

Algorithmique pour l'analyse et la modélisation en géométrie discrète

David Coeurjolly

Laboratoire d'InfoRmatique en Image et Systèmes d'information LIRIS UMR 5205 CNRS/INSA de Lyon/Université Claude Bernard Lyon 1/Université Lumière Lyon 2/Ecole Centrale de Lyon INSA de Lyon, bâtiment J. Verne 20, Avenue Albert Einstein - 69622 Villeurbanne cedex

http://liris.cnrs.fr

5 décembre 2007

Short Bio and Educational Activities

Education

- ♦ Since December 2003 CHARGÉ DE RECHERCHE CNRS, Laboratoire LIRIS, UMR 5205.
- Sept. 2003 Dec. 2003 ATTACHÉ TEMPORAIRE D'ENSEIGNEMENT ET DE RECHERCHE à l'Institut National des Sciences Appliquées de Lyon (INSA), laboratoire de rattachement LIRIS UMR 5205.
- March 2003 June 2003 POST DOCTORAT, Laboratoire LIS, Université Joseph Fourier, Grenoble
- Sept. 2000 Dec. 2002 DOCTORAT D'UNIVERSITÉ, Spécialité Informatique, Université Lumière Lyon 2
- Sept. 1997 Sept. 2000 MAGISTÈRE INFORMATIQUE ET MODÉLISATION, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon 1
- Sept. 1995 Sept. 1997 DEUG MIAS, Université Claude Bernard Lyon 1

Lectures

	Filière	Matière	Туре	Vol.
07–08	Master 1ere année, UCBL	Responsable UE "TER"	-	-
06–07	Master 2ième année, UCBL	Cours de spécialité recherche	TD	6h
05–06	Master 2ième année, UCBL	Cours de spécialité recherche	CM	10h
	3ième année école d'ingénieurs IEG, Grenoble	Cours de spécialité recherche	СМ	8h
04–05	Master 2ième année, UCBL	Cours de spécialité recherche	CM	10h
	3ième année école d'ingénieurs IEG, Grenoble	Cours de spécialité recherche	СМ	8h
03–03	ATER (demi-poste) départe- ment informatique, INSA, Lyon	Programmation C++	TP	80h
00–03	Moniteur à l'Institut de la Com- munication, Lyon2	-	TD	192h

Scientific Responsibilities

International

- Chair of the Technical Committee 18 "Discrete Geometry", IAPR (06-08)
- Co-General Chair of the 14th International Conference on Discrete Geometry for Computer Imagery
- Reviewer for several international journals and conferences

National

- Organizer and co-organizer of several meetings (JIG 2006, Working Group "Géométrie Discrète")
- Chair of the ACI "Jeunes Chercheurs" GeoDiGit
- Member of the ANR GeoDiB

Local

- Member of the Conseil Scientifique, Université Claude Bernard Lyon 1
- Member of the CSES 26-27-61, Université Lumière Lyon 2

Discrete Geometry in one slide

Motivations

Pragmatic approach (data driven)

- Data produced by acquisition devices which consider an underlying grid (CDD, Scanner, Scanner+T,...)
- Modeling of numerical problems on grids/integer numbers
- [BERNOUILLI, ROSENFELD, ...]
- \Rightarrow Arithmetization

Constructive approach (model driven)

- Construction from scratch of a geometry based on integer numbers
- e.g. Theory based on the Non-Standard Analysis
- [HARTONG, REEB, REVEILLES, ...]

 \Rightarrow Modeling

[Météo-France/ESRF]

 \Rightarrow Complete Geometrical Paradigm (objects, axioms, <code>ALGORITHMS,...</code>) well-adapted to image analysis

Motivations

Pragmatic approach (data driven)

- Data produced by acquisition devices which consider an underlying grid (CDD, Scanner, Scanner+T,...)
- Modeling of numerical problems on grids/integer numbers
- [BERNOUILLI, ROSENFELD, ...]
- \Rightarrow Arithmetization

Constructive approach (model driven)

- Construction from scratch of a geometry based on integer numbers
- e.g. Theory based on the Non-Standard Analysis
- [HARTONG, REEB, REVEILLES, ...]

