
Constraint-Based Mining of Episode Rules and

Optimal Window Sizes?

Nicolas Méger and Christophe Rigotti

INSA-LIRIS FRE CNRS 2672
69621 Villeurbanne Cedex, France
{nmeger,crigotti}@liris.cnrs.fr

Abstract. Episode rules are patterns that can be extracted from a large
event sequence, to suggest to experts possible dependencies among occur-
rences of event types. The corresponding mining approaches have been
designed to find rules under a temporal constraint that specifies the max-
imum elapsed time between the first and the last event of the occurrences
of the patterns (i.e., a window size constraint). In some applications the
appropriate window size is not known, and furthermore, this size is not
the same for different rules. To cope with this class of applications, it
has been recently proposed in [2] to specifying the maximal elapsed time
between two events (i.e., a maximum gap constraint) instead of a window
size constraint. Unfortunately, we show that the algorithm proposed to
handle the maximum gap constraint is not complete. In this paper we
present a sound and complete algorithm to mine episode rules under the
maximum gap constraint, and propose to find, for each rule, the window
size corresponding to a local maximum of confidence. We show that the
extraction can be efficiently performed in practice on real and synthetic
datasets. Finally the experiments show that the notion of local maximum
of confidence is significant in practice, since no local maximum are found
in random datasets, while they can be found in real ones.

1 Introduction

Many datasets are composed of a large sequence of events, where each event
is described by a date of occurrence and an event type. Commonly mined de-
scriptive patterns in these datasets are the so-called episode rules. Informally,
an episode rule reflects how often a particular group G1 of event types tends to
appear close to another group G2. A rule is associated with two measures, its
frequency and its confidence, that have an intuitive reading similar to the one
of frequency and confidence used for association rules [1]. These two measures
respectively represent how often the two groups occur together (i.e., is the rule
supported by many examples ?) and how strong is this rule (i.e., when G2 occurs,
is G1 appearing in many cases close to G2 ?).

? This research is partially funded by the European Commission IST Programme -
Accompanying Measures, AEGIS project (IST-2000-26450).

Finding episode rules may provide interesting insight to experts in various
domains. In particular, it has been shown to be very useful for alarm log analysis
in the context of the TASA project [3]. More generally, it can also be applied,
after an appropriated discretization to time series, and to spatial data (the tem-
poral dimension is replaced by a spatial dimension) like for example in DNA
sequences.

The standard episode rule mining problem is to find all episode rules satisfy-
ing given frequency and confidence constraints. There are two main approaches
to find such rules. The first one, proposed and used by [7, 6] in the Winepi al-
gorithm, is based on the occurrences of the patterns in a sliding window along
the sequence. The second one, introduced in [5, 6] and supported by the Minepi
algorithm, relies on the notion of minimal occurrences of patterns. Both tech-
niques have been designed to be run using a maximum window size constraint
that specifies the maximum elapsed time between the first and the last event
of the occurrences of the patterns. More precisely, in the case of Winepi, the
algorithm used a single window size constraint and must be executed again if
the user wants to perform an extraction with a different window size. The other
algorithm, Minepi, needs a maximal window size constraint to restrict reason-
ably the search space in practice, but can derive rules for several window sizes
that are lesser than this maximal window size.

To our knowledge, no existing complete algorithm is able to extract episode
rules without at least a maximum window size constraint (in addition to a fre-
quency and a confidence constraint) on non-trivial datasets. In some applications
the window size is not known beforehand, and moreover, the interesting window
size may be different for each episode rule. To cope with this class of applica-
tions, it has been recently proposed in [2] to use a maximum gap constraint that
imposes the maximal elapsed time between two consecutive events in the occur-
rences of an episode. This constraint allows the occurrences of larger patterns
to spread over larger intervals of time not directly bounded by a maximum win-
dow size. This constraint is similar to the maximum gap constraint handled by
algorithms proposed to find frequent sequential patterns in a base of sequences
(e.g., [10, 11, 4]). A base of sequences is a large collection of sequences where
each sequence is rather small, and the algorithms developed to mine such bases
cannot be reused to extract episodes in a single large event sequence, because
the notion of frequency of a pattern is very different in these two contexts. In
a base of sequences the frequency of a pattern corresponds to the number of
sequences in which the pattern occurs at least one time, and several occurrences
of the pattern in the same sequence have no impact on its frequency. While in
the case of an episode in an event sequence, the frequency represents the number
of occurrences of the pattern in this sequence.

