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Abstract. Given a large collection of transactions containing items, a basic

common data mining problem is to extract the so-called frequent itemsets (i.e.,

sets of items appearing in at least a given number of transactions). In this pa-

per, we propose a structure called free-sets, from which we can approximate any

itemset support (i.e., the number of transactions containing the itemset) and we

formalize this notion in the framework of ε-adequate representations [10]. We

show that frequent free-sets can be efficiently extracted using pruning strate-

gies developed for frequent itemset discovery, and that they can be used to

approximate the support of any frequent itemset. Experiments on real dense

data sets show a significant reduction of the size of the output when compared

with standard frequent itemset extraction. Furthermore, the experiments show

that the extraction of frequent free-sets is still possible when the extraction of

frequent itemsets becomes intractable, and that the supports of the frequent

free-sets can be used to approximate very closely the supports of the frequent

itemsets. Finally, we consider the effect of this approximation on association

rules (a popular kind of patterns that can be derived from frequent itemsets)

and show that the corresponding errors remain very low in practice.

1 Introduction

Several data mining tasks (e.g., association rule mining [1]) are based
on the evaluation of frequency queries to determine how often a par-
ticular pattern occurs in a large data set. We consider the problem
of frequency query evaluation, when patterns are itemsets or con-
junctions of properties, in dense data sets1 like, for instance in the

1 e.g., data sets containing many strong correlations.



context of census data analysis [5] or log analysis [8]. In these im-
portant but difficult cases, there is a combinatorial explosion of the
number of frequent itemsets and computing the frequency of all of
them turns out to be intractable. In this paper, we present an efficient
technique to approximate closely the result of the frequency queries,
and formalize it within the ε-adequate representation framework [10].
Intuitively, an ε-adequate representation is a representation of data
that can be substituted to another representation to answer the same
kind of queries, but eventually with some lost of precision (bounded
by the ε parameter). First evidences of the practical interest of such
representations have been given in [10, 6].

In this paper, we propose a new ε-adequate representation for the
frequency queries. This representation, called free-sets, is more con-
densed than the ε-adequate representation based on itemsets [10].
The key intuition of the free-set representation is illustrated on the
following example. Consider the binary attributes A,B,C,D in the
relational table r depicted in Table 1 and suppose we are interested in
the support of {A,B,C} in r (i.e., the number of rows in r in which
A,B and C are true). If we know that the rule A,B ⇒ C nearly
holds in r (i.e., when A and B are true in a row then, excepted in
a few cases, C is also true) then we can approximate the support of
itemset {A,B,C} using the support of {A,B}. In Table 1 the rule
A,B ⇒ C has only one exception. So, we can use the support of
{A,B} as a value for the support of {A,B,C}. Moreover, we can
approximate the support of any itemset X such that {A,B,C} ⊆ X
by the support of X \ {C} because the rule (X \ {C}) ⇒ C also
holds with at most a few exceptions. For instance, the support of
{A,B,C,D} can be approximated by the support of {A,B,D} since
the rule A,B,D ⇒ C can not have more exceptions than A,B ⇒ C.
Furthermore, the support of {A,B,D} does not need to be known
directly, but can also be approximated itself. For example, the rule
A,D ⇒ B holds in Table 1 with one exception, so the support of
{A,D} can be used as an approximation of the support of {A,B,D}
and then also of the support of {A,B,C,D}. It should be noticed
that the framework presented in this paper can be restricted to rules
with no exceptions. In this case, we still benefit of a significant con-
densation and speed-up when compared with frequent itemset ex-
traction.
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A B C D

1 1 0 0

1 0 0 1

0 1 1 1

1 1 1 0

1 0 0 0

1 0 0 0

0 1 0 0

0 1 0 0

0 0 1 0

0 0 1 0

0 0 0 1

0 0 0 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

Table 1. A relational table over four binary attributes.

In the representation proposed in this paper, we call free-set an item-
set Y such that the items in Y can not be used to form a nearly exact
rule. For example, if we consider only rules having at most one ex-
ception, then the free-sets in Table 1 are {∅, {A}, {B}, {C}, {D},
{A,B}, {A,C}, {A,D}, {B,C}, {B,D}, {C,D}}. All other subsets
of {A,B,C,D} contain items that can be used to form rules with
zero or one exception (e.g., A,B ⇒ C for {A,B,C}, B,D ⇒ A for
{A,B,D}, A,C ⇒ D for {A,C,D}, B,C ⇒ D for {B,C,D}, and
A,B,C ⇒ D for {A,B,C,D}) and thus are not free.

The freeness of itemsets is anti-monotonic in that sense that if a set
is not a free-set then none of its supersets can be a free-set. The
algorithm proposed to extract the free-sets takes advantage of this
property. It first considers sets of size 0 (i.e., the empty itemset),
then sets of size 1, and so on. When it determines that a set X is
not free then it prunes the search space since there is no need to
consider any of the supersets of X. For example, if the algorithm is
executed on Table 1 and takes into account rules having at most one
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exception, then it will never consider the set {A,B,C,D} because
several sets among its subsets are not free (e.g., {A,B,C}).
The experiments show that frequent free-sets are an ε-adequate rep-
resentation for frequency queries that can be extracted efficiently,
even on dense data sets. They also show that the error made when
approximating itemset support using frequent free-sets remains very
low in practice.