 \Rightarrow Modeling

[Météo-France/ESRF]

 \Rightarrow Complete Geometrical Paradigm (objects, axioms, <code>ALGORITHMS,...</code>) well-adapted to image analysis

David Coeurjolly

Discrete Geometry Model

Discrete Geometry Model

Contribution Overview

Discrete Analytic Models

Supercover & Interval Arithmetic, Irregular isothetic grid formulation

Fundamental Objects and Properties

Computational analysis of fundamental object recognition algorithms

Objects Analysis/Modeling

Separable techniques for the EDT and REDT problems

Loss-less Model Conversion

MA extraction algorithms and NP-completeness of the Minimal MA, Reversible reconstruction on irregular grids, Reversible surface reconstruction

Contribution Overview

Discrete Analytic Models

Supercover & Interval Arithmetic, Irregular isothetic grid formulation

Fundamental Objects and Properties

Computational analysis of fundamental object recognition algorithms

Objects Analysis/Modeling

Separable techniques for the EDT and REDT problems

Loss-less Model Conversion

MA extraction algorithms and NP-completeness of the Minimal MA, Reversible reconstruction on irregular grids, Reversible surface reconstruction

Regular Grids and Basic Topological Principles

The Irregular Isothetic Model

Main idea

Relax the constraints on the size and on the center position of isothetic cells

- <u>AOI GLODIGII</u>
- Objective: Design uniform definitions (e.g. Straight lines) and algorithms

ANTOINE VACAVANT, PhD (defence: Dec. 2008)

David Coeurjolly

Classical Digitization Schemes and Analytic Models

Classical Digitization Schemes and Analytic Models

Discrete Analytic Models: Supercover Model

Properties

$$\begin{split} \mathbb{S}(F \cup G) &= \mathbb{S}(F) \cup \mathbb{S}(G) \,, \\ \mathbb{S}(F) &= \bigcup_{p \in F} \mathbb{S}(p) \,, \\ \mathbb{S}(F \cap G) \subseteq \mathbb{S}(F) \cap \mathbb{S}(G) \,, \\ \text{if } F \subseteq G \quad \text{then} \quad \mathbb{S}(F) \subseteq \mathbb{S}(G) \,. \end{split}$$

David Coeurjolly

Discrete Analytic Models - Examples

Supercover Generalization to $\mathbb{I}-\text{grids}$

Interval Arithmetic

Elements = Intervals

 $x \sim X = [\overline{x}, \underline{x}]$ such that $\overline{x} = \uparrow x \uparrow$ and $\underline{x} = \downarrow x \downarrow$ are representable numbers, *e.g.* $\mathbb{I}_{\mathbb{Z} + \frac{1}{3}}$

Examples and arithmetic operations on $\mathbb{I}_{\mathbb{Z}+\frac{1}{2}}$

$$3.144546 \rightarrow [2 + \frac{1}{2}, 3 + \frac{1}{2}]$$

$$[2 + \frac{1}{2}, 3 + \frac{1}{2}] \oplus [0 + \frac{1}{2}, 4 + \frac{1}{2}] = [2 + \frac{1}{2}, 8 + \frac{1}{2}]$$
...

Fundamental principle = Inclusion

Let $f : \mathbb{R} \to \mathbb{R}$, and $\Box f : \mathbb{I} \to \mathbb{I}$ the interval function (extension) associated to f. For all $x \in X$, $\Box f$ should be such that :

$$f(x) = y \quad \Rightarrow \quad y \in \Box f(X)$$

Interval Arithmetic and Supercover Model

Interval Arithmetic & Supercover: same ideas

- Uncertainty on the underlying Euclidean object position
- We propagate the uncertainty through the construction/computation

Main result on $\mathbb{I}_{\mathbb{Z}+\frac{1}{2}}$

 $\mathbb{S}(f) \subseteq \bigcup_{k \in \mathbb{Z}} [K \times \Box f(K)]$ strict equality if $\Box f$ is optimal

1

$$f(x) = \frac{1}{3}x$$

$$f(x) = 10\sin(x)\exp^{-x^2/50}$$

David Coeurjolly

Conclusion

Contributions

- Supercover:
 - Cell/curve intersection
 - Metric definition
 - Morphological definition
 - Algebraic definition

 $B(X) \cap F \neq \emptyset$ $d_{\infty}(X, F) \leq \frac{1}{2}$ $(F \oplus M) \cap \mathbb{Z}^{d}$

