
Extracting Trees of Quantitative Serial Episodes?

Mirco Nanni1 and Christophe Rigotti1,2

1KDD Laboratory, University of Pisa and ISTI-CNR Pisa, Italy
2INSA-LIRIS UMR 5205 CNRS, Lyon, France

Abstract. Among the family of the local patterns, episodes are com-
monly used when mining a single or multiple sequences of discrete events.
An episode reflects a qualitative relation is-followed-by over event types,
and the refinement of episodes to incorporate quantitative temporal in-
formation is still an on going research, with many application opportu-
nities. In this paper, focusing on serial episodes, we design such a refine-
ment called quantitative episodes and give a corresponding extraction
algorithm. The three most salient features of these quantitative episodes
are: (1) their ability to characterize main groups of homogeneous behav-
iors among the occurrences, according to the duration of the is-followed-
by steps, and providing quantitative bounds of these durations organized
in a tree structure; (2) the possibility to extract them in a complete way;
and (3) to perform such extractions at the cost of a limited overhead
with respect to the extraction of standard episodes.

1 Introduction

Sequential data is a common form of information available in several appli-
cation contexts, thus naturally inducing a strong interest for them among data
analysts. A decade-long attention has been paid by researchers in data mining
to study forms of patterns appropriated to this kind of data, such as sequential
patterns [1] and episodes [9, 7]. In particular, in this paper we will focus on serial
episodes, that are sequences of event types extracted from single or multiple in-
put sequences, and that reflect a qualitative relation is-followed-by between the
event types.

Episodes have natural applications into several domains, including for in-
stance the analysis of business time series [2], medical data [10], geophysical
data [11] and also alarm log analysis for network monitoring (especially in
telecommunications) [5]. However, in many applications episodes clearly show
some limitations, due to the fact that the information provided by the is-followed-
by relation is not always enough to properly characterize the phenomena at hand.
This, in particular, pulls our research toward the refinement of episodes to in-
corporate quantitative temporal information, able to describe the time intervals
observed for the is-followed-by relation.

? This research is partly funded by EU contracts IQ IST-FP6-516169, and GeoPKDD
IST-FP6-014915.

In this paper, we propose a refinement of episodes called quantitative episodes,
that provides quantitative temporal information in a readable, tree-based graph-
ically representable form. These quantitative episodes describe the main groups
of homogeneous behaviors within the occurrences of each episode, according to
the elapsed times between the consecutive event types of the episode. Moreover,
they are not provided in an isolated way, but in trees giving a global view of
how the occurrences of the corresponding episode differentiate in homogeneous
groups along the elements of the pattern. From a computational point of view,
the main interest of the quantitative episodes is that they can be mined in a
sound and complete way without increasing the cost of extractions significantly
when compared to extractions of episodes alone. This is achieved through an
extraction algorithm that tightly integrates episode extraction with a computa-
tionally reasonable analysis of temporal quantitative information.

This paper is organized as follows: in Section 2 some preliminary definitions
needed concerning episodes are recalled from the literature; Section 3, then,
introduces quantitative episodes; Section 4 presents the principle of an algorithm
for efficiently extracting quantitative episodes, which is evaluated experimentally
in Section 5; finally, in Section 6 we briefly review the related literature and
conclude with a summary in Section 7.

2 Preliminary definitions

We briefly introduce standard notions [8], or give equivalent definitions when
more appropriated to our presentation.

Definition 1. (event, event sequence,operator v) Let E be a set of event
types and ≺ a total order on E. An event is a pair denoted (e, t) where e ∈ E

and t ∈ N. The value t denotes the time stamp at which the event occurs. An
event sequence S is a tuple of events S = 〈(e1, t1), (e2, t2), . . . , (el, tl)〉 such that
∀i ∈ {1, . . . , l − 1}, ti < ti+1∨ (ti = ti+1 ∧ ei ≺ ei+1). Given two sequences of
events S and S′, S′ is a subsequence of S, denoted S ′ v S, if S′ is equal to S or
if S′ can be obtained by removing some elements in S.

Definition 2. (episode, occurrence, minimal occurrence, support) An
episode is a non empty tuple α of the form α = 〈e1, e2, . . . , ek〉 with ei ∈ E for
all i ∈ {1, . . . , k}. In this paper, we will use the notation e1 → e2 → . . . → ek

to denote the episode 〈e1, e2, . . . , ek〉 where ’→’ may be read as ’is followed by’.
The size of α is denoted |α| and is equal to the number of elements of the tuple
α, i.e., |α| = k. The prefix of α is the episode 〈e1, e2, . . . , ek−1〉. We denote it
as prefix (α). An episode α = 〈e1, e2, . . . , ek〉 occurs in an event sequence S if
there exists at least one sequence of events S ′ = 〈(e1, t1), (e2, t2), . . . , (ek, tk)〉
such that ∀i ∈ {1, . . . , k − 1}, ti < ti+1 and S′ v S. The pair 〈t1, tk〉 is called an
occurrence of α in S. Moreover, if there is no other occurrence 〈t′1, t

′
k〉 such that

[t′1, t
′
k] ⊂ [t1, tk], then the pair 〈t1, tk〉 is called a minimal occurrence of α. The

support of α in S, denoted support(α, S), is the number of minimal occurrences
of α in S.

