

8: end for
9: end if

10: end for
11: return fnext

earliest

4 Namely: IloNumToNumSegmentFunction.
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The other type of propagation we do on next arcs in formula (6) depends on
the estimation of the latest departure time from i in order to arrive at j at time
ta or before, given by:

fnextlatest(i, j, ta) = min
t+f(i,j,t)≤ta

{ta − t} (8)

Since fnextearliest already gives us the minimum transition time from a given time
it is clear that the minimum in Equation (8) is satisfied for the biggest t′ such
that t′+fnextearliest(i, j, t

′) = ta. Then, calculating fnextlatest comes down to finding this
t′. Notice that t′ may not be unique since t+ fnextearliest(i, j, t) is nondecreasing5.

Algorithm 2 describes the method used in a presolve phase to compute fnextlatest

for each pair of vertices in the graph.

Algorithm 2 Calculate fnextlatest

Require: fnext
earliest, ν (the number of segments of fnext

earliest)
1: arrivalT ime← linear((0, 0), (1, 1)) + fnext

earliest

2: fnext
latest(t)← 0

3: for all k ∈ {0, ..., ν} do
4: x0 ← tkmin

5: x1 ← tkmax − 1
6: v0 ← arrivalT ime(x0)
7: v1 ← arrivalT ime(x1)
8: slopek(t)← x0 + x1−x0

v1−v0
∗ (t− v0)

9: for all j ∈ {0, ..., ν}| pj ⊂ [v0, v1] do
10: fnext

latest �pj← max(fnext
latest, linear((v0, x0), (v1, x1))) �pj

11: end for
12: for all j ∈ {0, ..., ν}| pj ⊂ ]v1, arrivalT ime(tMax)] do
13: fnext

latest �pj← max(fnext
latest, x1) �pj

14: end for
15: end for
16: return fnext

latest

A similar procedure as the one described in Alg. 1 is used by [14], they also
propose an algorithm like Alg. 2 but in their case, calculations are done for a
single time t instead of calculating the whole function at once.

6.2 Propagation of successor arcs

Now we consider a successor arc i → j in the precedence graph. To estimate
the earliest possible time of arrival at j if we leave i at time td or after we have
to check if we can arrive faster at j by passing through other vertices. Let ℘i,jτ,f

5 This sum is nondecreasing because t has derivative 1 and f ′next
earliest(i, j, t) ≥ −1 since

it is FIFO
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be the set of all timed-paths from i to j starting after time τ with travel times
function f . We have:

fsuccearliest(i, j, td) = min
p∈℘i,j

td,f

t(j, p)− td

where t(j, p) is the start time of j in path p.
If there exists a shortest path from i to j, shorter than the direct arc, then

the triangular inequality extended to the time-dependent case does not hold. It
means that there is at least one vertex k such that passing through k allows to
arrive faster at j.

Definition 6 (Time-dependent triangular inequality). Function f is said
to satisfy the triangular inequality property iff:

∀i, j, k ∈ V,∀t ∈ R+, f(i, k, t) ≤ f(i, j, t) + f(j, k, t+ f(i, j, t))

To calculate fsuccearliest we use a time-dependent extension of the Floyd Warshall
All Pairs Shortest Path algorithm [10]. We use fnextearliest as travel time function
in the algorithm so that waiting at intermediate vertices to possibly go faster is
already taken into account.

The second type of propagation on successor arcs is based on the estimation
of the latest departure time from i in order to arrive at j at time ta or before,
given by:

fsucclatest(i, j, ta) = min
p∈℘i,j

t,f ,t(j,p)≤ta
ta − t

The reasoning for calculating fsucclatest is exactly the same as the one we used
for fnextlatest and the algorithm (2) is the same too, only this time we use fsuccearliest

instead of fnextearliest as input.

