An on-line course on constraint programming

Christine Solnon
LIRIS CNRS FRE 2672, Nautibus, Université Lyon I
43 Bd du 11 novembre, F-69 622 Villeurbanne cedex

christine.solnon@liris.cnrs.fr

July 26, 2004

Abstract

This paper describes an on-line course on constraint programming.
This course is dedicated to students of the “e-miage” formation, which is
a french remote formation to “Information Systems for Companies Man-
agement”. This course is available (in french) at
http://www710.univ-1lyonl.fr/~csolnon/Site-PPC/e-miage-ppc-som.htm

1 Introduction

The MIAGE (Méthodes Informatiques Appliquées a la Gestion des Entreprises)
is a popular french formation on “Information Systems for Companies Man-
agement” which is delivered in twenty french universities. This formation lasts
for three years and delivers a “Maitrise” diploma, nearly corresponding to a
Master’s degree.

The e-miage [4] is an on-line version of the MIAGE formation: students of
the e-miage can earn their degree via the Internet. This remote formation aims
at reaching new trainees who cannot follow traditional courses, either because
they cannot physically attend them (foreign or handicapped students), or be-
cause they are professionals that are continuing education during their release
time. Another goal is to improve the actual learning conditions of basic educa-
tion students by providing them with complete courses and training exercises
available via Internet.

E-learning allows students to earn their degrees with maximum efficiency
and flexibility, without commuting nor schedule conflicts: students study via
Internet whenever and wherever they choose. However, remote formation also
raises drawbacks, and students may feel isolated, or get stucked on difficult
points. To overcome these drawbacks, student progresses are followed by tutors:
a tutor is a professor of the university from which the student is registered; he
answers student’s questions via e-mail and evaluates his knowledge at the end
of each course.

The e-miage formation is composed of fifty course units, each course unit
roughly corresponding to fourty learning hours and to three ECTS (European
Credit Transfer System). One of these course units is entitled “Artificial In-
telligence” and is composed of 36 working sessions of one hour: 2 introductory
sessions about artificial intelligence, 8 sessions about logic, 5 about Prolog, 7
about constraint programming, 4 about ontologies, 2 about problem solving, 3
about machine learning, and 5 about expert systems. There is no predefinite
order for studying these lessons. However, some sessions may be required for
studying other sessions. In particular, logic must be studied before Prolog, and
Prolog before constraint programming.

This paper describes the sessions dedicated to constraint programming. We
first discuss instructional objectives, and the reasons that guided the choice of
the programming language used to illustrate this course. We then describe the
content of each session. We conclude on a first feedback on this course, and on
some related sources of information.

2 Instructional objectives and choices

This course does not aim at training experts of constraint programming, but is
an introduction to this field: the goal is to train students to use a constraint
programming language to solve problems. By means of competences, one can
summarize our objectives by the 4 following points:

e knowing what is a constraint satisfaction problem (CSP),

e being able to model a problem as a CSP,

e knowing how a constraint solver works, and

e being able to use a constraint programming language to solve a CSP.

These objectives must be achieved within 7 training sessions of one hour so
that we have limited this course to the very basic concepts: we mainly deal with
basic constraint satisfaction problems, and only briefly introduce their different
extensions, such as Max-CSP or Valued-CSP; also, we have limited the study of
constraint solvers to complete approaches, based on the “branch and propagate”
schema, and to constraints on finite domains.

To illustrate constraint programming, we have chosen a logic programming
language. Indeed, it would have been interesting to illustrate constraint pro-
gramming with different languages, based on different paradigms. However,
considering the small number of sessions, we have limited the study to one
language. We have more particularly chosen Gnu-Prolog [8], a language de-
velopped by Daniel Diaz. Indeed, Gnu-Prolog is used to illustrate the Prolog
course within the same course unit; it integrates a constraint solver over finite
domains and provides a large number of built-in predicates for defining and
solving constraints; finally, it is free and easy to install on most computers and
operating systems.

3 Content of the sessions

The course on constraint programming is divided into 7 learning sessions of one
hour.