Intuitively, a minimal occurrence is simply an occurrence that does not
strictly contain another occurrence of the same episode. These episodes and
their occurrences correspond to the serial episodes of [8]. For instance, let S =
〈(a, 0), (b, 1), (c, 1), (b, 2)〉 be an event sequence and α = a → b be an episode.
Then, α has two occurrences in S: 〈0, 1〉 and 〈0, 2〉. The former is a minimal
occurrence, while the latter is not, since [0, 1] ⊂ [0, 2]. Notice that there is no
occurrence of episode α′ = b → c.

These definitions, and the ones introduced in the rest of the paper, are given
for a single sequence S, but they extend trivially to multiple sequences. In that
case the support is the sum of the number of occurrences in all sequences1.

3 Quantitative episodes

In this section we introduce an extension of episodes that includes quan-
titative information. The precise definitions will be preceded by an intuitive,
informal presentation of the key ideas.

3.1 Informal presentation

The idea of quantitative episodes essentially consists in dividing the set of oc-
currences of an episode into homogeneous, significantly populated groups. Ho-
mogeneity, in particular, is obtained when on each step, made of two consecutive
elements of the episode, the occurrences in the same group show similar tran-
sition times (i.e., similar times elapsed between an element and the next one
within the episode). The result can be graphically summarized through a tree-
like structure, as the one depicted in Figure 1 that represents homogeneous
groups of occurrences of an episode α = A → B → C → D. The figure can be
read in the following way:

– The episode has 1000 occurrences in the sequence of events, and this value
is written under the first event of the episode.

– Among these 1000 occurrences, there are 2 subgroups that show homoge-
neous duration for step A → B: one (the upper branch of the split) corre-
sponds to transition times between 2 and 10, and covers 500 occurrences; the
other (lower branch) corresponds to transition times in interval [15, 20] and
covers 400 occurrences. Notice that 100 occurrences of A → B → C → D are
lost, meaning that they exhibit a rather isolated duration for step A → B

and cannot be associated with other occurrences to form a significantly pop-
ulated group.

1 Notice that here, the support is not the number of sequences containing at least
one occurrence of the pattern, as in the case of sequential patterns over a base of
sequences [1].

– In the largest group obtained above, all occurrences present similar step
durations for steps B → C and C → D, and are kept together in a single
group. The other group, containing 400 occurrences, is split further into
homogeneous groups w.r.t. duration of step B → C. Notice that the resulting
homogeneous groups overlap, sharing a subset of occurrences and resulting
in non-disjoint time intervals. Indeed, we can observe that the total count of
occurrences in the two groups (205+202) is greater than the original total
amount (400), since some occurrences are counted twice.

– One of these two groups is further split into two (disjoint) groups while the
other is not.

– Each path from the root to a leaf in the tree corresponds to a group of
occurrences that shows an homogeneous behavior along all the steps of the
episode, and covers a sufficient number of occurrences (in this example, at
least 90). This homogeneous behavior can be represented by the sequence of
time intervals on the path, and can be added to the episode as a quantitative
feature to form a main grouping quantitative episode. The tree in Figure 1
depicts four such patterns (one for each path from the root to a leaf). The
tree relates these patterns together, showing how the occurrences can be
differentiated into groups along the steps of the episode.

90

490500

1000

400

205

490

100

200202

[2,10]

[15,20]

[5,20]

[10,40]

[35,60]

[10,15]

[10,30]

[30,45]

[5,20]

DCBA

Fig. 1. Tree of quantitative episodes for episode α = A → B → C → D.

Example 1. In a medical context, we can assume to have recorded the sequences
of symptoms, diseases and therapies of all patients in a hospital. Then, mining
frequent quantitative episodes can yield a set of common patterns in the history
of patients in terms of sequences of symptoms, etc., together with the common
timings between pairs of consecutive events, that can help to characterize, e.g.,
the course of diseases, reactions to therapies, etc. As a fictional example, we
can consider the tree of Figure 1 with A = benign disease, B = symptom 1, C

= symptom 2, D = severe disease, and using days as time unit. In this case,
beside the interesting evolution of a disease, the tree points out the existence of
different groups of patients, each following the same evolution but with different
timings. The first differentiation occurs between the appearance of the benign
disease and the first symptom, in one case taking no more than 10 days, and
in the other case taking approximately between two and three weeks. Then, the
second group of patients further differentiate in the timings between the two
symptoms (10 to 40 days in one case and 35 to 60 in the second one) and one
subgroup shows differences also on the last step (5 to 20 days in one case and
30 to 45 in the second one). This kind of information could be useful to domain
experts, both as ready-to-use knowledge for the daily care of patients, and as
insight for the a more general study and understanding of the diseases involved.

Some sample quantitative episode trees, obtained on real data involving the
logs of a web site, are provided in Section 5.2, Figure 10.

We notice that our approach essentially produces trees rooted on the first
event of each episode, from which all the differentiations in time develop. While
this choice looks very natural, since it follows the order of events in the episode,
other choices could be useful in specific contexts as, for example, rooting the
tree on the last event of the episode. However, such variants of the quantitative
episodes studied in this paper follow the same principles, and in some cases they
can be obtained by simply preprocessing the input data, e.g., moving the root
of the tree on the last event of episodes can be obtained by essentially reversing
the order of the input sequences.