Thus [2] has proposed a new algorithm, but as we will show in Section 2.3 this
algorithm is not complete. However, the contribution of [2] remains interesting
because this work suggests that mining episode rules in practice could be done
using a maximum gap constraint.

In this paper our contribution is twofold. Firstly, we present a sound and
complete algorithm to extract episode rules satisfying frequency, confidence and
maximum gap constraints. And secondly, we propose a way to find if it exists,
for each rule, the smallest window size that corresponds to a local maximum of
confidence for the rule (i.e., confidence is locally lower, for smaller and larger
windows).

From a quantitative point of view, we present experiments showing that min-
ing episode rules under the maximum gap constraint and finding the local maxi-
mums of confidence can be done in practice at reasonable extraction thresholds.
From a qualitative point of view, these experiments advocated the fact that local
maximums of confidence can be interesting suggestions of possible dependencies
to the expert, because no local maximum have been found on synthetic random
datasets, while they exist in real data. Finally, the experiments show that the
number of rules satisfying the frequency and confidence constraints and having
a local maximum of confidence is orders of magnitude lesser than the number
of rules satisfying the frequency and confidence constraints only. So, in practice
the expert has to browse only a very limited collection of extracted patterns.

This paper is organized as follows. The next section gives preliminary defi-
nitions and shows that the algorithm presented in [2] is incomplete. Section 3
introduces the algorithm WinMiner that handles the maximum gap constraints
and finds the local maximums of confidence of episode rules. Section 4 presents
experiments performed, and we conclude with a summary in Section 5.

2 Episode Rules and Local Maximum of Confidence

2.1 Preliminary definitions

In this section we follow the standard notions of event sequence, episode, mini-
mal occurrences and support used in [6] or give equivalent definition, when more
appropriated to our presentation. The only noticeable difference is that our no-
tion of occurrence incorporates the necessity for the occurrences to satisfy a
maximum gap constraint.

Definition 1. (event, ordered sequence of events) Let E be a set of event
types. An event is defined by the pair (e, t) where e ∈ E and t ∈ N. The value t
denotes the time at which the event occurs. An ordered sequence of events s is
a tuple s = 〈(e1, t1), (e2, t2), ..., (en, tn)〉 such that ∀i ∈ {1, ..., n}, ei ∈ E∧ ti ∈ N
and ∀i ∈ {1, ..., n− 1}, ti ≤ ti+1.

Definition 2. (operator v) Let α and β be two ordered sequences of events,
then α is a subsequence of β, denoted α v β iff α can be obtained by removing
some elements of β or α = β.

Definition 3. (event sequence) An event sequence S is a triple (s, Ts, Te),
where s is an ordered sequence of events of the form 〈(e1, t1), (e2, t2), ..., (en, tn)〉
and Ts, Te are natural numbers such that Ts ≤ t1 ≤ tn ≤ Te.

Ts and Te respectively represent the starting time and the ending time of the
event sequence. Notice that t1 may differ from Ts and that tn may differ from
Te.

Definition 4. (episode) An episode is a tuple α of the form α = 〈e1, e2, . . . , ek〉
with ei ∈ E for all i ∈ {1, . . . , k}. In this paper, we will use the notation e1 →
e2 → ... → ek to denote the episode 〈e1, e2, ..., ek〉 where ’→’ may be read as
’followed by’. We denote the empty episode by ∅.