Finally, we consider a popular application of frequent itemset dis-
covery: the production of the so-called association rules [1]. We de-
termine bounds for the errors propagated on association rule charac-
teristics when we use frequent free-sets to approximate the support
of frequent itemsets, and we show that these bounds are very tight
in practice.

This paper is a significant extension of a preliminary work presented
in [7]. It includes proofs of the theorems, an in-depth error evalua-
tion.

Organization of the paper. In the next section we introduce prelim-
inary definitions used in this paper. In Section 3, we present the
notion of free-set, and show that it can be used as an ε-adequate
representation for the frequency queries. In section 4, we present
an algorithm to extract the frequent free-sets. In Section 5, we give
practical evidences that frequent free-sets can be extracted efficiently
and that the estimation of the supports of frequent itemsets using
frequent free-sets leads in practice to very low errors. In Section 6, we
show that these errors are propagated in a very favorable way when
we produce association rules. We review related work in Section 7.
Finally, we conclude with a summary and directions for future work.

2 Preliminary definitions

When applicable, we use the notational conventions and definitions
from [10, 11].

2.1 Frequent sets

In this section, we recall standard definitions.
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Definition 1 (binary database). Let R be a set of symbols called
items. A row (also called transaction) is a subset of R. A binary

database r over R is a multiset of transactions.

Definition 2 (support and frequency). We note M(r,X) =
{t ∈ r|X ⊆ t} the multiset of rows matched by the itemset X and
Sup(r,X) = |M(r,X)| the support ofX in r, i.e., the number of rows
matched by X. The frequency of X in r is Sup(r,X)/|r|. Let σ be a
frequency threshold, Freq(r, σ) = {X|X ⊆ R and Sup(r,X)/|r| ≥
σ} is the set of all σ-frequent itemsets in r.

For notational convenience, we also need the following specific defi-
nition.

Definition 3 (frequent sets). FreqSup(r, σ) is the set of all pairs
containing a frequent itemset and its support, i.e., FreqSup(r, σ) =
{〈X,Sup(r,X)〉|X ⊆ R and Sup(r,X)/|r| ≥ σ}.

2.2 ε-adequate representation

Definition 4 (ε-adequate representation [10]). Let S be a class
of structures. Let Q be a class of queries for S. The value of a query
Q ∈ Q on a structure s ∈ S is assumed to be a real number in [0, 1]
and is denoted by Q(s). An ε-adequate representation for S w.r.t. a
class of queriesQ, is a class of structures C, a representation mapping
rep : S → C and a query evaluation function m : Q×C → [0, 1] such
that ∀Q ∈ Q,∀s ∈ S, |Q(s)−m(Q, rep(s))| ≤ ε.

Example 1. An example of a class of structures is the set noted DBR

of all possible binary databases over a set of items R. An interesting
query class is QR, the set of all queries retrieving the frequency of
an itemset ⊆ R. If we denote QX the query in QR asking for the
frequency of itemset X then QR = {QX |X ⊆ R} and the value
of QX on a database instance r ∈ DBR is defined by QX(r) =
Sup(r,X)/|r|.
An example of ε-adequate representation for DBR w.r.t. QR is the
representation of r ∈ DBR by means of Freq(r, ε). The correspond-
ing rep, C and m are as follows. ∀r ∈ DBR, rep(r) = FreqSup(r, ε),
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C = {rep(r)|r ∈ DBR}, ∀QX ∈ QR,∀c ∈ C, if ∃〈X,α〉 ∈ rep(r)
then m(QX , c) = α/|r| else m(QX , c) = 0. It is straightforward to
see that this is an ε-adequate representation for DBR w.r.t. QR since
∀QX ∈ QR,∀r ∈ DBR, |QX(r)−m(QX , rep(r))| ≤ ε.

Interesting ε-adequate representations are condensed representa-

tions, i.e., ε-adequate representations where structures have a smaller
size than the original structures.

3 The free-sets as a condensed representation

First, we recall the notion of association rule, and then define a
class of rules called δ-strong rules in order to introduce the concept
of free-set in a concise way.

Definition 5 (association rule). Let R be a set of items, an
association rule based on R is an expression of the form X ⇒ Y ,
where X,Y ⊆ R, Y 6= ∅ and X ∩ Y = ∅.

Definition 6 (δ-strong rule). A δ-strong rule2 in a binary
database r over R is an association rule X ⇒ Y such that
Sup(r,X)− Sup(r,X ∪ Y ) ≤ δ, i.e., the rule is violated in no more
than δ rows.

In this definition, δ is supposed to have a small value, so a δ-strong
rule is intended to be a rule with very few exceptions.

3.1 Free-sets

Definition 7 (δ-free-set). Let r be a binary database over R, X ⊆
R is a δ-free-set w.r.t. r if and only if there is no δ-strong rule based
on X in r. The set of all δ-free-sets w.r.t. r is noted Free(r, δ).

Since δ is supposed to be rather small, informally, a free-set is a set
of items such that its subsets (seen as conjunction of properties) are
not related by any very strong positive correlation.
One of the most interesting properties of freeness is its anti-

monotonicity w.r.t. itemset inclusion.