3.2 Quantitative episode definition

Definition 3. (quantitative episode) A quantitative episode (q-episode) is a
pair P = 〈α, IT 〉 where α is an episode of size k > 1, and IT = 〈it1, . . . , itk−1〉,
with ∀i ∈ {1, . . . , k − 1}, iti = [ai, bi] ⊂ N

+ (i.e., iti is an interval in N
+). The

size of P , denoted |P | is defined as |P | = |α|.

The iti intervals are intended to represent values of elapsed time between
the occurrences of two consecutive event types of the episode α. For instance
〈A → B → C → D, 〈[15, 20], [10, 40], [5, 20]〉〉 is one of the q-episodes depicted
in Figure 1.

To handle the time stamps of the events corresponding to all event types
within an episode the definition of occurrence needs to be modified as follows.

Definition 4. (occurrence) An occurrence of an episode α = 〈e1, e2, . . . , ek〉
in an event sequence S is a tuple 〈t1, t2, . . . , tk〉 such that there exists S′ =
〈(e1, t1), (e2, t2), . . . , (ek, tk)〉 satisfying ∀i ∈ {1, . . . , k− 1}, ti < ti+1 and S′ v S.

Notice that subsequence S ′ in the definition above can be formed by non-
contiguous elements of sequence S.

Let us now consider the notion of minimality of occurrences. Let S = 〈(a, 1),
(b, 3), (b, 6), (c, 9)〉 be an event sequence and α = a → b → c be an episode.

Then 〈1, 3, 9〉 and 〈1, 6, 9〉 are two occurrences of α. If we consider a notion of
minimal occurrence based only on the starting date and the ending date of the
occurrences, then both are minimal. This does not fit with the intuition behind
the original notion of minimal occurrence, according to which in such a situation
there is only one minimal occurrence, i.e., the occurrence 〈1, 9〉 (only the starting
and ending dates are used to identify occurrences in the original framework).

Thus, using occurrences that account for the intermediate time stamps as in
Definition 4, the notion of minimal occurrence has to be redefined, and must not
be based only on the starting and ending dates of the occurrences. Moreover,
this extension has to be made by carefully avoiding counterintuitive situations.
For instance, in the previous example, if we choose as minimal occurrences those
containing only minimal occurrences of the different parts of the episode, then
〈1, 3, 9〉 is no longer a minimal occurrence of α, since 〈3, 9〉 is not a minimal
occurrence of b → c (the minimal occurrence of this part of the episode α is
〈6, 9〉). The same arises for 〈1, 6, 9〉 because 〈1, 6〉 is not minimal for the part
a → b (the minimal occurrence of this part of the episode α is 〈1, 3〉). Whence,
α would have no minimal occurrence in S.

In the definition we retain (given as Definition 5), we use two criteria: (1) min-
imality based on the starting and ending dates, and (2) when several occurrences
start and end at the same dates we choose the occurrence containing the earli-
est possible intermediate time stamps. This second condition is expressed simply
through a minimality requirement with respect to the prefix of the episode. Intu-
itively this means that the minimal occurrence among several occurences having
the same starting and ending dates is the one formed as soon as possible, e.g.,
in the previous example the minimal occurrence of α is 〈1, 3, 9〉.

Definition 5. (minimal occurrence) An occurrence 〈t1, . . . , tk〉 of an episode
α in event sequence S is a minimal occurrence if (1) there is no other occurrence
〈t′1, . . . , t

′
k〉 of α such that [t′1, t

′
k] ⊂ [t1, tk], and (2) if k > 2 then 〈t1, . . . , tk−1〉 is

a minimal occurrence of prefix (α).

As we will consider only minimal occurrences of episodes, we will simply use
the term occurrence, when there is no ambiguity.

For a step ei → ei+1 in an episode α, and its durations among a set of occur-
rences of α, now we define how these duration values are grouped. Informally,
groups correspond to maximal sets of duration values that form dense inter-
vals, where dense means that any sub-interval of significant size ws contains a
significant number of values ns. More precisely, ws ∈ R, ws ≥ 1 and ns ∈ N

+

are termed the density parameters and characterize the groups in the following
definition.

Definition 6. (occurrence groups) Let O be a set of occurrences of episode α

and i be an integer parameter such that 1 ≤ i < |α| (i identifies a step ei → ei+1).
Let ∆i(x) = ti+1 − ti for any occurrence x = 〈t1, . . . , t|α|〉 (i.e., the duration of
step ei → ei+1 for occurrence x). Then, the occurrence groups of O at level i,

denoted as group(O, i), are defined as follows:

group(O, i) = { g | g is a maximal subset of O s.t.:
∀a, b ∈ [minx∈g ∆i(x),maxx∈g ∆i(x)],

b − a ≥ ws ⇒ |{x ∈ g | ∆i(x) ∈ [a, b]}| ≥ ns}

For example, consider the set of occurrences O = {x1, . . . , x8} having the
respective durations 3,4,6,6,8,9,15,16,16 for step ei → ei+1 (i.e., the values of ∆i).
Let the density parameters be ws = 3 and ns = 2 (i.e., at least two elements
in any sub-interval of size 3). Then group(O, i) = {{x1, . . . , x5}, {x6, x7, x8}}
(corresponding respectively to the durations 3, 4, 6, 6, 8, 9 and 15, 16, 16).