Session 1 introduces constraint satisfaction problems.

In a first part, we introduce terminology and definitions: we define what
is a constraint, and give an overview of the different kinds of constraints; we
formally define what is a constraint satisfaction problem (CSP); we introduce the
notion of variable assignment (complete or partial, consistent or inconsistent)
and define what is a solution of a CSP; we introduce the concept of over and
under constrained problems, and briefly discuss the main extensions to the CSP
framework.

In a second part, we illustrate how to model a problem as a CSP through two
examples. The first example is the well known n-queens problem: this problem
is very simple to describe and allows us to introduce the fact that there may
exist different CSP modelings for a same problem. The second example is the
stable marriage problem [5], which has more practical applications.

Session 2 is a training session, where the student has to model 5 problems
within the CSP framework:

e The first problem involves computing the set of coins that must be re-
turned back by a slot machine, given a price and a quantity of inserted
coins. This problem is modeled with integer variables and linear integer
constraints. We then ask to add an optimization criterion in order to
minimize the number of returned coins.

e The second problem is the classical map coloring problem.

e The third problem is a logical puzzle that has been proposed by Lewis Car-
oll in [3]: 6 friends have to decide what condiment to take (i.e., either salt,
or mustard, or both salt and mustard, or nothing) while satisfying 5 given
logical rules. We ask for two different modelings for this problem: one
which associates one 4-valued variable with each friend, and another one
which associates one boolean decision variable for each condiment/friend
pair.

e The fourth problem is the well-known “SEND + MORE = MONEY”
cryptarithmetic puzzle, for which we ask for the two classical modelings:
one with a single constraint that expresses the global sum constraint, and
another one with carry variables and 5 sum constraints.

e The fifth problem is the well-known “zebra” puzzle, which involves associ-
ating a nationality, a colour, an animal, a favorite drinking, and a favorite
cigarette tobacco to five consecutive houses, given a set of clues.

For each of these problems, students may ask for some help by clicking on a link
that gives indications to help him identifying the variables, their domains and
constraints holding between them.

Session 3 introduces basic principles of constraint solvers. We first describe
the “generate-and-test” algorithm, which exhaustively enumerates all complete
assignments until a solution is found, and we introduce the concept of search
space of a CSP. We then describe the “simple-backtrack” algorithm, and we
show that the integration of constraint checks within enumeration actually re-
duces the number of generated combinations. We then introduce the basic
principle of constraint propagation and filtering algorithms, and the associated
local consistencies, and we show how to integrate these filtering technics within
the simple-backtrack algorithm. Finally, we discuss ordering heuristics, and we
show that they may speed-up the solution process.

Each algorithm is first informally described. It is then given in imperative
pseudo-code, and its run-time behavior is illustrated on the 4-queens problem.

Session 4 is a training session, where the student has to implement in Prolog
the different algorithms introduced in session 3. The goal is to let the stu-
dents have a better understanding and a first practice of the basic principles of
enumeration and propagation. Another goal is to let them go deeper into the
practice of the Prolog language, which has been studied previously during the
five Prolog sessions, and to show that Prolog is very well suited to implement
these algorithms.

To simplify constraints representation and consistency checking, we limit
ourselves to binary constraints. The different algorithms that are implemented
during the session are used to solve the n-queens problem, the map coloring
problem, and the stable marriage problem (Prolog predicates describing these
three problems are given to the student). Finally, the efficiency of the different
algorithms is experimentally compared on the n-queens problem.

As this training session is not directly supervised by a teacher, we have to
guide students progression. Hence, for each algorithm, we progressively intro-
duce the different predicates to implement, and for each predicate to implement,
we give its template, a description by means of the relationship between its ar-
guments, and some examples of calls and answers.

Session 5 is dedicated to learning and using a constraint programming lan-
guage, i.e., Gnu-Prolog.

In a first part, we introduce the built-in Gnu-Prolog predicates for defining
finite domain variables, and constraints over finite domain variables, and for
solving these constraints. For the main built-in predicates, we give a full de-
scription, and we illustrate them on different examples. We widely refer to the
Gnu-Prolog on-line users’ manual [8] for more information on other predicates.