6.3 Time-dependent disjunctive propagation

Classical propagation algorithms used in constrained-based scheduling can be ex-
tended to time-dependent transition times. In our implementation of the
TDNoOverlap constraint we extended the disjunctive reasoning [5]. As soon as
two visits i and j are such that one of the conditions below is satisfied then it is
clear that it is not possible to visit j before i and thus, we can add a successor
arc i→ j in the precedence graph:

time[j] +D[j] + fsuccearliest(j, i, time[j] +D[j]) > time[i]

time[i]− fsucclatest(j, i, time[i])−D[j] < time[j]

This extended disjunctive reasoning helps discovering new arcs in the prece-
dence graph that are themselves propagated as described in subsections 6.1 and
6.2.
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6.4 Complexity

The complexity of the TDNoOverlap constraint is dominated by the complexity
of maintaining the precedence graph and the disjunctive propagation. The worst-
case complexity of the full-fledged propagation is quadratic with respect to the
number of visits. We also implemented a slightly weaker but lighter propagation
with linear complexity.

7 Experimental evaluation

We compare the classical CP model presented in section 5 with the model using
the TDNoOverlap constraint6 presented in section 6.

In a first experiment we compare the filtering power of the two models. We
use the same depth first search strategy for both models so that we can estimate
the impact of constraint propagation on the number of branches of the complete
search tree. We do a chronological scheduling of visits and choice of the nearest
visit in terms of transition time first, given that the earliest date of the previous
visit is known. For the classical CP model, this means that the search first fixes
the variables atPosition[i] for i = 1, 2, ...n. However, as the search strategy is
not static, the search tree is different (one tree is not a sub-tree of the other).
We could have tested on a static search strategy but this would have resulted in
a more ”artificial” type of search. We measured the number of branches and the
CPU time of the two approaches on the 60 instances of size 10 on the 3 functions
T00, T10, T207. For those 180 tests (all solved to optimality with both models),
the left side of Fig. 4 shows the comparison of the number of branches of the
search tree explored by the two approaches while the right side compares the
CPU times.
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Fig. 4. Comparison of number of branches (left) and CPU time (right)

Not only the TDNoOverlap model propagates a lot more (about 50 times
fewer branches) but it also finds better solutions faster than the classical CP
model. For 10-sized instances the search is about 100 times faster on average.

On Fig. 5 we compare on the instances of size 20 and 30 the cost of the
best solution found by the two approaches using the automatic search of CP

6 In these experiments we used the lighter version of the propagation but we noticed
that there was not much difference with respect to the full-fledged version.

7 Comparison was performed only on instances of size 10 as the classical CP model is
not able to solve the larger problems to optimality.
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Optimizer which is more sophisticated than depth first search. We used the
same search heuristics as above and a time limit of 900s.
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Fig. 5. Comparison of solution quality on problems of size 20 (left) and 30 (right)

For instances of size 20, the TDNoOverlap model finds and proves the optimal
solution for 165 instances out of 180 and, in average the solution found is more
than 10% better than the one of the classical CP model. For instances of size
30, both models are incapable of proving optimality in the time limit, but in
average the solutions found by TDNoOverlap are more than 20% better than the
ones of the classical CP model.

We also compared the TDNoOverlap model with an intermediate model (de-
scribed in [3]) using the NoOverlap constraint. In average on the 180 intances of
size 10, the TDNoOverlap model proves optimality with 20 times less branches
and is 40 times faster.

8 Discussion

In this paper we showed, in the context of scheduling a sequence of deliveries, the
impact of reasoning with successors, other than just next/previous, and of taking
time-dependent transition times into account directly into a global constraint.
Reasoning on successors is crucial for problems involving time variables like the
TDTSP. From an application perspective, the interest of the scheduling model we
presented is that it is very easy to integrate additional constraints like precedence
between visits or disjunctive time-windows. These constraints are in fact directly
available in CP Optimizer and should work pretty well when added to the central
TDTSP model presented in this paper.

Reasoning on successors is in fact complementary with reasoning on a prev/
next graph. In future work we plan to improve our constraint propagation by
calculating tighter bounds for the TDTSP by using Minimum Spanning Trees
or Assignment Problem relaxations on the prev/next graph, extending the ap-
proaches described in [15, 6, 12]. We also want to see if the successor relations
stored in the precedence graph can be exploited in this context. We plan to
evaluate our new constraint on other benchmarks, and compare it with other
approaches.
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