The next definition specifies the tree structure of the occurrence groups.

Definition 7. (occurrence group tree) Let O be the set of occurrences of
episode α. Then, the occurrence group tree (group tree for short) of α is a
rooted tree with labelled edges such that:

– the tree has |α| levels, numbered from 1 (the root) to |α| (the deepest leaves);
– each node v is associated with a set v.g of occurrences of α;
– the root is associated with root .g = O, i.e., with all the occurrences of α;
– if a node v at level i, 1 ≤ i < |α|, is such that group(v.g, i) = {g1, . . . , gk},

then it has k children v1, . . . , vk, with vj .g = gj , i ∈ {1, . . . , k}.
– each edge connecting node v at level i with its child vj is labelled with the

interval [minx∈vj .g ∆i(x), maxx∈vj .g ∆i(x)];

Notice that such tree is unique, up to permutations in the order of the children
of each node. Then, the main grouping q-episodes correspond simply to the sets
of occurrences that have not been separated from the root to a leaf and that
have a significant size.

Definition 8. (main grouping q-episode) A q-episode P = 〈α, IT 〉 is said
to be a main grouping q-episode if the group tree of α contains a path from the
root to a leaf v such that:

– the labels of the edges met along the path correspond to the intervals in IT ;
– and |v.g|, called the support of P , is greater or equal to σg, a user defined

minimum group size.

For instance, Figure 1 depicts a tree of main grouping q-episodes for α =
A → B → C → D and σg = 90 (a group tree restricted to paths forming main
grouping q-episodes).

Since a minimal occurrence of α can be obtained only by extending a minimal
occurrence of prefix (α), we have the following simple property that is used as a
safe pruning criterion in the extraction principle.

Theorem 1. Let α be an episode such that |α| > 1. If there exists a main group-
ing q-episode 〈α, IT 〉, then there exists a main grouping q-episode 〈prefix (α), IT ′〉.

4 Extracting q-episodes

In this section, we present an algorithm to extract all main grouping q-
episodes, based on the computation of the group trees. Even though the notion
of group tree is rather intuitive, the difficulties lay in the fact that we have to
compute such a tree for every episode. We describe the overall principle of the
approach and then give the corresponding abstract algorithm.

4.1 Principle

A simple preliminary remark is that the tree computation can be limited to
episodes occurring at least σg times, since σg is the minimal support of a main
grouping q-episode and a q-episode cannot be more frequent than its correspond-
ing episode. However, in practice we are still facing a large number of frequent
episodes. So, we propose the algorithm Q-epiMiner that interleaves frequent
episode extraction and group tree computation in a tight efficient way.

Let α = 〈e1, . . . , en〉 be an episode. For each event type ei in α, i > 1, we
consider a list Di that collects the durations between ei−1 and ei, i.e., the values
∆i−1(x) for all occurrences x of α, and we suppose that each Di is sorted by
increasing duration value. By convention, for the sake of uniformity, D1 contains
a duration of 0 for all occurrences (there is no element before e1).

In the following, we describe how these lists D1, . . . , Dn can be used to com-
pute the group tree of pattern α, and then how they can be updated when
expanding α with an event type en+1.

Splitting one node. Splitting the group of occurrences of α associated to one node
of the tree at level i (to obtain its children at level i + 1) can be done simply by
a single scan of the elements in the group if these elements are ordered by the
duration between ei and ei+1. For instance, consider a node associated to the oc-
currences introduced in the previous example on page 7, corresponding to dura-
tions [3, 4, 6, 6, 8, 9, 15, 16, 16], and consider the same density parameters ws = 3
and ns = 2. Then a single scan through the list allows to find the low density
areas, as for example [10, 13] that is a sub-interval of size 3 without any element
of list [3, 4, 6, 6, 8, 9, 15, 16, 16] in it, and thus the scan leads to obtain the two
maximal sublists satisfying the density criterion: [3, 4, 6, 6, 8, 9] and [15, 16, 16].
The same principle can be applied even when the maximal sublists are overlap-
ping. For instance, if the list of durations is [3, 4, 6, 6, 8, 9, 12, 15, 16, 16], a single
scan allows to determine that for example only one element is in interval [10, 13],
while at least two are in the intervals (of size 3) [9, 12] and [12, 15]. Whence we
have the two maximal sublists satisfying the density criterion: [3, 4, 6, 6, 8, 9, 12]
and [12, 15, 16, 16].

In the following, we use a function named splitGroup performing this simple
treatment. We suppose that it takes as input a list of occurrences in a group,
sorted by duration of ei → ei+1, and gives as output a collection of all maximal
sublists satisfying the density criterion.

Computing the whole tree. Suppose that we have already computed the groups
of occurrences denoted g1, . . . , gk that are associated respectively to the nodes
v1, . . . , vk of a level i of the tree. These groups are split in the following way to
obtain the nodes of the next level. Firstly, we create for each node vj an empty
list denoted vj .sortedGroup. Then we scan Di+1 from first to last element, and
for each occurrence found in Di+1 if the occurrence is in a group gj then we insert
the occurrence at the end of vj .sortedGroup. Now, we have at hand for each vj

its group of occurrences sorted by increasing duration between ei and ei+1. Then,
we can apply on each vj .sortedGroup the splitGroup function to compute the
children of vj and their associated groups of occurrences and thus obtain the
next level of the group tree. Repeating this process allows to build the group
tree in a levelwise way, taking advantage of the sorted lists2 D1, . . . , Dn. In the
following, we assume that such a tree is computed by a function computeTree,
applied on a tuple 〈D1, . . . , Dn〉.