Definition 5. (size, suffix and prefix of an episode) Let α = 〈e1, e2, ..., ek〉
be an episode. The size of α is denoted |α| and is equal to the number of elements
of the tuple α, i.e., |α| = k. The suffix of α is defined as an episode composed
only by the last element of the tuple α, i.e., suffix(α) = 〈ek〉. The prefix of α
is the episode 〈e1, e2, ..., ek−1〉. We denote it as prefix(α).

Definition 6. (occurrence) An episode α = 〈e1, e2, ..., ek〉 occurs in an event
sequence S = (s, Ts, Te) if there exists at least one ordered sequence of events s′ =
〈(e1, t1), (e2, t2), ..., (ek, tk)〉 such that s′ v s and ∀i ∈ {1, ..., k−1}, 0 < ti+1−ti ≤
gapmax with gapmax a user-defined threshold that represents the maximum
time gap allowed between two consecutive events.

The interval [t1, tk] is called an occurrence of α in S. The set of all the
occurrences of α in S is denoted by occ(α, S).

These episodes and their occurrences correspond to the serial episodes of [6],
up to the following restriction: the event types of an episode must occur at
different time stamps in the event sequence. This restriction is imposed here for
the sake of simplicity, and the definitions and algorithms can be extended to
allow several event types to appear at the same time stamp. However, it should
be noticed that this constraint applies on occurrences of the patterns, and not
on the dataset (i.e., several events can occur at the same time stamp in the event
sequence).

Definition 7. (minimal occurrence) Let [ts, te] be an occurrence of an episode
α in the event sequence S. If there is no other occurrence [t′s, t

′
e] such that

(ts < t′s ∧ t′e ≤ te) ∨ (ts ≤ t′s ∧ t′e < te) (i.e., [t′s, t
′
e] ⊂ [ts, te]), then the interval

[ts, te] is called a minimal occurrence of α. The set of all minimal occurrences of
α in S is denoted by mo(α, S).

Intuitively, a minimal occurrence is simply an occurrence that does not con-
tain another occurrence of the same episode.

Definition 8. (width of an occurrence) Let o = [ts, te] be an occurrence.
The time span te − ts is called the width of the occurrence o . We denote it as
width(o). The set of all occurrences (resp. minimal occurrences) of an episode α
in an event sequence S having a width equal to w is denoted occ(α, S, w) (resp.
mo(α, S, w)).

Fig. 1. Example of event sequence.

Definition 9. (support of an episode) The support of an episode α in an
event sequence S for a width w is defined as Support(α, S, w) =

∑
0≤i≤w |

mo(α, S, i) |. We also define the general support of α in S as GSupport(α, S) =|
mo(α, S) |

The notions of occurrence and support of an episode incorporate the sat-
isfaction of the maximum gap constraint. However, for the sake of simplicity,
the gapmax parameter does not appear explicitely in the notational conventions
mo(α, S, i), Support(α, S, w), GSupport(α, S) and mo(α, S).

To illustrate some of the previous definitions, we consider the event sequence
S = (w, Ts, Te) of Figure 1.

In this example, Ts = 9, Te = 22, w = 〈(A, 10), (A, 11), (B, 12), (C, 13), (C, 14),
(C, 15), (A, 16), (C, 17), (B, 18), (C, 22)〉. If we consider the episode α = A → B,
and the constraint gapmax = 3, then occ(α, S) = {[10, 12], [11, 12], [16, 18]}.
It should be noticed that [10, 18] does not belong to occ(α, S) since the con-
straint gapmax is not satisfied. The minimal occurrences of α are mo(α, S) =
{[11, 12], [16, 18]}. The occurrence [10, 12] does not belong to mo(α, S) because it
contains the occurrence [11, 12]. In the same way, in the case of episode β = A →
B → C, we have occ(β, S) = {[10, 13], [10, 14], [10, 15], [11, 13], [11, 14], [11, 15]}
and mo(β, S) = {[11, 13]}. Some examples of support values are GSupport(α, S) =
2, Support(α, S, 1) = 1, Support(α, S, 2) = 2 and Support(β, S, 2) = 1. It should
be noticed that the support increases in a monotonic way, with respect to the
width value.