2 Stemming from the notion of strong rule of [15]
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Definition 8 (anti-monotonicity). A property ρ is anti-

monotone if and only if for all itemsets X and Y , ρ(X) and Y ⊆ X
implies ρ(Y ).

The anti-monotonicity has been identified as a key property for ef-
ficient pattern mining [11, 12], since it is the formal basis of a safe
pruning criterion. Indeed, efficient frequent set mining algorithms
like Apriori [2] make use of the (anti-monotone) property “is fre-

quent” for pruning.
The anti-monotonicity of freeness follows directly from the definition
of free-set and is stated by the following theorem.

Theorem 1. Let X be an itemset. For all Y ⊆ X if X ∈ Free(r, δ)
then Y ∈ Free(r, δ).

3.2 Free-sets as an ε-adequate representation

We show now that δ-free-sets can be used to answer frequency queries
with a bounded error. The following lemma states that the support
of any itemset can be approximated using the support of one of the
free-sets.

Lemma 1. Let r be a binary database over a set of items R, X ⊆ R
and δ ∈ [0, |r|], then there exists Y ⊆ X such that Y ∈ Free(r, δ)
and Sup(r, Y ) ≥ Sup(r,X) ≥ Sup(r, Y )− δ|X|.

Proof. We show this using a recurrence on |X|. The statement is
true for |X| = 0 if we take Y = ∅. Suppose the statement is true
for |X| = i. Let X be a subset of R such that |X| = i + 1. If
X ∈ Free(r, δ) then we can simply choose Y = X. If X 6∈ Free(r, δ)
then by definition of Free(r, δ) there exists a δ-strong rule Z1 → Z2
based on X. Let A be an item in Z2 and Z3 = X \ {A}. As |Z3| =
|X| − 1 using the recurrence hypothesis we know that there exists
Y ⊆ Z3 such that Y ∈ Free(r, δ) and Sup(r, Z3) ≥ Sup(r, Y )−δ|Z3|.
Since Z1 → Z2 is a δ-strong rule, then Sup(r, Z1) − Sup(r, Z1 ∪
Z2) ≤ δ. Sup(r, Z1) − Sup(r, Z1 ∪ Z2) is the number of rows not
matched by Z2 but matched by Z1, thus Sup(r, Z1)−Sup(r, Z1∪Z2)
is greater or equal to Sup(r, Z1∪Z3)−Sup(r, Z1∪Z2∪Z3) (i.e., the
number of rows not matched by Z2 but matched by Z1 and Z3). So
we have Sup(r, Z1 ∪ Z3)− Sup(r, Z1 ∪ Z2 ∪ Z3) ≤ δ which simplifies
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to Sup(r, Z3)− Sup(r,X) ≤ δ. Since Sup(r, Z3) ≥ Sup(r, Y )− δ|Z3|
and |Z3| = |X| − 1 we deduce Sup(r,X) ≥ Sup(r, Y ) − δ|X|. The
other inequality Sup(r, Y ) ≥ Sup(r,X) is straightforward because
Y ⊆ Z3 ⊆ X. ut

This lemma states that the support of an itemset X can be approx-
imated using the support of one of the free-sets, but it does not
determine which free-set to use. We now show that this can be done
by simply choosing among the free-sets included in X any free-set
with a minimal support value. This is stated more formally by the
following theorem.

Theorem 2. Let r be a binary database over a set of items R, X ⊆
R and δ ∈ [0, |r|], then for any Y ⊆ X such that Y ∈ Free(r, δ) and
Sup(r, Y ) = min({Sup(r, Z)|Z ⊆ X and Z ∈ Free(r, δ)}) we have

Sup(r, Y ) ≥ Sup(r,X) ≥ Sup(r, Y )− δ|X|.

Proof. Let Y be a subset of X such that Y ∈ Free(r, δ) and sat-
isfying Sup(r, Y ) = min({ Sup(r, Z)|Z ⊆ X and Z ∈ Free(r, δ)}).
Since Y ⊆ X we have immediately that Sup(r, Y ) ≥ Sup(r,X).
By Lemma 1, there exists Z ⊆ X such that Z ∈ Free(r, δ)
and Sup(r, Z) ≥ Sup(r,X) ≥ Sup(r, Z) − δ|X|. Since Y has
the minimal support among all subsets of X in Free(r, δ), then
Sup(Z) ≥ Sup(Y ). Thus Sup(Z) − δ|X| ≥ Sup(Y ) − δ|X|. As
Sup(r,X) ≥ Sup(r, Z)− δ|X|, we have Sup(r,X) ≥ Sup(Y )− δ|X|.

ut

In practice, computing the whole collection of δ-free-sets is often
intractable. We show now that such an exhaustive mining can be
avoided since an ε-adequate representation to answer frequency
queries can be obtained if we extract only frequent free-sets together
with a subset of the corresponding negative border [11].

Definition 9 (frequent free-set). Let r be a binary database
over a set of items R, we denote FreqFree(r, σ, δ) = Freq(r, σ) ∩
Free(r, δ) the set of σ-frequent δ-free-sets w.r.t. r.

Let us adapt the concept of negative border from [11] to our context.