Obtaining the information needed to compute the tree. The other key operation is
the efficient computation of the sorted lists D′

1, . . . , D
′
n, D′

n+1 of a pattern α → e.
Suppose that we know the list Le of occurrences of α → e, and the sorted lists
D1, . . . , Dn of durations corresponding to the occurrences of α. Then, the main
property used is that D′

1, . . . , D
′
n are sublists of, respectively, D1, . . . , Dn, since

each occurrence of α → e comes from the expansion of an occurrence of α. So a
list D′

i can be obtained simply by scanning Di from the first to the last element
and picking (in order) the elements in Di corresponding to occurrences of α that
have been extended to form an occurrence of α → e. The result is a list D′

i

sorted by increasing duration between ei−1 and ei. The case of the list D′
n+1 is

different since it does not correspond to durations already computed. This list
is constructed by scanning Le to obtain the durations between en and en+1, and
then by sorting these durations in increasing order. It should be noticed that
while all other operations made on lists in the algorithm are reduced to simple
scans, this sort is the only operation with a non linear complexity with respect to
the size of the list. Having at hand the sorted lists D′

1, . . . , D
′
n, D′

n+1 we can then
compute the group tree of α → e by calling computeTree(〈D′

1, . . . , D
′
n, D′

n+1〉).

Integration with the extraction of episodes. One remaining problem to be solved
is to build the occurrence list of the episode under consideration (as the list Le

for α → e). Fortunately, several approaches to extract episodes, or closely related
patterns like sequential patterns, are based on the use of such occurrence lists
(e.g., [8, 11, 14]), providing the information needed to update the duration lists
Di. The basic idea is that if we store in a list L the locations (positions in the
data sequence) of the occurrences of a pattern α, then for an event type e, we can

2 It should be noticed that the construction starts using D2 to obtain
root.sortedGroup, and that D1 (containing only durations set to zero by conven-
tion) is not really used, but is only mentioned for the sake of the uniformity of the
notation.

use3 L to build the list Le of occurrences of α → e. Notice that the expansion
is made using occurrences of e that are not necessarily contiguous to the last
elements of the occurrences of α. In our case, for the occurrences of an episode
α = 〈e1, . . . , en〉 the location information stored in L are simply the time stamps
of the last element en of α, sorted by increasing value. In the following, we use a
function expand that takes the input sequence S and L, and that returns a set
Lexp of tuples 〈e, Le〉. The set Lexp contains for each event type e, the list Le

of locations of occurrences of α → e. As for L, the location information in Le

are the time stamps of the last element of α → e and Le is sorted by increasing
location value. It should be noticed that since L is ordered by occurrence time
stamp, computing Lexp under the minimal occurrence semantics is linear with
respect to |S|.

The last important aspect is the enumeration strategy of the episodes. The
key remark is that a standard depth-first prefix-based strategy fits both with the
episode extraction and with the use of the sorted lists Di to derive the sorted lists
D′

i to compute the group trees. A depth-first approach is particularly interesting
here, since it allows to limit the amount of memory needed. So, we adopt such a
strategy, that can simply be sketched as follows: when an episode α is considered
we use it as a prefix to expand it and to obtain new episodes of the form α → e,
and then, one after the other, we consider and expand each of these α → e.

It should be noticed that these choices made for the part that extracts the
episodes (i.e., using occurrence lists together with a depth-first strategy) cor-
respond to a typical approach used to mine serial episodes under the minimal
occurrence semantics, similar for instance to the one used in [11].

Pruning strategy and correctness. As mentioned at the beginning of the section,
if an episode α has a support strictly less than σg it cannot be used to form
any main grouping q-episode. The same holds for any expansion of α since it
cannot have a greater support. So, the expansion of α can be safely avoided.
Furthermore, consider an episode α such that all leaves at level |α| are associated
to groups of size strictly less than σg (α has no corresponding main grouping q-
episode, but α itself can have a support greater or equal to σg). By Theorem 1, we
can also safely avoid the expansion of α, since this expansion cannot correspond
to any main grouping q-episode. The exhaustive enumeration strategy of the
episodes and the safety of the pruning strategy ensure the correctness of the
general extraction principle.

4.2 Abstract algorithm

For the sake of simplicity of the presentation we use a common data structure
for all the lists L,Le, Di, D

′
i. Each of them is represented by a list of tuples

〈occid, t, dt〉 where occid is a unique occurrence identifier, t is a time of occur-
rence, and dt is a duration between two elements in a pattern.

3 Together with other information, like the data sequence itself, or the location of the
occurrences of e.

Algorithm 1 (Q-epiMiner)

Extracts the main grouping q-episodes in event sequence S according
to minimum group size σg, and density parameters ws and ns.

begin
Scan S to compute the set Tfreq of event types occurring at least σg times.
for all e ∈ Tfreq

Le := empty list
for all (e, t) ∈ S from first to last, and such that e ∈ Tfreq

Generate occid a new occurrence identifier.
Append 〈occid, t, 0〉 to the end of Le.

for all e ∈ Tfreq

D1 := Le

explore(S, 〈e〉, Le, 〈D1〉)
end

Fig. 2. Algorithm Q-epiMiner.