2.2 Episode rule and local maximum of confidence

Definition 10. (episode rule) Let α and β be episodes such that prefix(β) = α.
An episode rule built on α and β is the expression α ⇒ suffix(β).

For example, if α = e1 → e2 and β = e1 → e2 → e3, the corresponding
episode rule is denoted e1 → e2 ⇒ e3. It should be noticed that the episode
rules used in this paper are restricted to rules having a single event type in
their right hand sides, but that the definitions and algorithms proposed can be
extended in the case of right hand sides containing several event types.

Definition 11. (support and confidence of an episode rule) The support
of an episode rule is defined by Support(α ⇒ suffix(β), S, w) = Support(β, S, w).

The confidence of an episode rule is defined as follows:

Confidence(α ⇒ suffix(β), S, w) = Support(β,S,w)
Support(α,S,w)

Let γ be a user defined confidence threshold such that 0 ≤ γ ≤ 1, and
let σ be a user defined support threshold such that 0 < σ ≤ 1. Then, if
Confidence(r, S, w) ≥ γ (resp. Support(r, S, w) ≥ σ) the rule is said to be
confident (resp. frequent) for the width w.

It should be noticed that, as for episodes, the support and confidence are
defined with respect to a given width. The definition of confidence can be il-
lustrated by the previous example (Figure 1). Knowing that mo(A → B, S) =
{[11, 12], [16, 18]} and mo(A → B → C, S) = {[11, 13]}, we have Confidence(A →
B ⇒ C, S, 2) = 1/2.

Definition 12. (LM and FLM) A rule r is said to have a LM (Local Maximum)
for a given width i on event sequence S iff the three following properties are sat-
isfied:

– Confidence(r, S, i) ≥ γ ∧ Support(r, S, i) ≥ σ
– ∀j, j < i ∧ Support(r, S, j) ≥ σ ⇒ Confidence(r, S, i) > Confidence(r, S, j)
– ∃j, i < j ∧ Confidence(r, S, j) ≤ Confidence(r, S, i)−(decRate∗Confidence(

r, S, i)) with decRate a decrease threshold defined by the user, and ∀ k, i <
k < j ⇒ Confidence(r, S, k) ≤ Confidence(r, S, i)

The rule r has a FLM(First Local Maximum) for width i iff r has a LM
for width i, and r has no LM for width strictly lesser than i. A rule having at
least one LM, and thus also a (single) FLM, is called a FLM − rule.

Intuitively, a LM for a rule r is a width w such that (1) r is frequent and
confident for this width, (2) all lower width values such that r is frequent corre-
spond to a strictly lower confidence, and (3) the next consecutive greater width
values correspond also to a lower confidence until the confidence becomes lower
than a given percentage (decRate) of confidence obtained for w. The figure 2
illustrates, for a given rule, possible variations of confidence with respect to the
width values and the corresponding FLM are represented by a dot. The ver-
tical axis represents the confidence of the rule and the horizontal dashed line
indicates the confidence threshold γ. The horizontal axis represents the width
values, and the vertical dashed line corresponds to a specific width, denoted wσ ,
that is the width at which the rule turns out to be frequent. Two particular
situations should be pointed out. Firstly, the bottom-left graphic where there
is no FLM. And secondly, the bottom-right graphic, where the three first lo-
cal maximums are not valid LM because there are not followed by a sufficient
decrease of confidence.

2.3 Incompleteness of [2]

Fig. 2. Confidence vs width

In [2] an algorithm has been proposed to extract frequent and confident
episode rules under a maximum gap constraint, but the formal correctness of the
algorithm has not been established. Indeed, we have remarked that the algorithm
is not complete. To show this, we need to recall the definition of window of [6] : ”A
window on an event sequence S = (s, Ts, Te) is an event sequence W = (w, ts, te)
where ts < Te and te > Ts, and w consists of those pairs (A,t) from s where
ts ≤ t < te”.

