
Constraint-Based Mining of Sequential Patterns

over Datasets with Consecutive Repetitions

Marion Leleu 1;2, Christophe Rigotti1, Jean-Fran�cois Boulicaut1, and

Guillaume Euvrard2

1LIRIS CNRS FRE 2672

Bâtiment Blaise Pascal, INSA Lyon, 69621 Villeurbanne Cedex, France

fcrigotti, jfboulicg@lisisun1.insa-lyon.fr

2 Direction de la Strat�egie - Informatique CDC 113 rue Jean-Marin Naudin F-92220

Bagneux, France

fmarion.leleu, guillaume.euvrardg@caissedesdepots.fr

Abstract. Constraint-based mining of sequential patterns is an active

research area motivated by many application domains. In practice, the

real sequence datasets can present consecutive repetitions of symbols

(e.g., DNA sequences, discretized stock market data) that can lead to a

very important consumption of resources during the extraction of pat-

terns that can turn even eÆcient algorithms to become unusable. We

propose a constraint-based mining algorithm using an approach that en-

ables to compact these consecutive repetitions, reducing drastically the

amount of data to process and speeding-up the extraction time. The

technique introduced in this paper allows to retain the advantages of

existing state-of-the-art algorithms based on the notion of occurrence

lists, while permitting to extend their application �elds to datasets con-

taining consecutive repetitions. We analyze the bene�ts obtained using

synthetic datasets, and show that the approach is of practical interest

on real datasets.

Keywords: constraint-based mining, sequential pattern, general-

ized occurrence

1 Introduction

Sequential pattern mining has been introduced in 1995 [1]. It concerns pattern

discovery (e.g., regularities) from ordered data, typically sequence databases. It

has many applications, e.g., customer purchase analysis, Web Usage Mining,

DNA sequence analysis. Looking for eÆcient algorithms has received a lot of

attention (e.g., [8,11,9,5,10,12,14,13]). Each of these algorithms has its own pros

and cons. Their eÆciency depends on the characteristics of the data and on the

? This research is partially funded by the European Commission IST Programme -

Future and Emergent Technologies, cInQ project (IST-2000-26469).

kind of user-de�ned selection criteria, i.e., the constraints that must be satis�ed

by the extracted patterns. Several available algorithms are based on the so-

called occurrence lists, i.e., lists that contain the location of the patterns in the

data. This technique has been proved very useful for frequent pattern extraction

(e.g., [8,12,14,3,13]).

Independently, the use of user-de�ned constraints to reduce the search space

during sequential pattern extraction has been developed (e.g., [11,9,4,2]). In-

deed, it has also been integrated in the occurrence list approach in the cSpade

algorithm [13], resulting in one of the most eÆcient algorithms proposed for

constraint-based mining of sequential patterns.

We have two main application domains for which we need eÆcient sequential

pattern algorithms: �nancial data (stock market data) analysis for CDC (a ma-

jor �nancial company in France) and DNA sequence database analysis. When

considering the cSpade approach on these data, we understood that the ben-

e�ts of the use of occurrence lists are lost when mining sequences containing

consecutive repetitions of symbols. It comes from an explosion of the number of

occurrences due to the repetition of the symbols. We recently proposed to han-

dle eÆciently the repetitions in the occurrence lists [7] when considering only a

minimal frequency constraint. In this paper, we present how to generalize the

notion of occurrence to perform eÆcient constraint-based mining on collections

of sequences that contain repetitions. From a practical point of view, this leads

to a technique that retains the advantages of the cSpade approach, while being

able to address eÆciently a broader scope of applications. The key idea is to use

a single generalized occurrence to represent several occurrences while keeping

enough information for the mining process.

This paper is organized as follows. Section 2 recalls the constraint-based

sequential pattern mining problem and gives an abstract formulation of an algo-

rithm for sequential pattern mining using occurrence lists. The notion of general-

ized occurrence is introduced in Section 3, and the corresponding modi�cations

of the mining algorithm is presented. The practical impact of the use of gener-

alized occurrences is demonstrated by means of experiments in Section 4. We

conclude in Section 5.