The extraction is performed by the Algorithm Q-epiMiner, given as Algo-
rithm 1 (Figure 2). It first considers the patterns of size 1 and constructs the
lists Le of occurrences of each event type e (the unique occurrence identifiers
are generated in any order). Then it calls explore (Algorithm 2 in Figure 3) to
expand each of these patterns of size 1.

The function explore first expands the occurrences of episode α with respect
to all event types, using expand. We required that expand preserves the occid

values4 and computes the new durations (between the two last elements of the
episode). For instance, if 〈#999, 42, 5〉 is in L and this occurrence can be extended
by event (e,50) then 〈#999, 50, 8〉 is in Le (where 8 is the duration, 8 = 50 −
42). Next, explore takes each extension that is frequent enough (first pruning
criterion), computes the lists D′

i from the lists Di (1 < i ≤ n) and then D′
n+1

by sorting Le. After having computed the group tree T of the current extension
(calling function computeTree), it applies the second pruning criterion and if
needed makes the new pattern grow in a recursive way.

Notes on implementation. To reduce drastically the memory needed by function
explore, the copy in lists D′

1, . . . , D
′
n of the elements of lists D1, . . . , Dn (for occid

corresponding to occurrences that have been extended) is not really performed.
Instead we implement a virtual deletion in the lists Di by hiding the elements
with an occid that has not been extended (occid.isExtended = false), and
use these lists in place of the lists D′

i when calling computeTree. The hidden

4 Preserving the occid is possible because under the minimal occurrence semantics,
for a given event type e, an occurrence of α can be extended to form at most one
occurrence of α → e.

Algorithm 2 (explore)

Input: (S, α, L, 〈D1, D2, . . . , Dn〉)
where S is the event sequence, α the episode considered,
L the list of occurrences of the last element of α and
〈D1, D2, . . . , Dn〉 the duration lists associated to α with n = |α|.

begin
Lexp := expand(S, L)
for all 〈e, Le〉 ∈ Lexp such that |Le| ≥ σg

for all 〈occid, t, dt〉 ∈ L

occid.isExtended := (∃〈occid′, t′, dt′〉 ∈ Le, occid
′ = occid)

for i from 1 to n

D′

i := empty list
for all 〈occid, t, dt〉 ∈ Di from first to last

if occid.isExtended = true then
Append 〈occid, t, dt〉 to the end of D′

i.
D′

n+1 := Le sorted by increasing value of dt (third element in the tuples)
T := computeTree(〈D′

1, D
′

2, . . . , D
′

n+1〉)
if T has at least one node at level n + 1 associated to a group of size

at least σg then
Output all paths in T from the root to the nodes at level n + 1

that are associated to groups of size at least σg.
explore(S, α → e, Le, 〈D

′

1, D
′

2, . . . , D
′

n+1〉))
end

Fig. 3. Function explore.

elements are then restored in the lists Di before picking the next extension in
Lexp.

5 Experiments

In this section we present the results of a set of experiments, on synthetic
and real datasets, mainly aimed at studying how the size of the input data
and the value of some input parameters impact on the performances of the
Q-epiMiner algorithm described in this paper. The experiments presented are
made on datasets containing several sequences. As mentioned previously, the
definitions extended trivially to that case (the support is simply the sum of the
support in all sequences). The only change in the abstract algorithm is that
the occurrence locations are not simply time stamps, but sequence identifiers
together with time stamps in the sequences. The algorithm was implemented
in C, and all experiments were performed on a Intel Xeon 2Ghz processor with
1Gb of RAM over a Linux 2.6.14 platform.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 50 100 150 200 250

R
un

ni
ng

 ti
m

e
[s

ec
.]

N. of input sequences [x1000]

N. event types = 5k
N. event types = 10k
N. event types = 20k

Fig. 4. Scalability w.r.t. number of input sequences.

5.1 Performance analysis on synthetic datasets

In order to collect large datasets having controlled characteristics, we randomly
generated them by means of the Quest Synthetic Data Generator from IBM5,
by varying the number of input sequences generated (from 10K to 250K), the
sequence length6 (from 5 to 70) and the number of different event types used
(from 5K to 20K). Where not specified hereafter, the following default parameter
values were adopted: 100K input sequences, sequence length equal to 25, 5K
event types, ws = 8 and ns = 4.

The curves in Figure 4 show the execution times of the prototype over
datasets of increasing size and for three different numbers of event types used
in the data. The σg parameter was set to 40 for 10K sequences and then was
increased proportionally, up to 1000 for 250K sequences. As we can see, the
execution time always grows almost linearly, having a higher slope when fewer
event types are in the data7. A similar scalability analysis is provided in Figure 5,
where Q-epiMiner is compared against the extraction of serial episodes having
at least a support of σg. This extraction is performed using the frequent serial
episodes mining technique embedded in Q-epiMiner, (i.e., without computing
the durations, groups and trees, and implemented with the same low level opti-
mizations). As explained in Section 4.1, this technique corresponds to a typical
approach used to extract serial episodes under the minimal occurrence seman-

5
http://www.almaden.ibm.com/software/projects/iis/hdb/Projects/data mining/mining.shtml

6 The parameter of the generator controlling the number of events per time stamp
was set to 1.

7 Fewer event types with the same number of sequences leads to higher supports for
the remaining event types and more frequent patterns of large size.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 50 100 150 200 250

R
un

ni
ng

 ti
m

e
[s

ec
.]