Definition 10 (negative border of frequent free-sets). Let r
be a binary database over a set of items R, the negative border of
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FreqFree(r, σ, δ) is denoted by Bd−(r, σ, δ) and is defined as follows:
Bd−(r, σ, δ) = {X|X ⊆ R,X 6∈ FreqFree(r, σ, δ) ∧ (∀Y ⊂ X,Y ∈
FreqFree(r, σ, δ))}.

Informally, the negative border Bd−(r, σ, δ) consists of the smallest
itemsets (w.r.t. set inclusion) that are not σ-frequent δ-free. Our
approximation technique only needs a subset of the negative border
Bd−(r, σ, δ). This subset, denoted by FreeBd−(r, σ, δ), is the set of
all free-sets in Bd−(r, σ, δ).

Definition 11. FreeBd−(r, σ, δ) = Bd−(r, σ, δ) ∩ Free(r, δ)

As in the case of an ε-adequate representation for DBR w.r.t. QR

using frequent itemsets (see Section 2.2), we need the free-sets and
their supports.

Definition 12. FreqFreeSup(r, σ, δ) is the set of all pairs contain-
ing a frequent free-set and its support, i.e., FreqFreeSup(r, σ, δ) =
{〈X,Sup(r,X)〉|X ∈ FreqFree(r, σ, δ)}.

We can now define the ε-adequate representation w.r.t. the frequency
queries.

Definition 13. The frequent free-sets representation w.r.t. σ, δ and
a query class Q ⊆ QR, is defined by a class of structures C, a rep-
resentation mapping rep and a query evaluation function m, where
∀r ∈ DBR, rep(r) = 〈FreqFreeSup(r, σ, δ), F reeBd−(r, σ, δ)〉, C =
{rep(r)|r ∈ DBR}, ∀QX ∈ Q,∀c ∈ C, if ∃Y ∈ FreeBd−(r, σ, δ), Y ⊆
X then m(QX , c) = 0 else m(QX , c) = min({α|∃Z ⊆ X, 〈Z, α〉 ∈
FreqFreeSup(r, σ, δ)})/|r|.

Using this representation, the frequency of an itemset X is approxi-
mated as follows. If X has a subset Y which is free but not frequent
then the frequency of X is considered to be 0. Otherwise we take the
smallest support value among the supports of the subsets of X that
are free and frequent.
We now establish that this representation is an ε-adequate represen-
tation for the following database class and query class.

Definition 14. DBR,s = {r|r ∈ DBR and |r| ≥ s}, i.e., the set of
all binary databases having at least s rows. QR,n = {QX |X ⊆ R and
|X| ≤ n}, i.e., the set of frequency queries on itemsets having no
more than n items.
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Theorem 3. A frequent free-sets representation w.r.t. σ, δ and a

query class QR,n is an ε-adequate representation for DBR,s w.r.t.

QR,n where ε = max(σ, nδ/s).

Proof. Let QX be a query in QR,n and r an database in DBR,s. If
there exists Y ∈ FreeBd−(r, σ, δ) such that Y ⊆ X then X is not
σ-frequent so QX(r) ≤ σ. Since m(QX , c) = 0 we have |QX(r) −
m(QX , rep(r)| ≤ σ.
In the case where no Y ∈ FreeBd−(r, σ, δ) is a subset of X, this
means that all δ-free-set included in X are σ-frequent. Whence
min({Sup(r, Z)|Z ⊆ X and Z ∈ Free(r, δ)}) = min({α|∃Z ⊆
X, 〈Z, α〉 ∈ FreqFreeSup(r, σ, δ)}) which is equal to m(QX , rep(r)).
Thus, by Theorem 2, m(QX , rep(r)) ≥ QX(r) ≥ m(QX , rep(r)) −
δ|X|/|r|. So we have |QX(r)−m(QX , rep(r))| ≤ nδ/s. ut

4 Discovering all frequent free-sets

In this section, we describe an algorithm, called MinEx, that gen-
erates all frequent free-sets. For clarity, we omit the fact that it
outputs their supports as well. Implementation issues are presented
in Section 4.2.

4.1 The algorithm - an abstract version

MinEx can be seen as an instance of the levelwise search algorithm
presented in [11]. It explores the itemset lattice (w.r.t. set inclusion)
levelwise, starting from the empty set and stopping at the level of the
largest frequent free-sets. More precisely, the collection of candidates
is initialized with the empty set as single member (the only set of
size 0) and then the algorithm iterates on candidate evaluation and
larger candidate generation. At each iteration of this loop, it scans
the database to find out which candidates of size i are frequent free-
sets. Then, it generates candidates for the next iteration, taking
every set of size i+ 1 such that all proper subsets are frequent free-
sets. The algorithm finishes when there is no more candidate. The
algorithm is given below as Algorithm 1.
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Algorithm 1 (MinEx)
Input: r a binary database over a set of items R, σ and δ two thresh-
olds.

Output: FreqFree(r, σ, δ)

1. C0 := {∅};
2. i := 0;
3. while Ci 6= ∅ do
4. FreqFreei := {X|X ∈ Ci and X is a σ-frequent

δ-free-set in r};
5. Ci+1 := {X|X ⊆ R and ∀ Y ⊂ X,Y ∈

⋃
j≤iFreqFreej}\⋃

j≤i Cj;
6. i := i+ 1;
7. od;
8. output

⋃
j<iFreqFreej;

Using the correctness result of the levelwise search algorithm given
in [11] the following theorem is straightforward.