2 Problem Statement and Abstract Algorithm

2.1 Constrained Sequential Pattern

The problem is to mine all frequent sequential patterns, verifying some user-

de�ned constraints, that can be found in a sequence database. The constraints

considered in this paper are the so-called minimum and maximum gap con-

straints, that enable to specify the minimum or maximum time interval between

the occurrences of two events inside a pattern. Another similar constraint con-

sidered is the time window constraint, that enables to limit the maximum time

between the �rst event and the last event of a pattern. Basically, the problem can

be presented as follows: Let I = fi1; i2; . . . ; img be a set of m distinct items. An

2

event (also called itemset) of size l is a non empty set of l items from I : (i1i2:::il).

A sequence � of length L is an ordered list of L events �1; : : : ; �L, denoted as

�1 ! �2 ! ... ! �
L
. A database is composed of sequences, where each se-

quence has a unique sequence identi�er (sid) and each event of each sequence

has a temporal event identi�er (eid) called timestamp. For a sequence in the

database, each eid associated to an event is unique and if an event e
i
precedes

event e
j
in a sequence, then the eid of e

j
must be strictly greater than the eid

of e
i
. A sequential pattern (or pattern) is a sequence. Due to the lack of space,

we considered only single-item events in patterns, that is patterns composed of

events of size 1. The extension to pattern composed of events of size greater than

1 is straightforward and can be found in an extended version of the paper [6].

We are interested in the so-called constrained sequential patterns de�ned

as follows. A sequence s
a
= �1 ! �2 ! : : : ! �

n
is called a subsequence of

another sequence s
b
= �

0

1 ! �
0

2 ! : : :! �
0

m
if and only if there exists integers

1 � i1 < i2 < : : : < i
n
� m such that �1 � �

0

i1
, �2 � �

0

i2
, : : :, �

n
� �

0

in

.

Let supMin be a positive integer called absolute support threshold, a pattern p

veri�es the minimum frequency constraint in a database D if p is a subsequence

of at least supMin sequences of D. In this paper, we also use interchangeably the

relative support threshold expressed in the percentage of the number of sequences

of D. Let gapMin be the �xed value of the minimum gap constraint. A pattern

p = �1 ! �2 ! : : :! �
n
veri�es the minimum gap constraint if and only if, for

all �
i
, i = 1 : : : n�1, eid(�

i+1)�eid(�i) � gapMin. Similarly, let gapMax be the

�xed value of the maximum gap constraint. Pattern p veri�es the maximum gap

constraint if and only if, for all �
i
, i = 1 : : : n�1, eid(�

i+1)�eid(�
i
) � gapMax.

Now, let winMax be the �xed value of the time window constraint. Pattern p

veri�es this constraint, if and only if eid(�
n
)� eid(�1) � winMax.

2.2 Abstract Mining Algorithm

We present in this section an abstract algorithm corresponding to the general

principle used in algorithms based on the use of occurrence lists for mining

sequential patterns (e.g., [8,12,14,3,13]). The algorithm repeats two operations:

a generation of candidate patterns and a support counting step. Let us introduce

some needed concepts. A pattern with k items is called a k-pattern. A pre�x of a

k-pattern z is a subpattern of z constituted by the k � 1 �rst items of z and its

suÆx corresponds to its last item. We extend the notion of pre�x and suÆx to

occurrence. Let y = e1 ! e2 ! : : :! e
k�1 ! e

k
be an occurrence of a k-pattern

z, then prefix(y) = e1 ! e2 ! : : :! e
k�1 and suffix(y) = e

k
.