N. of input sequences [x1000]

Serial Episodes
Quantitative Episodes

Fig. 5. Scalability comparison w.r.t. serial episode extraction.

 0

 50

 100

 150

 200

 250

 300

 0 10 20 30 40 50 60 70

R
un

ni
ng

 ti
m

e
[s

ec
.]

Avg. input sequence length

Serial Episodes
Quantitative Episodes

Fig. 6. Scalability w.r.t. input sequence length, with 100K sequences.

tics. The values of σg were the same as in the previous experiment. The two
curves are very close, meaning that the overhead introduced by the computation
of main grouping q-episodes is well balanced by the pruning it allows. Finally,
similar results are obtained by varying the length of the input sequences (see
Figure 6), where both curves have an apparently-quadratic growth (σg was set
to 80 for length 5 and then was increased proportionally, up to 1120 for length

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

R
un

ni
ng

 ti
m

e
[s

ec
.]

Min. group size σg

Serial Episodes
Quantitative Episodes

Fig. 7. Scalability w.r.t. min. group size σg, with 100K sequences.

70). Obviously, for very long sequences usual episode constraints, like maximum
window size, might be used [8].

Figure 7 reports the behaviour of the prototype when the minimum size of
the groups is varied from 100 to 2000, and again its comparison to the mining of
frequent serial episodes at minimum support σg. Here also, the two algorithms
behave very similarly, this time showing a fast drop in the execution time as σg

grows – as usual for frequent pattern mining algorithms.

5.2 Experiments on a real dataset

In this set of experiments we used real world data consisting of the July 2000
weblog from the web server of the Department of Electrical Engineering and
Computer Sciences, University of California at Berkeley8. In a preprocessing
step, all non-HTML pages where removed and user sessions were extracted,
resulting in 90295 user sessions (used as input sequences) of average length of
13.0 with 72014 distinct pages.

The figure 8 describes the performances of the Q-epiMiner prototype on the
Berkeley dataset for different minimum group sizes with ws = 120 (time in sec.)
and ns = 15. It confirms the results obtained on synthetic data, i.e., execution
times drop very quickly as σg increases. Moreover, an additional curve is plotted
that represents a version of Q-epiMiner that does not apply any pruning based
on the absence of a main grouping q-episode, but only applies a pruning based on
the support of the episodes (an episode is not expanded only when its support is
strictly less than σg). This curve shows the effectiveness of the full pruning made

8 http://www.cs.berkeley.edu/logs/http

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 140 160 180 200 220 240 260

R
un

ni
ng

 ti
m

e
[s

ec
.]

Min. group size σg

Serial Episodes
Quantitative Episodes

QE w/o pruning

Fig. 8. Berkely dataset: Scalability w.r.t. min. group size σg.

 50

 60

 70

 80

 90

 100

 110

 120

 5 10 15 20 25 30

R
un

ni
ng

 ti
m

e
[s

ec
.]

ns

ws = 60
ws = 120
ws = 180

Serial Episodes

Fig. 9. Berkely dataset: effects of the density parameters.

by Q-epiMiner. It should also be noticed that in these experiments, Q-epiMiner
performs even better than the serial episode miner (with minimum support set
to σg), confirming the fact that the pruning capabilities of the prototype are
able to balance its potential overhead.

Finally, Figure 9 presents the effect of varying the density parameters (with
σg = 200). It shows that, quite reasonably, the execution time decreases with

Fig. 10. Examples of trees of main grouping q-episodes.

larger minimum density parameter ns (since they allow a stronger pruning), and
increases with larger window sizes ws (which acts in the opposite direction).

We conclude this section by providing in Figure 10 two sample outputs ob-
tained from the Berkeley dataset. The first one describes a navigation pattern
that starts from the web site root, visits a page about classes for students, and
ends on the general alphabetically-sorted directory of people. In particular, we
notice that the tree contains two groups that split at the first step, showing well
separated intervals of times: [1, 549] against [993, 1850] (time in sec.). Further-
more, while the first group (which was faster in performing the first step of the
episode) takes from a few seconds up to 10 minutes to move to the third page,
the second group has a very compact behaviour, only taking between 14 and
30 seconds. The second output concerns the visit of a sequence of four pages
in some photo galleries. The tree starts with a single branch for the first two
steps, which take respectively up to 35 and up to 21 seconds, and splits only
at the third step, where three groups are formed. The first two overlap ([16, 26]
and [25, 35]), therefore showing only a weak differentiation, and represent fast
visitors, while the third one is separated from them, and corresponds to slow
visitors that take from 50 seconds up to one minute. In both the examples, each

time a group splits some of the occurrences it contains are lost, i.e., they are not
part of any subgroup (of size at least σg) created by the split.