Let W(S, win) be the set of all windows (w, ts, te) on S such that te − ts =

win. Then [2] defines by fr(α) = |{W∈W(S,win)|α occurs in W}|
|W(S,win)| where win =

(|α| − 1) × gapmax, the frequency of an episode α under a maximum gap con-
straint. In [2] the episode A → B → C is considered only if the episodes A → B
and B → C are frequent. Let S be the event sequence (〈(A, 5), (B, 8), (C, 9)〉, 1, 10)
and gapmax = 4. Then fr(A → B) = 1/12 and fr(A → B → C) = 4/16 = 1/4.
If the frequency threshold is 1/4, then A → B is not frequent and thus A →
B → C is not considered by the algorithm even though it is frequent.

3 Extraction of all FLM-rules

The proofs of the theorems and lemmas of this section are given in the ex-
tended version of this paper [9].

To extract the FLM-rules we propose an algorithm, called WinMiner, based
on the so-called occurrence list approach, used in [6] and also in the context of
mining sequential patterns in base of sequences (e.g., [11, 4]). The key idea of such
methods is to store and use occurrences of patterns to compute the occurrences
of longer patterns by means of a kind of temporal join operation. In our case, if

we only keep the information about the location of all the minimal occurrences
of the episodes of size k, it is not possible to produce all the minimal occurrences
of the episodes of size k+1. Looking back to the example given Figure 1, we can
see that there exists a minimal occurrence [11, 18] of A → B → C → B. If we
only know mo(A → B → C, S) = {[11, 13]} and mo(B, S) = {[12, 12], [18, 18]},
we can not determine the minimal occurrence of A → B → C → B. This is
because the first B occurs too early (before time stamp 18) and the second one
occurs too late (the maximum gap constraint of 3 is not satisfied between time
stamps 13 and 18). To overcome this difficulty, WinMiner is based on a notion
of minimal prefix occurrence introduced in the next section.

3.1 Minimal prefix occurrence

Definition 13. (minimal prefix occurrence) Let o = [ts, te] be an occur-
rence of an episode α in the event sequence S, then o is a minimal prefix occur-
rence (mpo) of α iff ∀ [t1, t2] ∈ mo(prefix(α), S), if ts < t1 then te ≤ t2. We
denote by mpo(α, S) the set of all mpo of α in S.

It is important to notice that mpo(α, S) is defined with respect to mo(prefix(
α), S) and not with respect to mo(α, S). In the example depicted Figure 1,
we have mpo(A → B → C, S) = {[11, 13], [11, 14], [11, 15]} and mpo(B, S) =
{[12, 12], [18, 18]}. Then, using these sets it is possible to built mpo(A → B →
C → B, S) = {[11, 18]}. As it can be intuitively noticed, the minimal occurrences
are particular mpo and the minimal occurrences can be determined using the
set of mpo. This is formally stated by the two following lemmas:

Lemma 1. If [ts, te] ∈ mo(α, S) then [ts, te] ∈ mpo(α, S) and there is no
[ts, t

′
e] ∈ mpo(α, S) such that t′e < te.

Lemma 2. If [ts, te] ∈ mpo(α, S) and there is no [ts, t
′
e] ∈ mpo(α, S) such that

t′e < te, then [ts, te] ∈ mo(α, S).

E/O-pair. The algorithm WinMiner handles an episode α and its mpo in a pair
of the form (episode, occurrences) called E/O-pair. For a E/O-pair x, we de-
note respectively x.Pattern and x.Occ, the first and second element of the pair.
The x.Pattern part represents the episode itself and x.Occ contains its mpo in a
compact way. The x.Occ part is a set of pairs of the form (Tbeg, T endSet) where
Tbeg represents a mpo starting time and TendSet is the set of the ending times
of all mpo of x.Pattern starting at Tbeg. Intuitively, the interest of this represen-
tation is that, according to lemma 2, if we consider a pair (Tbeg, T endSet) then
the interval [Tbeg, min(TendSet)] represents a minimal occurrence of x.Pattern.