The algorithm uses two frequent k-patterns z1 and z2 having the same (k�1)-
pattern as pre�x to generate a (k + 1)-pattern z. This operation is denoted as

merge(z1; z2) and generates a single k-pattern: z = z1 ! suffix(z2). The sup-

port counting for the newly generated pattern is not made by scanning the whole

database. Instead, the algorithm has stored in speci�c lists, called occLists, the

positions where z1 and z2 occur in the database. It then uses these two lists de-

noted occList(z1) and occList(z2) to determine where z occurs. Then occList(z)

allows to compute directly the support of z, by counting the number of distinct

3

sids present in this list. The computation of occList(z) is a kind of join and is

denoted join(z1; z2). The abstract algorithm is presented as Algorithm 1.

Algorithm 1 (Abstract Mining Algorithm)

Input: a database of sequences and a sup-

port threshold.

Output: the frequent sequential patterns

contained in the database.

Use the database to compute:

- F1 the set of all frequent items

- occList(z) for all element z of F1
let i := 1

while Fi 6= ; do
let Fi+1 := ;
for all z1 2 Fi do

for all z2 2 Fi do

if z1 and z2 have the same pre�x then

let z := merge(z1; z2)

let occList(z) := join(occList(z1); occList(z2))

Use occList(z) to determine if z is frequent

if z is frequent then

Fi+1 := Fi+1 [fzg
�

�

od

od

i := i+ 1

od

output
S
1�j<i

Fj

Fig. 1. Abstract mining algorithm using occurrence lists.

3 Generalized Occurrences and GoSpec Algorithm

3.1 Constrained Generalized Occurrences

The structure of a constrained generalized occurrence list is designed to reduce

the size of the occurrence lists by representing several occurrences with a single

more general one. In case of data presenting consecutive repetitions of items,

this leads to an important gain in term of memory space used, and since the

lists proceeded by the join operation are shorter, it results also in the reduction

of the overall execution time.

4

For example, let us consider the following toy database containing three se-

quences. In these sequences the events are located at consecutive timestamps

(i.e., 1,2,3, . . .) and each sequence begin at timestamp 1.

Sequence 1:

fAg; fAg; fAg; fAg; fAg; fBg; fBg; fBg; fB;Cg; fB;Cg; fB;Cg; fB;Cg;
fBg; fBg; fBg
Sequence 2:

fBg; fA;Bg; fA;Bg; fBg; fB;Cg; fB;Cg; fB;Cg; fB;Cg; fB;Cg; fB;Cg;
fCg; fCg; fCg; fCg
Sequence 3:

fg; fAg; fg; fBg; fBg; fBg; fBg; fB;Cg; fB;Cg; fCg; fCg; fCg; fCg; fCg

A classical representation of occurrence lists like the one used by cSpade [13]

is depicted in Figure 2, in the left tables of each three areas. These tables rep-

resent the occurrence lists of cSpade for patterns A, B, C, A ! B, A ! C and

A ! B ! C, with supMin = 2, gapMin = 2, gapMax = 5 and winMax = 10.

In the tables, the column sid corresponds to the identi�er of the sequence in

which the pattern occurs, eid corresponds to the timestamp of the last event of

this occurrence, and di� corresponds to the di�erence between the timestamps

of the �rst and the last event of the occurrence (used by cSpade to check the

time window constraint).

We propose a notion of constrained generalized occurrence (generalized occur-

rence for short) to compact such consecutive occurrences. This notion is straight-

forward for pattern of size 1, but not so trivial for longer patterns since it has

to enable the handling of the various constraints. For a pattern z, the form of a

generalized occurrence is hsid; tBeg; [min;max]; gmaxi, and contains:

{ An identi�er sid that corresponds to identi�er of a sequence where pattern

z occurs.

{ A timestamp tBeg that corresponds to the timestamp of an occurrence of

the �rst event of the pattern z (the detailed construction of tBeg will be

given in Algorithm 2).

{ An interval [min,max] corresponding to eids of consecutive occurrences of

the last event of pattern z.

{ A value gmax that indicates the timestamp of the last occurrence of the last

event of pattern z respecting the gapMax constraint. If no such occurrence

exists then gmax is set to �1.