Theorem 4 (Correctness). Algorithm MinEx computes the sets
of all σ-frequent δ-free-sets.

4.2 Implementation issues

We used techniques similar to the ones described in [3] for frequent
itemset mining. The candidate generation is made using a join-based
function, and the itemset support counters are updated w.r.t. a row
of the database using a prefix-tree data structure.
The key point that needs a new specific technique is the freeness
test in step 4 of the algorithm. An efficient computation of this test
can be done, based on the following remark: Z is not a δ-free-set if
and only if there exist A ∈ Z and X = Z \ {A} such that X is not
δ-free or X is δ-free and X ⇒ {A} is a δ-strong rule. Furthermore,
the step 5 of the algorithm guarantees that if Z is a candidate then
X must be δ-free since X is a subset of Z. Therefore, during the
ith iteration, we might first compute the δ-strong rules of the form
X ⇒ {A}, where X ∈ FreqFreei and A ∈ R \ X, and then use
them to remove candidates in Ci+1 that are not δ-free. Thus, at the
beginning of an iteration, only free-sets are candidates.
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This is incorporated in the algorithm by replacing steps 4 and 5 with
the following steps:

4.1 FreqFreei := {X|X ∈ Ci and X is a σ-frequent};
4.2 N otFreei+1 := {Z|Z = X ∪ {A} where X ∈ FreqFreei,

A ∈ R \X and X ⇒ {A} is a δ-strong rule };
5.1 Cg

i+1 := {X|X ⊆ R and ∀ Y ⊂ X,Y ∈
⋃

j≤iFreqFreej}\⋃
j≤i Cj;

5.2 Ci+1 := C
g
i+1 \ N otFreei+1;

The steps 4.1 and 4.2 can be computed efficiently within the same
database scan as follows. For each candidate X considered in step
4.1, we maintain a node n (in the prefix-tree) containing an integer
denoted by n.count to count the support of X and a set denoted by
n.rhs to determine the δ-strong rule having a left hand side equal to
X. More precisely, n.rhs is a set of pairs of the form 〈A, e〉. Such a
pair 〈A, e〉 means that the rule X ⇒ {A} has e exceptions.
Steps 4.1 and 4.2 are performed by first initializing for each candidate
X ∈ Ci the corresponding node n in the prefix-tree with n.count := 0
and n.rhs := ∅. Then the database r is scanned, and for each row
t the prefix-tree is used to find all candidates matching t. For each
such candidate X, corresponding to a node n in the tree, we call
matched(t,X, n, δ) to update n.count and n.rhs. The description of
matched is given below as Algorithm 2.

Algorithm 2 (matched)
Input: a row t, a candidate X, a node n of the prefix-tree and the

threshold δ.
Output: n updated.

1. if n.count ≤ δ then
2. for all i ∈ t \X do
3. if @〈j, e〉 ∈ n.rhs with j = i then
4. n.rhs := n.rhs ∪ {〈i, n.count〉};
5. fi
6. od
7. fi
8. for all 〈j, e〉 ∈ n.rhs do
9. if j 6∈ t then
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10. n.rhs := n.rhs \ {〈j, e〉};
11. if e < δ then
12. n.rhs := n.rhs ∪ {〈j, e+ 1〉};
13. fi
14. fi
15. od
16. n.count := n.count +1;

17. output n;

The key idea is that the set n.rhs is created lazily, in the sense that a
pair in n.rhs is created for an item A only when the algorithm finds
A in a transaction t matched by X. Moreover, when δ rows matched
by X have been encountered, there is no need to create new entries
for new items in n.rhs since these items will lead obviously to rules
with more than δ exceptions.

5 Experiments

The running prototype is implemented in C++. We use a PC with
512 MB of memory and a 500 MHz Pentium III processor under
Linux operating system.
For an experimental evaluation, we chose the PUMSB* data set,
a PUMS census data set3 preprocessed by researchers from IBM
Almaden Research Center. The particularity of PUMS data sets is
that they are very dense and make the mining of all frequent itemsets
together with their supports intractable for low frequency thresholds,
because of the combinatorial explosion of the number of frequent
itemsets [5].

5.1 Frequent free-set vs. frequent set condensation

Table 2 shows a comparison of the extraction of frequent sets and
frequent free-sets for different frequency thresholds and different val-
ues of δ. The collections FreqFree(r, σ, δ) are significantly smaller
than the corresponding Freq(r, σ). For frequency thresholds of 15%
and 20% Freq(r, σ) is so large that it is clearly impossible to pro-
vide it on our platform, while the extraction of FreqFree(r, σ, δ)

3 http://www.almaden.ibm.com/cs/quest/data/long patterns.bin.tar

13



remains tractable. For these two frequency thresholds of 15% and
20%, we use lower-bound estimations of |Freq(r, σ)|. These lower-
bounds are computed using the δ-strong rules collected by MinEx

(see Section 4.2) to find the size of the largest frequent itemset. If this
size is m then there are a least 2m frequent itemsets. Figure 1 (left)
emphasizes, using logarithmically scaled axes, the difference of the
size of the various representations. We observe a brutal change be-
tween the size of Freq(r, 0.25) and of Freq(r, 0.20): 1000 times more
frequent itemsets than expected by extrapolating the trend given
by Freq(r, 0.25) and Freq(r, 0.30). If we look at the trend of the
number of frequent free-sets it seems to be unchanged. The reason
for this, is that between 0.25 and 0.20 we reach a support threshold
where the number of strong rules increases significantly and then
leads to the explosion of the number of frequent itemsets, but not to
the explosion of the number of frequent free-sets.