3.2 Algorithm WinMiner

This algorithm extract all FLM − rules in a event sequence S, according to the
following user-specified parameters: a support threshold σ, a confidence thresh-
old γ, a maximum time gap constraint gapmax and a decrease threshold decRate.

The algorithm is presented as Algorithm 1. First, it computes the mpo of all
frequent episodes of size 1, using a function named scan, that is not detailed in
this paper, but that simply determines the mpo of an episode by scanning S.
The algorithm then calls the function exploreLevelN (Algorithm 2) to find in
a depth-first way all episodes (of size greater than 1) such that their GSupport
are greater or equal to the threshold σ. For a given episode x.Pattern this
function extends the pattern on the right side with a frequent episode y.Pattern
of size 1. This is performed by a call to the join function (Algorithm 3), that
computes the new pattern z.Pattern = x.Pattern → y.Pattern, and also the
corresponding set of mpo in z.Occ using the mpo of x.Pattern and y.Pattern
stored respectively in x.Occ and y.Occ. The core part of this join operation
is the line 6, where it checks that the new interval generated ([ts, t

′
s]) is an

occurrence of z.Pattern satisfying the maximum gap constraint (condition t′s >
ts ∧ t′s − t ≤ gapmax) and that this interval is a mpo of z.Pattern (condition
∀(t1, T

′′) ∈ x.Occ ts < t1 ⇒ ∀t2 ∈ T ′′, t′s ≤ t2). Then, after the call to join, if
the GSupport of z.Pattern is greater or equal to σ, the Algorithm 2 determines,
if it exists, the FLM of the rule built from the prefix and suffix of z.Pattern,
by means of the function findFLM . Finally, the algorithm 2 considers, in a
recursive way, the episodes that can be obtained by adding frequent episodes of
size 1 to z.Pattern itself.

Algorithm 1 (WinMiner)
Input: S an event sequence S
and E the set of event types.

1. let L1 := ∅
2. for all e ∈ E do
3. let x.Pattern := e
4. let x.Occ := scan(S, e)
5. if | x.Occ | >= σ
6. let L1 := L1 ∪ {x}
7. fi
8. od
9. for all x ∈ L1 do
10. exploreLevelN(x, L1)
11. fi

Algorithm 2 (exploreLevelN)
Input: x a E/O-pair, and L1 the set of
E/O-pairs of frequent episodes of size 1.

1. for all y ∈ L1 do
2. let z := join(x, y)
3. if |z.Occ| >= σ
4. findFLM(x.Pattern ⇒

suffix(z.Pattern), x.Occ, z.Occ)
5. exploreLevelN(z, L1)
7. fi
8. od

Algorithm 3 (join) Input: x and y, two E/O-pairs, containing an episode
and its set of mpo, and where y corresponds to an episode of size 1.

Output: z, a E/O-pair containing the episode x.Pattern → y.Pattern and
its set of mpo.

1. let z.Pattern := x.Pattern → y.Pattern
2. let z.Occ := ∅
3. for all (ts, T) ∈ x.Occ do
4. let L := ∅

5. for all t ∈ T do
6. let EndingT imes := {t′s | ∃(t′s, T

′) ∈ y.Occ such that
t′s > ts ∧ t′s − t ≤ gapmax ∧ ∀(t1, T

′′) ∈ x.Occ,
ts < t1 ⇒ ∀t2 ∈ T ′′, t′s ≤ t2}

7. let L := L ∪ EndingT imes
8. od
9. if L 6= ∅
10. let z.Occ := z.Occ ∪ {(ts, L)}
11. fi
12. od

Let us now consider the correctness of the approach.