Examples of generalized occurrences for the toy database are given in Fig-

ure 2, in the right tables of each three areas. In the case of pattern B, it is

possible to reduce its 10 consecutive occurrences in the �rst sequence to a single

generalized occurrence h1; 6; [6; 15]; 15i, where the interval [6,15] compacts all 10
eids. It should be noticed that for patterns of size 1 the �elds tBeg and gmax

are useless. However this is not the case for longer patterns. For example, let

us consider the last generalized occurrence of the constrained generalized oc-

currence list of pattern A ! B. This generalized occurrence is h3; 2; [4; 9]; 7i,
indicating that it appears in sequence 3 and starts at timestamp 2. The interval

5

[4,9] means that it represents several occurrences ending from 4 to 9. The gmax

value of 7 noti�es that occurrences ending from 4 to 7 satisfy the maxGap con-

straint, while for occurrences ending strictly after timestamp 7 only the pre�x

of the occurrence satis�es maxGap.

In the case of a generalized occurrence that does not represent any occurrence

that satisfy the maxGap constraint for all its events, but that represents only

occurrences satisfying this constraint up to this its last event, then the gmax

value is set to -1 (as for example in the generalized occurrence h3; 2; [8; 12];�1i
of pattern A ! C in Figure 2).

Fig. 2. Occurrence lists vs. Generalized occurrence lists for patterns A, B, C, A ! B,

A ! C and A ! B ! C, with supMin = 2, gapMin = 2, gapMax = 5 and winMax =

10.

3.2 Dedicated Join Algorithm

The GoSpec Algorithm is an instance of the abstract algorithm 1 using a join

designed for the generalized occurrence lists.

The join process is called when the merge operation has been done. It com-

putes the constrained generalized occurrence list of a candidate pattern z, from

the occLists of two generator patterns z1 and z2 having the same pre�x.

Two di�erent procedures are called depending on the level of the extraction

process, JoinLevel2 (Algorithm 4) and Join (Algorithm 3). The �rst one is

a speci�c algorithm dedicated to the particular case of a 2-pattern candidate

and the second one to the general case of a k-pattern candidate with k > 2.

These two algorithms use a common function, LocalJoin (Algorithm 2), that

computes a generalized occurrence v = hsid; tBeg; [min;max]; gmaxi of z from

a single generalized occurrence of z1 and a single generalized occurrence of z2.

6

Algorithm 2 (LocalJoin)

Input: Two generalized occurrences

hsid1; tBeg1; [min1; max1]; gmax1i
and hsid2; tBeg2; [min2; max2]; gmax2i
Output: hv; addi, where v = hsid; tBeg; [min;max]; gmaxi and add is

a boolean value that is false if v cannot be created.

1. let add := false

2. let v := null

3. if (min1 + gapMin � max2) and (tBeg1 +winMax � min2)

and (min1 � gmax1)then

4. if (sid1 = sid2) then

5. let sid := sid1
6. let tBeg := tBeg1

7. �nd min the minimum element x of [min2, max2]

such that x � min1 + gapMin

8. �nd max the maximum element x of [min2, max2]

such that x � tBeg1 + winMax

9. �nd gmax the maximum element x of [min2, max2]

such that x � gmax1 + gapMax

10. �

11. if (min and max exist) and (min � max) then

12. if (gmax not exists) then let gmax := �1
13. else if (gmax > max) then

14. let gmax := max �

15. �

16. let v := hsid; tBeg; [min;max]; gmaxi
17. let add := true

18. �

19.�

20.output hv; addi

Algorithm 3 (Join)

Input: occList(z1) and occList(z2), generalized occurrence lists

of two patterns that share a same pre�x.

Used subprograms: Algorithm 2

Output: a new occList

Initialize GoIdList to the empty list.

1.for all occ1 2 GoIdList(z1) do

2. for all occ2 2 GoIdList(z2) do

3. let hv; addi := LocalTemporalJoin(occ1, occ2)

4. if add then

5. Insert v in occList

6. �

7. od

8.od

9.output occList

Fig. 3. LocalJoin and Join algorithms.