- Interval Arithmetic based interpretation of the Supercover Model (or conversely ;))
- Applications:
 - Certified digitization of complex functions (*e.g.* implicit functions with the help of an Interval Arithmetic Solver)
 - Novel approach to model image transformations (certified transformations)

Contribution Overview

Discrete Analytic Models

Supercover & Interval Arithmetic, Irregular isothetic grid formulation

Fundamental Objects and Properties

Computational analysis of fundamental object recognition algorithms

Objects Analysis/Modeling

Separable techniques for the EDT and REDT problems

Loss-less Model Conversion

MA extraction algorithms and NP-completeness of the Minimal MA, Reversible reconstruction on irregular grids, Reversible surface reconstruction

Definitions

Pragmatic approach

Digitization of the Euclidean object

Example

DSS = the result of the BRESENHAM's drawing algorithm

Constructive approach

Model Driven definition

Example

DSS = set of grid point solution a discrete resolution of y' = a

Objects are usually identical but the representation choice matter when you derive properties

Recognition Problem

Statement

Given a set of grid-point *S*, is *S* a piece of *<yourfavoriteobjecthere>*?

Answer Types

- Binary answer: Yes/No
- A valid parametrization of *< yourfavoriteobjecthere>* (if applicable)
- The set of parameters of all valid < yourfavoriteobjecthere> > Preimage

e.g.: DSS

Recognition Problem

Statement

Given a set of grid-point *S*, is *S* a piece of *<yourfavoriteobjecthere>*?

Answer Types

- Binary answer: Yes/No
- A valid parametrization of *< yourfavoriteobjecthere>* (if applicable)
- The set of parameters of all valid < yourfavoriteobjecthere> > Preimage

Goals

Exploit discrete object properties to design fast recognition algorithms

What kind of Properties ?

Related to discrete mathematics

Arithmetic, Number Theory, Theory of words, Patterns, Lattice Polytopes

e.g. DSS

Euclidean Straight line with rational slope ($r \in [0, 1]$)

- ⇒ Finite possible intercepts with vertical lines
- ⇒ The sequence of intercepts is periodic
- ⇒ Periodic patterns in the DSS and arithmetical properties of DSS parameters
- ⇒ Efficient algorithms

Toolbox: Computational Geometry, Linear Programming, Arithmetic, ...

Focus: Integer Convex Hull / Lattice Polytopes

Consider an object included in a N^d window or with volume (Vol P) (P not empty))

$$\frac{\ln 2-D}{f_1(N)} = \frac{12}{(4\pi^2)^{1/3}} N^{2/3} + O(N^{1/3} log(N))$$

General Formula f_k denotes the number of k-facets of CH(P) $f_k \le c_n(\text{Vol } P)^{\frac{n-1}{n+1}}$

Important trick to design tight computation costs [DAM 2005, IWCIA 2006]

Example of the approach

0

0.0

 $\mathbf{0}$

00

0

0

0000

Integer Convex Hull + BEZOUT'S points $\Rightarrow O(n^{2/3} \log n)$ [DAM 2004.IWCIA 2001]

David Coeurjolly

Digital Plane and Hyperplane Recognition

Main problem

Asymptotic computational analysis \Leftrightarrow Experimental Analysis

Contributions

Use lattice polytope properties to obtain tight asymptotic bounds

- Preimage based recognition algorithms
- Convex hull width based recognition algorithms
- i ...

Contribution Overview

Discrete Analytic Models

Supercover & Interval Arithmetic, Irregular isothetic grid formulation

Fundamental Objects and Properties

Computational analysis of fundamental object recognition algorithms

Objects Analysis/Modeling

Separable techniques for the EDT and REDT problems

Loss-less Model Conversion

MA extraction algorithms and NP-completeness of the Minimal MA, Reversible reconstruction on irregular grids, Reversible surface reconstruction

Problem Description

Distance

- Euclidean: vector displacement, square of the EDT ⇒ isotropic but complex algorithms
- Chamfer: mask based approximation of the Euclidean metric fast algorithms but anisotropic