Definition 14. Let S be an event sequence, then

– a E/O-pair x is sound iff ∀(ts, T) ∈ x.Occ, ∀t ∈ T , [ts, t] ∈ mpo(x.Pattern, S).
– a E/O-pair x is complete iff ∀[ts, te] ∈ mpo(x.Pattern, S), ∃(ts, T) ∈ x.Occ

s.t. te ∈ T .
– a E/O-pair x is non-redundant iff ∀(ts, T) ∈ x.Occ, @(ts, T

′) ∈ x.Occ s.t.
T 6= T ′.

The following theorem states the correctness of the function join (Algo-
rithm 3):

Theorem 1 (correctness of join). If x.Occ and y.Occ in the input of join are
sound, complete and non-redundant, then z.Occ in the output is sound, complete
and non-redundant.

Theorem 2 (correctness of support counting). Let S be an event sequence
and z be a E/O-pair outputted by Algorithm 3, for sound, complete and non-
redundant x.Occ and y.Occ in the input, then:

– the number of minimal occurrences of z.Pattern of width w is |mo(z.Pattern, S, w)| =
|{(ts, T) ∈ z.Occ|min(T)− ts = w}|

– Support(z.Pattern, S, w) =
∑

0≤i≤w |{(ts, T) ∈ z.Occ|min(T)− ts = i}|
– GSupport(α, S) = |{(ts, T) ∈ z.Occ}|

Since GSupport(α, S) ≥ σ ⇒ GSupport(prefix(α), S) ≥ σ, then by the
theorems 1 and 2, the depth-first enumeration of WinMiner is correct to find
all episodes such that GSupport is greater or equal to σ. Furthermore, if an
episode rule prefix(α) ⇒ suffix(α) is frequent for a given width w then we
also have GSupport(α, S) ≥ σ. Thus, by the theorems 1 and 2, we can also
correctly find the support and confidence of a rule for a given width w, when
the rule is frequent for this w.

So, we have at hand all the information necessary to determine if a rule such
that GSupport ≥ σ is a FLM-rule and the width corresponding to its FLM.
Due to space limitation, the corresponding algorithm (function findFLM) is
not presented here, but can be found in the extended version of this paper [9].

4 Experiments

In this section we present experiments on a real dataset, using an implemen-
tation of WinMiner in C++, and performed on an Intel Pentium IV 2 GHz under
a 2.4 Linux kernel (all the experiments were run using between 0.5 and 300 MB
of RAM). Efficient implementation hints are given in [9]. Experiments on large
random datasets are also presented in [9], and are not described here because of
space limitation. These experiments show that the extractions can be done in
practice in non-trivial cases and that no FLM-rule was found in these random
datasets. Other experiments on atherosclerosis risk factors (atherosclerosis is the
main cause of cardio-vascular diseases) are described in [8].

The experiments reported here were performed within the European Project
AEGIS (IST-2000-26450) in collaboration with geophysicists to help them to
find dependencies between earthquakes. In this paper, we only present experi-
ments on a subset of the ANSS Composite Earthquake Catalog1, that contains
a series of earthquakes described by their locations, occurrence times and mag-
nitudes. As the FLM-rules obtained in these experiments have suggested to the
geophysicists some possible dependencies that are not at that time published in
the geophysics literature, we cannot give the precise magnitudes and locations of
the earthquakes considered in this subset of the catalog. After an appropriated
discretization2 the resulting dataset was built on 368 event types and contained
3509 events spread over 14504 time units of one day (about 40 years).

For the sake of conciseness, we only present, in Figure 3, extractions per-
formed with σ = 10, γ = 0.9, decRate = 30% and gapmax ranging from 100 to
140. The left graphic indicates that the running time is reasonable in practice
(from less than 100 seconds to about 6700 seconds for the largest one). The right
graphic presents, for each of the experiments, (1) the number of rules considered
by WinMiner during the extraction (rules such that GSupport ≥ σ), (2) the
number of rules for which there exists a width w such that the rule is frequent
and confident for w, and finally, (3) the number of FLM-rules. This graphic
shows in particular that the collection of rules that are frequent and confident
(for some width) is too huge to be handled by an expert, while the size of the
collection of FLM-rules is several orders of magnitude smaller.