Using also logarithmically scaled axes, Figure 1 (right) shows that
the extraction time for MinEx grows up exponentially when the fre-
quency threshold is reduced. This is due to the combinatorial explo-
sion of the number of frequent free-sets. Apriori-based algorithms
have a similar exponential evolution of the extraction time, due in
this case to the combinatorial explosion of the number of frequent
sets.

σ 15% 20% 25% 30%
δ 0 10 20 0 10 20 0 10 20 0 10 20

Max frequent free-set
size (≈MIN-EX DB scans)

12 11 10 12 10 9 11 9 9 10 9 8

|FreqFree(r, σ, δ)| 909 806 324 743 232 887 253 107 105 615 76 413 78 220 36 310 27 137 26 972 14 631 11 079

FreqFree(r, σ, δ)
extraction time in sec.

(MIN-EX)

11 977 6 590 5 126 4 233 2 342 1 890 1 540 905 731 533 373 302

Max frequent set size
(≈APRIORI DB scans)

35 32 18 16

|Freq(r, σ)| >235 >232 2 064 946 432 699

Freq(r, σ)
extraction time in sec.

(APRIORI)

N/A N/A 14 559 3 469

Table 2. Comparison of different representations at various frequency thresholds.
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Fig. 1. Extraction time and sizes of different representations.

5.2 Scale-up experiment

On Figure 2, we report the extraction time (for σ = 20%) when
changing the number of rows or the number of items in the data set.
We observe an exponential complexity w.r.t. the number of items
and a linear complexity w.r.t. number of rows in the data set if
the value of δ follows the number of tuples (e.g., if we double the
number of rows then we double the value of δ). This is emphasized
by a superimposed straight line on Figure 2 (left).

Extraction time vs number of tuples
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Fig. 2. Behavior of MinEx w.r.t. the number of rows and the number of items.

5.3 Approximation error in practice

In this section we report the practical error made on σ-frequent
itemset supports when using the approximation based on σ-frequent
δ-free-sets. This evaluation is made on the PUMSB* data set used
in the previous experiments and also on a PUMS data set of Kansas
in a less favorable case.
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In the PUMSB* data set, for σ = 0.3, there are 432699 σ-frequent
sets and the largest has n = 16 items. We computed the con-
densed representation FreqFreeSup(r, 0.3, 20) which contains 11079
elements.
Theoretical error bounds for the frequent set support approximation
can be determined using Theorem 2 as follows. In this experiment,
the maximal absolute support error is δ ∗ n = 20 ∗ 16 = 320 rows.
The maximal relative support error can be obtained assuming that
the maximal theoretical absolute error occurs on the σ-frequent set
of minimal frequency (i.e., σ). The PUMSB* data set contains N =
49046 rows. So, the maximal relative support error is δ ∗n/(N ∗σ) =
2.18%.
The support of each of the 432699 σ-frequent itemsets is approxi-
mated using the collection FreqFreeSup(r, 0.3, 20) and Theorem 2
and then compared to the exact support. The maximal observed ab-
solute support error is 45 rows, and the maximal relative support
error is 0.29%. The average absolute support error is 6.01 rows and
the average relative support error is 0.037%. Tables 3 and 4 show
that these errors remain very low even for frequent sets containing
a lot of items and for low supports.

itemset size 1 2 3 4 5 6 7 8
average abs. sup. error 0 0.36 1.17 2.14 3.24 4.33 5.31 6.12
average rel. sup. error 0 0.002% 0.007% 0.012% 0.019% 0.026% 0.032% 0.038%

maximal abs. sup. error 0 18 20 37 37 39 39 45
maximal rel. sup. error 0 0.11% 0.13% 0.18% 0.22% 0.24% 0.24% 0.29%

itemset size 9 10 11 12 13 14 15 16
average abs. sup. error 6.80 7.40 7.92 8.39 8.82 9.22 9.58 9.86
average rel. sup. error 0.042% 0.046% 0.050% 0.054% 0.057% 0.060% 0.062% 0.064%

maximal abs. sup. error 45 45 45 44 38 31 24 15
maximal rel. sup. error 0.29% 0.29% 0.29% 0.28% 0.26% 0.19% 0.15% 0.10%

Table 3. Error observed on σ-frequent itemset supports by itemset size.