Contribution

Fast algorithms for the error-free Euclidean metric

Definitions

Distance Transformation Definition

Label each object grid point with the distance to the closest background point

Reverse Distance Transformation Definition

Given a set of discs, reconstruct the shape

0	0	0	0	1	2	1
0	2	3	2	0	1	0
0	3	4	3	0	1	0
0	2	3	2	0	0	0

David Coeurjolly

$$E^{2}DT$$

$$s(q) = \min_{p \in X} \{ d_{euc}^{2}(p,q) \}$$

$$s(q) = \min_{p(x,y) \in X} \{ (x-i)^{2} + (y-j)^{2} \}$$

$$g(i,j) = \min_{x} \{ (i-x)^{2} \}$$

$$h(i,j) = \min_{y} \{ g(i,y) + (j-y)^{2} \}$$

REDT

Disc MA: { $(x_m, y_m, r_{(x_m, y_m)})$: $X = \{(i, j) | \exists m, (i - x_m)^2 + (j - y_m)^2 < r_{x_m y_m} \}$ $X = \{(i, j) | \max_{(x_m, y_m) \in MA} \{r_{x_m y_m} - (i - x_m)^2 - (j - y_m)^2 \} > 0 \}$ $g(i, j) = \max_{x} \{f(x, j) - (x - i)^2 \}$ $h(i, j) = \max_{y} \{g(i, y) - (j - y)^2 \}$

$$E^{2}DT$$

$$s(q) = \min_{p \in \bar{X}} \{d_{euc}^{2}(p,q)\}$$

$$s(q) = \min_{p(x,y) \in \bar{X}} \{(x-i)^{2} + (y-j)^{2}\}$$

$$g(i,j) = \min_{x} \{(i-x)^{2}\}$$

$$h(i,j) = \min_{y} \{g(i,y) + (j-y)^{2}\}$$

REDT

Disc MA: { $(x_m, y_m, r_{(x_m, y_m)})$ }: $X = \{(i, j) | \exists m, (i - x_m)^2 + (j - y_m)^2 < r_{x_m y_m} \}$ $X = \{(i, j) | \max_{(x_m, y_m) \in MA} \{r_{x_m y_m} - (i - x_m)^2 - (j - y_m)^2 \} > 0 \}$ $g(i, j) = \max_x \{f(x, j) - (x - i)^2 \}$ $h(i, j) = \max_y \{g(i, y) - (j - y)^2 \}$

$$E^{2}DT$$

$$s(q) = \min_{p \in \bar{X}} \{d^{2}_{euc}(p,q)\}$$

$$s(q) = \min_{p(x,y) \in \bar{X}} \{(x-i)^{2} + (y-j)^{2}\}$$

$$g(i,j) = \min_{x} \{(i-x)^{2}\}$$

$$h(i,j) = \min_{y} \{g(i,y) + (j-y)^{2}\}$$

REDT

Disc MA: { $(x_m, y_m, r_{(x_m, y_m)})$: $X = \{(i, j) | \exists m, (i - x_m)^2 + (j - y_m)^2 < r_{x_m y_m} \}$ $X = \{(i, j) | \max_{(x_m, y_m) \in MA} \{r_{x_m y_m} - (i - x_m)^2 - (j - y_m)^2 \} > 0 \}$ $g(i, j) = \max_{x} \{f(x, j) - (x - i)^2 \}$ $h(i, j) = \max_{y} \{g(i, y) - (j - y)^2 \}$

$$E^{2}DT$$

$$s(q) = \min_{p \in \bar{X}} \{d^{2}_{euc}(p,q)\}$$

$$s(q) = \min_{p(x,y) \in \bar{X}} \{(x-i)^{2} + (y-j)^{2}\}$$

$$g(i,j) = \min_{x} \{(i-x)^{2}\}$$

$$h(i,j) = \min_{y} \{g(i,y) + (j-y)^{2}\}$$

REDT

Disc MA: { $(x_m, y_m, r_{(x_m, y_m)})$: $X = \{(i, j) | \exists m, (i - x_m)^2 + (j - y_m)^2 < r_{x_m y_m}\}$ $X = \{(i, j) | \max_{(x_m, y_m) \in MA} \{r_{x_m y_m} - (i - x_m)^2 - (j - y_m)^2\} > 0\}$ $g(i, j) = \max_x \{f(x, j) - (x - i)^2\}$ $h(i, j) = \max_y \{g(i, y) - (j - y)^2\}$