5 Conclusion

In this paper we presented a sound and complete algorithm to extract episode
rules satisfying a maximum gap constraint. We also proposed to determine the
window sizes corresponding to a local maximum of confidence. The experiments

1 Public world-wide earthquake catalog available at
http://quake.geo.berkeley.edu/cnss/

2 This preprocessing has been performed by Francesco Pacchiani of Laboratoire de
Geologie at Ecole Normale Supérieure of Paris in the context of the AEGIS project.

extraction times vs gapMax

1

10

100

1000

10000

100 110 120 130 140

 gapMax

ex
tr

ac
ti

o
n

 t
im

es
 (

se
co

n
d

s)

number of rules

1

10

100

1000

10000

100000

1000000

10000000

100000000

100 110 120 130 140

gapMax

n
u

m
b

er
 o

f
ru

le
s

freq. rules
freq. & conf. rules
FLM-rules

Fig. 3. Experiments on a seismic dataset

showed that extracting episode rules under the maximum gap constraint and
finding the window sizes leading to a local maximum of confidence, can be effi-
ciently performed in practice. Furthermore, no local maximum has been found
on random datasets, while meaningful dependencies corresponding to local max-
imum of confidence have been found in a real seismic dataset.

References

1. R. Agrawal, T. Imielinski, and A. Swami. Mining association rules between sets of
items in large databases. In P. Buneman and S. Jajodia, editors, Proc. of the Int.

Conf. SIGMOD’93, pages 207–216, Washington D.C., USA, May 1993.
2. G. Casas-Garriga. Discovering unbounded episodes in sequential data. In Proc. of

the Int. Conf. PKDD’03, pages 83–94, Croatia, September 2003. LNCS 2838.
3. K. Hatonen, M. Klemettinen, H. Mannila, P. Ronkainen, and H. Toivonen. Tasa:

Telecomunications alarm sequence analyzer or: How to enjoy faults in your network.
In Int. Symp. NOMS’96, pages 520–529, Kyoto, Japan, April 1996.

4. M. Leleu, C. Rigotti, J.-F. Boulicaut, and G. Euvrard. Constrained-based mining
of sequential patterns over datasets with consecutive repetitions. In Proc. of the

Int. Conf. PKDD’03, pages 303–314, Croatia, September 2003. LNCS 2838.
5. H. Mannila and H. Toivonen. Discovery of generalized episodes using minimal

occurrences. In Proc. of the 2nd Int. Conf. KDD’96, pages 146–151, Portland,
Oregon, August 1996.

6. H. Mannila, H. Toivonen, and A. Verkamo. Discovery of frequent episodes in event
sequences. Data Mining and Knowledge Discovery, 1(3):259–298, November 1997.

7. H. Mannila, H. Toivonen, and I. Verkamo. Discovering frequent episodes in se-
quences. In Proc. of the 1st Int. Conf. KDD’95, pages 210–215, Canada, August
1995.

8. N. Méger, C. Leschi, N. Lucas, and C. Rigotti. Mining episode rules in STULONG
dataset. Technical report, LIRIS Lab, Lyon, France, June 2004.

9. N. Méger and C. Rigotti. Constraint-based mining of episode rules and optimal
window sizes. Technical report, LIRIS Lab, Lyon, France, June 2004.

10. R. Srikant and R. Agrawal. Mining sequential patterns: Generalizations and per-
formance improvements. In Proc. of the 5th Int. Conf. EDBT’96, pages 3–17,
Avignon, France, September 1996.

11. M. Zaki. Sequence mining in categorical domains: incorporating constraints. In
Proc. of the 9th Int. Conf. on CIKM’00, pages 422–429, USA, November 2000.