In a second part of this session, we illustrate the built-in constraint predicates

of Gnu-Prolog through the two examples introduced in session 1, i.e., the n-
queen problem and the stable marriage problem.

Sessions 6 and 7 are training sessions, where students have to use Gnu-
Prolog for solving the different problems introduced during session 2. For each
exercise, we first recall the CSP modeling that has been designed during session
2. Then, we give some indications and we guide the students’ progression for
solving the CSP with Gnu-Prolog. In particular, we describe the main predicates
that should be written, and for each of them we give its template and some
examples of calls and answers.

4 Conclusion

First results. A first group of thirteen students has used this course this year.
Some feedback on it has been provided through the questions they asked to the
tutor... and more over through the questions they did not asked (!): they actu-
ally asked very few questions, on minor points only, and globally felt satisfied.
For this first experiment, solutions to exercises were available on-line, and the
tutor has not checked the solutions found by the students. As a consequence,
we had nearly no feedback about the difficulties they may have uncountered.
For the next year, we have decided to deliberately hide the solutions to the stu-
dents, and to ask them to send their own solutions to their tutor before sending
them an “official” solution. This should allow us to evaluate more precisely the
difficulties they encountered.

The whole “artificial intelligence” course unit has been ratified by a test. The
questions about the constraint programming part mainly dealed with modeling
a problem into a CSP. Answers were rather satisfactory, and the average score
for the part concerning the constraint programming course has been slightly
greater than the average score for the whole artificial intelligence course.

Related work and references. Anybody looking for information on con-
straint programming via Internet very quickly finds the “Online guide on con-
straint programming” written by Roman Bartak [2], which is a very complete
tutorial, and which has been a valuable source of inspiration for this course.
However, our goal —and therefore the resulting course— is rather different:
we do not aim at training experts and at being complete on the subject, but
we aim at training students to model constraint satisfaction problems, and to
use a constraint programming language to solve them, within a limited amount
of time (7 hours). Hence, our course only focuses on basic aspects and is not
as complete as Roman Bartak’s guide on some points. In particular, we do not
develop heuristic algorithms (such as local search) and approaches for solving
over-constrained problems. As a counterpart, our course includes many exerci-
ces, and (try to) guide students to build their own solutions to these exercices.
Also, our course includes some other points that are not developped in Roman

Bartak’s guide: it introduces a constraint programming language, and illustrates
how to use it to solve constraint satisfaction problems.

To write this course, we also took inspiration from many other tutorials and
books on constraint programming, e.g., [1, 6, 7, 9, 10]. Students that have
been appealed by this introductory course are refered to these books to actually
become experts!

Finally, note that if this course has been designed for e-miage students, it is
available (in french) at
http://www710.univ-1lyonl.fr/~csolnon/Site-PPC/e-miage-ppc-som.htm

References

[1] K.R. Apt: Principles of Constraint Programming, Cambridge University
Press, August 2003, 407 pages. ISBN: 0521825830.

[2] Roman Bartak: On-line guide to constraint programming
http://kti.ms.mff.cuni.cz/~bartak/constraints/

[3] Lewis Carrol: Symbolic Logic, 1896 http://durendal.org/lcsl/
[4] e-miage: http://www.u-picardie.fr/~cochard/IEM/

[5] Ian P. Gent and Patrick Prosser: an empirical study of the stable marriage
problem with ties and incomplete lists, in the proceedings of ECAI 2002,
10S Press, pp 141-145

[6] Franois Fages: Programmation Logique par Contraintes, Collection ” Cours
de I’Ecole Polytechnique”, Ellipses, Paris, 1996.

[7] T. Frhwirth and S. Abdennadher: Essentials of Constraint Programming,
Springer Verlag, March 2003.

[8] GNU-Prolog: http://gnu-prolog.inria.fr/

[9] K. Marriott and P.J. Stuckey: Programming with Constraints: An Intro-
duction, The MIT Press, 1998

[10] E. Tsang: Foundations of Constraint Satisfaction, Academic Press, 1993