7

The LocalJoin(Algorithm 2), �rst veri�es that the input generalized occur-

rences satisfy necessary conditions to be joined, performing the tests of line

3 and that the two generalized occurrences are from a same sequence, that is

sid1 = sid2 (line 4). One line 3, the �rst comparison veri�es that there exists

at least one suÆx of an instance of hsid2; tBeg2; [min2;max2]; gmax2i that fol-
lows the �rst suÆx of an instance of hsid1; tBeg1; [min1;max1]; gmax1i and that
satis�es the gapMin constraint. The second comparison checks that there ex-

ists at least one suÆx of an instance of hsid2; tBeg2; [min2;max2]; gmax2i that
satis�es the winMax constraint wrt. tBeg1. The last comparison ensures that

hsid1; tBeg1; [min1;max1]; gmax1i has at least one instance that satis�es the

gapMax constraint.

Lines 5 to 9 generate a new generalized occurrence. min is the timestamp

of the earliest suÆx of an instance of hsid2; tBeg2; [min2;max2]; gmax2i that
follows the earliest suÆx of an instance of hsid1; tBeg1; [min1;max1]; gmax1i and
that veri�es theminimum gap constraint. In a same way,max is the timestamp of

the latest suÆx of an instance of hsid2; tBeg2; [min2;max2]; gmax2i that veri�es
the time window constraint wrt tBeg1. gmax indicates the timestamp of the

latest suÆx of an instance of hsid2; tBeg2; [min2;max2]; gmax2i that can form

an occurrence of v that veri�es gapMax.

This LocalJoin algorithm is called by Join (Algorithm 3) that generates a

new occList from the occLists of two generator patterns z1 and z2. The Algo-

rithm 3 iterates on the elements of occList(z1) and occList(z2). For each pair

(occ1,occ2) a new constrained generalized occurrence is generated when possible

using LocalJoin. Algorithm 3 is the general join operation used for k-patterns

when k > 2. A dedicated join is needed to generate the occurrence lists of 2-

patterns (i.e., z1 and z2 contain a single item. It is called JoinLevel2 and is

presented as Algorithm 4. Contrarly to the general Join, JoinLevel2 performs

several calls to the LocalJoin procedure. Indeed, the instances of the gener-

alized occurrence hsid1; tBeg1; [min1;max1]; gmax1i must be proceeded sepa-

rately because they correspond, in the data, to di�erent starting timestamps

of the 1-pattern z1. Thus, several calls are made on all generalized occurrences

hsid1; p; [p; p]; pi with p varying between the values min1 and max1.

Proofs of the correctness of the representation using generalized occurrences

(and the corresponding join process) can be found in [6].

4 Experimental Results

In this section, we present experimental results and compare the behaviors

of GoSpec and of cSpade [13] (one of the most eÆcient algorithm proposed in

the literature and based on occurrence lists).

Both algorithms have been implemented using Microsoft Visual C++ 6.0,

with the same kind of low level optimization to allow a fair comparison. All

experiments have been performed on a PC with 196 MB of memory and a 500

MHz Pentium III processor under Microsoft Windows 2000.

8

Algorithm 4 (JoinLevel2)

Input: occList(z1), occList(z2)

Used subprograms: Algorithm 2

Output: a new occList

Initialize occList to the empty list.

1.for all hsid1; tBeg1; [min1;max1]; gmax1i 2 occList(z1) do

2. for all hsid2; tBeg2; [min2;max2]; gmax2i 2 occList(z2) do

3. for all p 2 [min1 , max1] do

4. let hv; addi := LocalTemporalJoin(hsid1; p; [p;max1]; pi,
hsid2; tBeg2; [min2; max2]; gmax2i)

5. if add then

6. Insert v in occList

7. �

8. od

9. od

10.od

11.output occList

Fig. 4. JoinLevel2 algorithm.

4.1 Experiments on synthetic datasets

The synthetic dataset has been generated using the Dataquest generator of

IBM [1] and the following parameters: C10-T2.5-S4-I1.25-D1K over an alpha-

bet of 100 items (called set1). It contains 1000 sequences with an average size of

10 events per sequences (see [1] for more details on the generator parameters).