In this experiment the value of δ is small w.r.t. the minimal support
required. The ratio is 20/(0.3 ∗ 49046) = 0.136%. We now report
another experiment where the value of δ represents more than 1% of
the minimal support required, and thus is likely to greatly increase
the value of the error.
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itemset support (%) [30,40] (40,50] (50,60] (60,70] (70,80] (80,90] (90,100]
average abs. sup. error 6.20 3.29 0.07 0 0 0 0
average rel. sup. error 0.039% 0.016% 2.8×10-6 0 0 0 0

maximal abs. sup. error 45 38 9 0 0 0 0
maximal rel. sup. error 0.29% 0.19% 0.03% 0 0 0 0

Table 4. Error observed on σ-frequent itemset supports by interval of support.

The data set used in this experiment is a PUMS data set of Kansas
state4. We use a version of this data set that has been prepro-
cessed at the University of Clermont-Ferrand (France) in Prof. L.
Lakhal’s research group. We have reduced this data set to 10000
rows and 317 items to be able to extract all σ-frequent itemsets at
a low frequency threshold. For σ = 0.05 (500 rows), there are 90755
σ-frequent sets and the largest has n = 13 items. We computed
FreqFreeSup(r, 0.05, 6) which contains 4174 elements.

In this experiment, the maximal absolute support error is δ ∗ n =
6∗13 = 78 rows. The maximal relative support error is δ∗n/(N∗σ) =
15.6% (N = 10000 rows in the experiment).

The supports of the σ-frequent itemsets are approximated using
FreqFreeSup(r, 0.05, 6) and compared to the exact supports. The
maximal observed absolute support error is 18 rows, and the max-
imal relative support error is 3.1%. The average absolute support
error is 2.12 rows and the average relative support error is 0.28%.
A more detailed distribution of the error is given in Tables 5 and 6.
These results show that the error remains low in practice even when
the value of δ is high w.r.t. the minimal support.

6 Effect of errors on association rules

A popular application of the extraction of frequent itemsets is the
discovery of association rules [1]. In this section, we give bounds for
the error made on support and confidence of association rules when
these rules are derived from frequent δ-free-sets instead of frequent
itemsets. The notion of association rules has been recalled in Defini-
tion 5. Support and confidence are the two most widely used objec-

4 ftp://ftp2.cc.ukans.edu/pub/ippbr/census/pums/pums90ks.zip
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itemset size 1 2 3 4 5 6 7 8
average abs. sup. error 0 0.24 0.65 1.10 1.53 1.92 2.31 2.75
average rel. sup. error 0 0.03% 0.07% 0.13% 0.18% 0.24% 0.31% 0.38%

maximal abs. sup. error 0 6 10 12 14 18 18 18
maximal rel. sup. error 0 1.1% 1.3% 2.1% 2.7% 3.1% 3.1% 3.1%

itemset size 9 10 11 12 13
average abs. sup. error 3.28 3.90 4.58 5.20 5.50
average rel. sup. error 0.47% 0.58% 0.71% 0.83% 0.88%

maximal abs. sup. error 18 18 18 15 11
maximal rel. sup. error 3.1% 2.9% 2.9% 2.9% 2.0%

Table 5. Error observed on σ-frequent itemset supports by itemset size.

itemset support (%) [5,10] (10,20] (20,30] (30,40] (40,50] (50,60] (60,70] (70,80] (80,90] (90,100]
average abs. sup. error 2.16 2.03 2.22 2.03 1.25 1.70 0.66 0 0 0
average rel. sup. error 0.337% 0.159% 0.089% 0.063% 0.027% 0.031% 0.010% 0 0 0

maximal abs. sup. error 18 14 10 10 5 6 6 0 0 0
maximal rel. sup. error 3.11% 1.17% 0.47% 0.33% 0.12% 0.10% 0.10% 0 0 0

Table 6. Error observed on σ-frequent itemset supports by interval of support.

tive interestingness measures for association rules and are commonly
defined as follows.

Definition 15 (support and confidence). Let X ⇒ Y be an
association rule based on the set of items R. The support and confi-
dence of this rule in a database r over R are denoted by Sup(r,X ⇒
Y ) and Conf(r,X ⇒ Y ) and are defined respectively by Sup(r,X ⇒
Y ) = Sup(r,X∪Y ) and Conf(r,X ⇒ Y ) = Sup(r,X∪Y )/Sup(r,X).
The rule X ⇒ Y is frequent in r w.r.t. a frequency threshold σ if
X ∪ Y ∈ Freq(r, σ).

6.1 Error bounds for support approximation

The error on support of association rules is the same as the error on
support of itemsets. For a frequent rule X ⇒ Y , if we use frequent
δ-free-sets to determine its support, by Theorem 2 we always have
an overestimate of its support with an error of at most δ|X ∪ Y |. In
practice, we have the same approximation errors as those presented
in Section 5.3.
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6.2 Error bounds for confidence approximation