6 Related work

The need of quantitative temporal information in patterns over event se-
quences has been pointed in recent works in the data mining literature [13, 3, 12,
4, 6, 11].

An important difference between these approaches and the q-episodes intro-
duced here, is that the former provide patterns in isolation, while q-episodes are
related in tree structures. Such trees give a global view of how the occurrences of
a pattern differentiate in homogeneous groups along the sequence of event types
(from the first to the last element of the pattern).

Different notions of intervals are also considered. In [6] the intervals are not
determined by the data but are fixed by the user; only the interval between the
beginning and the end of a pattern is considered in [11]; and in [3] intervals are
derived from intervals of occurrences of patterns of size two only.

The other approaches [13, 12, 4] compute the intervals from the data and
for all pattern lengths, as in the case of the q-episodes. However, among these
approaches, only [4] considers an exhaustive extraction (at the cost of intrinsi-
cally expensive algorithmic solutions), while the others compute only some of
the patterns using heuristics and/or non-deterministic choices.

Finally, it should be noticed that the overhead of computing the quantitative
temporal information was not assessed in these previous works.

7 Conclusion

In this paper we introduced quantitative episodes, an extension of serial
episodes that refines standard episodes by integrating quantitative temporal in-
formation. A tight integration of episode extraction and occurrence group tree
computation allowed to obtain a complete and efficient algorithm that adds a
negligible overhead to the extraction of serial episodes, as assessed by the ex-
perimental results on performances. These features, and the possibility of an
easy-to-grasp representation of the output into a graphical tree-like structure,
make the approach suitable for many applications. Future evolutions of this work
will include its use in place of standard episode extraction in concrete applica-
tion domains, as well as its extension to deal with quantitative aspects other
than time. In particular, we aim to treat the spatial information contained in
spatio-temporal sequences describing the trajectory of moving objects, such GPS
traces and similar forms of data.

References

1. R. Agrawal and R. Srikant. Mining sequential patterns. In P. S. Yu and A. S. P.
Chen, editors, Proc. of the 11th International Conference on Data Engineering
(ICDE’95), pages 3–14, Taipei, Taiwan, 1995. IEEE Computer Society Press.

2. G. Das, K. Lin, H. Mannila, G. Renganathan, and P. Padhraic Smyth. Rule discov-
ery from time series. In Proc. of the 4th International Conference on Knowledge
Discovery and Data Mining (KDD’98), pages 16–22, New York (USA), August
1998. AAAI Press.

3. C. Dousson and T. V. Duong. Discovering chronicles with numerical time con-
straints from alarm logs for monitoring dynamic systems. In Proc. of the 16th
Int. Joint Conference on Artificial Intelligence (IJCAI’99), pages 620–626, San
Francisco, CA, USA, 1999.

4. F. Giannotti, M. Nanni, and D. Pedreschi. Efficient mining of temporally annotated
sequences. In Proc. of the SIAM Conference on Data Mining (SDM06), 2006.

5. K. Hatonen, M. Klemettinen, H. Mannila, P. Ronkainen, and H. Toivonen. TASA:
Telecomunications alarm sequence analyzer or: How to enjoy faults in your network.
In 1996 IEEE Network Operations and Management Symposium (NOMS’96),
pages 520–529, Kyoto, Japan, April 1996.

6. Y. Hirate and H. Yamana. Sequential pattern mining with time intervals. In Proc.
of the 10th Pacific-Asia Conference on Knowledge Discovery and Data Mining
(PAKDD’06), 2006.

7. H. Mannila and H. Toivonen. Discovery of generalized episodes using minimal
occurrences. In Proc. of the 2nd International Conference on Knowledge Discovery
and Data Mining (KDD’96), pages 146–151, Portland, Oregon, August 1996.

8. H. Mannila, H. Toivonen, and A. Verkamo. Discovery of frequent episodes in event
sequences. Data Mining and Knowledge Discovery, 1(3):259–298, November 1997.

9. H. Mannila, H. Toivonen, and I. Verkamo. Discovering frequent episodes in se-
quences. In Proc. of the 1st International Conference on Knowledge Discovery and
Data Mining (KDD’95), pages 210–215, Montreal, Canada, August 1995. AAAI
Press.

10. N. Meger, C. Leschi, N. Lucas, and C. Rigotti. Mining episode rules in STULONG
dataset. In Proc. of the ECML/PKDD Discovery Challenge, Pisa, Italy, September
2004.

11. N. Meger and C. Rigotti. Constraint-based mining of episode rules and optimal
window sizes. In Proc. of the 8th European Conf. on Principles and Practice of
Knowledge Discovery in Databases (PKDD’04), pages 313–324, Pisa, Italy, Septem-
ber 2004. Springer-Verlag LNAI 3202.

12. A. Vautier, M.-O. Cordier, and R. Quiniou. An inductive database for mining
temporal patterns in event sequences. In ECML/PKDD Workshop on Mining
Spatial and Temporal Data, 2005.

13. M. Yoshida et al. Mining sequential patterns including time intervals. In Data
Mining and Knowledge Discovery: Theory, Tools and Technology II (SPIE Confer-
ence), 2000.

14. M. Zaki. Spade: an efficient algorithm for mining frequent sequences. Machine
Learning, Special issue on Unsupervised Learning, 42(1/2):31–60, Jan/Feb 2001.