In this dataset, the time interval between two time stamps is 1, and there is one

event per time stamp.

In order to have datasets presenting parameterized consecutive repetitions on

certain items, we performed a post-processing on set1 to add such repetitions.

Each item founded in an event of a sequence has a probability �xed to 10% to

be repeated. When an item is repeated, we simply duplicated it in the next i

consecutive events. If the end of the sequence is reached during the duplication

process the sequence is not extended (no new event is created) and thus, the

current item is not completely duplicated. We denote set1 rfig the dataset ob-
tained with a repetition parameter of value i. For the sake of uniformity, set1 is

denoted set1 r0. The post-processing on set1 r0 leads to the creation of 5 new

datasets set1 r1,: : :, set1 r5.

The three �rst graphs (top-left, top-right and middle-left) of Figure 5 show

the results of the extractions performed on datasets set1 r1, set1 r2, : : :, set1 r5

with the following constraints: a support threshold �xed to 2.5%, a window time

limited to 6, a minimum gap �xed to 2 and a maximum gap �xed to 4.

The top-left graph (Figure 5) gives the size of the cSpade and GoSpec occur-

rences lists (in number of elements) for extraction performed on �les set1 r1, : : :,

set5 r5. As expected, the total number of occurrences used by cSpade is greater

9

Fig. 5. Experiments using GoSpec and cSpade.

than the number of constrained generalized occurrences used by GoSpec, and

this reduction increases with the number of repetitions. The top-right graph

shows that this reduction has a direct impact on the join costs (in term of num-

ber of calls to LocalJoin), that results on an important reduction of the total

execution time of the extractions as shown in the middle-left graph of Figure 5.

The middle-right graph of Figure 5 completes these results with the extrac-

tion times on datasets set1 r0 and set1 r5. It shows that the execution time to

�nd a given number of patterns remains quite the same in presence of repetitions

for GoSpec.

4.2 Experiments on real datasets

The �rst real dataset is a �nancial dataset provided by the CDC �nancial com-

pany (Caisse des D�epots et Consignations) and contains the variations of stock

10

prices over one year. The discretized data results in a set (called set2) of 2830 se-

quences with an average length of 15 events per sequence. These sequences have

been built from an alphabet of 17 items. The extractions have been performed

using the extended version of the algorithm ([6]), that is without any limitation

on the number of item per event composing the generated patterns. The follow-

ing constraints have been used: winMax = 10, maxGap = 4 and minGap = 2.

The bottom-left graph of Figure 5 represents the total execution time of both

cSpade and GoSpec for minimum support thresholds varying from 25% to 50%

and shows that GoSpec o�ers a signi�cant gain wrt. cSpade.

The second real dataset corresponds to a dataset of DNA sequences called

set3. It contains 1778 sequences with an average length of 102 events composed

by only one item per event over the nucleic alphabet fA,T,G,Cg. The extractions
have been performed using a window time constraint sets to 6, a maximum gap

constraint of 3, no minimum gap constraint, and a minimum support threshold

varying from 5% to 25%. The bottom-left graph of Figure 5 illustrates the total

execution time used by the extractions and shows the advantages of GoSpec in

practice on this second kind of data.

5 Conclusion

In this paper we presented an algorithm that enables to manage eÆciently the

constraint-based mining task when the sequential databases contain consecutive

repetitions of their items. Such a situation can appear in several domains (e.g.,

discretized quantitative time series and DNA sequences). This can cause an

explosion of the number of pattern occurrences and thus to an important loss of

eÆciency for algorithms based on an occurrence list approach (e.g., [8,12,14,3,13],

while this algorithm family has shown its interest in many situations (e.g., low

support mining and active constraint handling)). The algorithm presented in this

paper, extends this family to tackle with these domains. It is based on the notion

of constrained generalized occurrences, that have the particularity to compact

several consecutive occurrences of patterns while keeping enough information for

a constraint-based mining process. We showed by means of experiments , that

the gain in term of memory space and execution time is important and that

it increases with the number of consecutive repetitions contained in the input

sequences.