$$E^{2}DT$$

$$s(q) = \min_{p \in X} \{d^{2}_{euc}(p,q)\}$$

$$s(q) = \min_{p(x,y) \in X} \{(x-i)^{2} + (y-j)^{2}\}$$

$$g(i,j) = \min_{x} \{(i-x)^{2}\}$$

$$h(i,j) = \min_{y} \{g(i,y) + (j-y)^{2}\}$$

REDT

Disc MA: {
$$(x_m, y_m, r_{(x_m, y_m)})$$
:
 $X = \{(i, j) | \exists m, (i - x_m)^2 + (j - y_m)^2 < r_{x_m y_m}\}$
 $X = \{(i, j) | \max_{\substack{(x_m, y_m) \in MA}} \{r_{x_m y_m} - (i - x_m)^2 - (j - y_m)^2\} > 0\}$
 $g(i, j) = \max_x \{f(x, j) - (x - i)^2\}$
 $h(i, j) = \max_y \{g(i, y) - (j - y)^2\}$

28 / 48

0 0

0 0

0

[DGCI 2002, IEEE PAMI 2007]

* * * * * * *

	1	4	5	2	1	2
1	2	4	4	1		1
	1	1	1	2	1	
1	1			1	2	1

ŧ	ŧ	ŧ	ŧ	ŧ	ł	ŧ
0	0	0	0	1	2	1
0	2	3	2	0	1	0
0	3	4	3	0	1	0
0	2	3	2	0	0	0

Variation on the Theme (1): The Discrete Voronoi Diagram

Contribution

Separable algorithm to compute the complete Discrete Voronoi mapping $O(n \cdot c)$

David Coeurjolly

30 / 48

Variation on the Theme (2): Toric Spaces

Toric domain

Contribution

Take benefits from the separability:

- Process each column/row independently
- For each row, extract a break point b and we use $i + b \mod N$ indices

Variation on the Theme (2): Toric Spaces

Variation on the Theme (2): Toric Spaces

Conclusion

Optimal separable techniques for the:

- Euclidean Distance Transformation
- Reverse Euclidean Distance Transformation
- Complete Discrete Voronoi Diagram mapping
- (Coming next) Discrete Euclidean Medial Axis Extraction

on:

- d-dimensional Images
- d-dimensional Toric Images

Contribution Overview

Discrete Analytic Models

Supercover & Interval Arithmetic, Irregular isothetic grid formulation

Fundamental Objects and Properties

Computational analysis of fundamental object recognition algorithms

Loss-less Model Conversion

MA extraction algorithms and NP-completeness of the Minimal MA, Reversible reconstruction on irregular grids, Reversible surface reconstruction

Objects Analysis/Modeling

Separable techniques for the EDT and REDT problems

Medial Axis

Definition

Maximal ball: an open ball $B \subseteq X$ is maximal in X if for all included open balls B':

$$B \subseteq B' \subseteq X \implies B = B'.$$

Medial Axis: denoted AM(X), set of maximal ball centers in X

Many applications

- Shape description/matching
- Image synthesis
- **.**...

Discrete Medial Axis

Reformulation

Discrete domain, discrete metric and discrete balls

Extracted from the E²DT

 $\mathsf{E}^2\mathsf{D}\mathsf{T}\to\mathsf{disks}$ included in the shape with maximal radii

Separability rocks...

Idea

 Start with all disks obtained during the EDT
 Mark upper envelope parabola apex and propagate labeling through dimensions

 $\label{eq:maximal} \begin{array}{l} \text{Maximal disks} \Leftrightarrow \text{Upper envelope of elliptic} \\ \text{paraboloids} \end{array}$

Examples...

DMA Minimality

Statement of the problem

 \rightarrow subsets of the MA may describe the same object

Two problems

- Find the Minimum Discrete Medial Axis (min. in number of disks)
- 2 Find a subset of the DMA with less that k balls that covers the entire object (k-MIN)

Contribution

Problem 2 is NP-complete and thus Problem 1 is NP-hard

DMA Minimality

Two problems

- Find the Minimum Discrete Medial Axis (min. in number of disks)
- Find a subset of the DMA with less that k balls that covers the entire object (k-MIN)

Contribution

Problem 2 is NP-complete and thus Problem 1 is NP-hard

LIRIS

39/48

NP-completeness proof: PLANAR-4-3-SAT reduction

Conclusion

Main result

The Minimum Discrete Medial Axis is NP-hard

Future Works and Open Questions

- Complete the proof for other metrics (Chamfer,...)
- Is the problem still NP-complete on hole-free discrete objects ?