Let X ⇒ Y be a frequent rule in r. Suppose we used frequent δ-free-
sets to approximate Sup(r,X ∪ Y ) and Sup(r,X). These approxi-
mations are denoted respectively by Sup(r,X ∪ Y ) and Sup(r,X).
Now, we can approximate Conf(r,X ⇒ Y ) by Conf(r,X ⇒ Y ) =
Sup(r,X ∪ Y )/Sup(r,X). By Theorem 2, and since we have over-
estimated the supports, then Sup(r,X ∪ Y )/(Sup(r,X) + δ|X|) ≤
Conf(r,X ⇒ Y ) ≤ (Sup(r,X ∪ Y ) + δ|X ∪ Y |)/Sup(r,X).
Thus a bound for the absolute error made on the confidence when we
use Conf(r,X ⇒ Y ) instead of Conf(r,X ⇒ Y ) is max(Sup(r,X∪
Y )/(Sup(r,X) + δ|X|)− Conf(r,X ⇒ Y ), (Sup(r,X ∪ Y ) + δ|X ∪
Y |)/Sup(r,X)− Conf(r,X ⇒ Y )).
Now, we derive values of this bound in practice, using the experi-
ments reported in Section 5.3. We consider the PUMS data set of
Kansas state, which is less favorable than the other (PUMSB*) since
the error on the support was larger.
Let ar(s, c) be the set of all association rules in this data set with
support s and confidence c. For a given pair 〈s, c〉, we bound the error
made on confidence for all rules in ar(s, c) as follows. The support
of the left hand side of any of these rules is s′ = s/c. Using the
experimental results of Section 5.3, we can find the maximal relative
support error made on s and s′, denoted respectively by rse and
rse′. Then we bound the absolute error made on the confidence by
max(s/(s′ + s′ × rse′)− c, (s+ s× rse)/s′ − c).

support

confidence 0.05 0.1 0.2 0.3 0.4 0.5 0.6

0.99 0.0308 0.0116 0.0047 0.0033 0.0012 0.0010 0.0010

0.95 0.0295 0.0111 0.0045 0.0031 0.0011 0.0010 0.0010

0.9 0.0280 0.0105 0.0042 0.0030 0.0011 0.0009 0.0009

0.85 0.0264 0.0099 0.0040 0.0028 0.0010 0.0008 0.0009

Table 7. Bounds for absolute error on rule confidence.

We consider support s ∈ {0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6} and confi-
dence c ∈ {0.99, 0.95, 0.9, 0.85}. For each pair 〈s, c〉, we used the
maximal relative error on support given in Table 6 to bound the er-
ror made on confidence for the set of rule ar(s, c). The corresponding
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values are presented in Table 7. For example, if we consider rules with
confidence 0.99 and support 0.05, the maximal absolute error made
on confidence is 0.0308. For higher rule supports the error decreases.
This variation corresponds to the reduction of the maximal relative
error for higher supports in Table 7. For lower confidence values the
error also decreases. This is due to the fact that a lower confidence
implies a higher support for the left hand side of the rule and thus
a lower error on the left hand side support.

7 Related work

Using incomplete information about itemset frequencies for some
mining task, e.g., Boolean rule mining, has been proposed in [10], and
formalized in the general framework of ε-adequate representations.
Probabilistic approaches to the problem of frequency queries have
also been investigated (see [14]).
Several search space reductions based on nearly exact (or exact)
association rules have been proposed. The use of the nearly exact
association rules to estimate the confidence of other rules and then
to prune the search space has been suggested in [4] but not investi-
gated nor experimented. Efficient mining of nearly exact rules (more
specifically rules with at most δ exceptions) with a single attribute in
both the left and the right hand sides has been proposed in [9]. Search
space pruning using exact association rules has been experimented
in [4] in the context of rule mining and developed independently in
the context of frequent itemset mining in [13]. [13] implicitly proposes
a kind of condensed representation called closed itemsets which is
strongly related to the notion of 0-free-sets (δ-free-sets with δ = 0).
Mining 0-free-sets or closed itemsets lead to similar gains, but min-
ing δ-free-sets with δ 6= 0 offers additional search space reductions
(at the cost of an uncertainty on supports). It should also be noticed
that by definition exact rules are very sensitive to noise. If we process
a noisy data set (a very common case in practice) a few exceptions to
the exact rules can appear easily. Then the pruning methods based
on exact rules will be less effective, while the mining of δ-free-sets
with δ 6= 0 can still benefit of an important search space reduction.
The techniques mentioned in this section present important benefits
on dense data sets, but if we consider very sparse data sets, we can
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hardly expect to have many exact or nearly exact rules that hold, and
thus all these techniques are likely to be less interesting. Moreover,
on very sparse data sets, these techniques may be a little bit slower
than the direct extraction of frequent itemsets without pruning, since
they can not take advantage of important search space reductions,
but have to pay for a little overhead due to the tests performed to
detect the rules.

8 Conclusion and future work

We proposed a structure called free-sets that can be extracted ef-
ficiently, even on dense data sets, and that can be used to approx-
imate closely the support of frequent itemsets. We formalized this
approximation in the framework of ε-adequate representations [10]
and gave a correct extraction algorithm formulated as an instance
of the levelwise search algorithm presented in [11].
We reported experiments showing that frequent free-sets can be ex-
tracted even when the extraction of frequent itemsets turns out to
be intractable. The experiments also show that the error made when
approximating the support of frequent itemsets using the support of
frequent free-sets remains very low in practice. Finally, we consid-
ered the effect of this approximation on the support and confidence
of association rules. We bounded the corresponding errors and the
experiments show that these bounds are very tight in practice.
Interesting future work includes applications of the notion of δ-free-
set to the the approximation of the support of general Boolean for-
mula as investigated in [10].
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