References

1. R. Agrawal and R. Srikant. Mining sequential patterns. In Proc. of the 11th Inter-

national Conference on Data Engineering (ICDE'95), pages 3{14, Taipei, Taiwan,

March 1995. IEEE Computer Society.
2. H. Albert-Lorincz and J.-F. Boulicaut. Mining frequent sequential patterns under

regular expressions: a highly adaptive strategy for pushing constraints. In Proceed-

ings of the Third SIAM International Conference on Data Mining SDM 2003, San

Francisco, USA, May 2003.

11

3. J. Ayres, J. Flannick, J. Gehrke, and T. Yiu. Sequential pattern mining using

bitmap representation. In Proc. of the 8th ACM SIGKDD International Conference

on Knowledge Discovery and Data Mining, Edmonton, Alberta, Canada, July 2002.

4. M. Garofalakis, R. Rastogi, and K. Shim. SPIRIT: Sequential pattern mining with

regular expression constraints. In Proc. of the 25th International Conference on

Very Large Databases (VLDB'99), pages 223{234, Edinburgh, United Kingdom,

September 1999.

5. J. Han, J. Pei, B. Han Mortazavi-Asl, Q. Chen, U. Dayal, and M.-C. Hsu. Freespan:

Frequent pattern-projected sequential pattern mining. In Proc. 2000 Int. Conf.

Knowledge Discovery and Data Mining (KDD'00), pages 355{359, Boston, MA,

USA, August 2000.

6. M. Leleu, C. Rigotti, J.-F. Boulicaut, and G. Euvrard. Constrained-based mining

of sequential patterns over datasets with consecutive repetitions. Technical report,

LIRIS, INSA Lyon, Bat. Blaise Pascal, 69621 Villeurbanne Cedex, France, 2003.

7. M. Leleu, C. Rigotti, J.-F. Boulicaut, and G. Euvrard. Go-spade: Mining sequen-

tial patterns over datasets with consecutive repetitions. In Proc.2003 Int. Conf.

Machine Learning and Data Mining (MLDM'03), Leipsig, Germany, July 2003.

8. H. Mannila, H. Toivonen, and A. Verkamo. Discovery of frequent episodes in event

sequences. Data Mining and Knowledge Discovery, 1(3):259{298, November 1997.

9. F. Masseglia, F. Cathalat, and P. Poncelet. The PSP approach for mining sequen-

tial patterns. In Proc. of the 2nd European Symposium on Principles of Data Min-

ing and Knowledge Discovery in Databases (PKDD'98), pages 176{184, Nantes,

France, September 1998. Lecture Notes in Arti�cial Intelligence, Springer Verlag.

10. J. Pei, B. Han, B. Mortazavi-Asl, and H. Pinto. Pre�xspan: Mining sequential

patterns eÆciently by pre�x-projected pattern growth. In Proc. of the 17th Inter-

national Conference on Data Engineering (ICDE'01), 2001.

11. R. Srikant and R. Agrawal. Mining sequential patterns: Generalizations and per-

formance improvements. In Proc. of the 5th International Conference on Extending

Database Technology (EDBT'96), pages 3{17, Avignon, France, September 1996.

12. M. Zaki. EÆcient enumeration of frequent sequences. In Proc. of the 7th Interna-

tional Conference on Information and Knowledge Management (CIKM'98), pages

68{75, November 1998.

13. M. Zaki. Sequence mining in categorical domains: incorporating constraints. In

Proc. of the 9th International Conference on Information and Knowledge Manage-

ment (CIKM'00), pages 422{429, Washington, DC, USA, November 2000.

14. M. Zaki. Spade: an eÆcient algorithm for mining frequent sequences. Machine

Learning, Special issue on Unsupervised Learning, 42(1/2):31{60, Jan/Feb 2001.

12