What's next?

Next Step: Approximation heuristics with bounds (if possible)

Reversible Reconstruction with linear structures

Objective

Reconstruct a reversible polygonal (resp. polyhedral) object from a discrete object

Intensive use of digital straight lines and digital plane recognition algorithms

<u>2-D</u>

- Topological and Geometrical dynamic reconstruction in the Irregular Isothetic Model
- Application to Interval Arithmetic solver reconstruction

<u>3-D</u>

Topologically correct polyhedral reconstruction based on MC simplification

David Coeurjolly

2D/3D Shape Description

Context: SEMANTIC-3D

- Objective: 3D-Objects indexing and retrieval from 2D and 3D queries
- JULIEN RICARD (PhD), defence 12/2005. Advised in coordination with ATTILA **BASKURT (Pr - LIRIS)**

Main Contributions

- Generalization of the MPEG-7 Angular Radial Transform
- Fourier based 2D/3D matching
- Analytic computation of volumic integrals on a 3D mesh (geometrical moments, Fourier Transform,...)

[[]PRL-2005, ICPR, ICIP]

Conclusion

Algorithmic solution to discrete shape analysis and modeling

From many fields:

- Arithmetic / Number theory
- Computational Geometry
- Complexity Analysis

Two-way Cooperation

- C&G Algorithms to solve Discrete Geometry problems
- Use Discrete Geometry specificities to tune classical C&G algorithms

Topics

- Model Definitions
- Fundamental Object Recognition
- EDT, REDT, RDMA, ...
- Reversible reconstruction

[EXTERNAL] [INTERNAL] [PHD STUDENTS] [MASTER STUDENTS]

[EXTERNAL] [INTERNAL] [PHD STUDENTS] [MASTER STUDENTS]

[EXTERNAL] [INTERNAL] [PHD STUDENTS] [MASTER STUDENTS]

David Coeurjolly

[EXTERNAL] [INTERNAL] [PHD STUDENTS] [MASTER STUDENTS]

Future Works

Discrete Analytic Models

- Theoretical framework: Non-Standard Analysis, Constructive maths, ...
- Continue the interaction analysis between IA and the discrete model

[SIC-Poitiers, LMA-La Rochelle]

Fundamental Objects and Properties

Uncertainty and noise integration in definitions and algorithms

[ANR GeoDiB (2006-2010)]

Loss-less Model Conversion

- Parallel discrete contours reconstruction with combinatorial maps [G. DAMIAND]
- THE DIGITAL SPHERE TREE

GPU based Discrete Object Volumic Analysis [Internal]

THE DIGITAL SPHERE TREE

Objectives: Hierarchical/Multiresolution Discrete Medial Axis

- Multiresolution of the underlying grid
- Multiresolution and hierarchical sphere structures ⇒ Sphere-Tree
 - Trade-Off: Structure compactness & approximation
 - Many developments and applications in geometric processing

[G. BRADSHAW AND C. O'SULLIVAN]

Intermediate Steps

- First sphere structure (*flat* graph) could be extracted from the Discrete Power Diagram
- Better comprehension of interactions between Power diagram and Discrete Medial Axis

⇒ Interactions C&G, Discrete Geometry

David Coeurjolly

Objects	Computational cost	References			
Points 2D	$O(m \log m)$	GRAHAM			
Points 2D	O(mh)	JARVIS			
Points 2D	$O(m \log h)$	CHAN			
Points 3D	$O(m \log h)$	CHAN			
Points dD	$O(m \log m + m^{\lfloor n/2 \rfloor})$	CHAZELLE			
Chaîne simple 2D	O(m) incrémental $O(1)$	MELKMAN			
Chaîne simple 2D	O(m) dynamique $O(1)$	Buzer			
Courbe discrète	O(m)	Voss			
Objet discret convexe X	$O(h \log \delta(X))$	HAR-PELED			
Back					

IA Operators

Arithmetic operators

$$\begin{split} X \oplus Y &= [\downarrow \underline{x} + \underline{y} \downarrow, \uparrow \overline{x} + \overline{y} \uparrow] \\ X \oplus Y &= [\downarrow \underline{x} - \overline{y} \downarrow, \uparrow \overline{x} - \underline{y} \uparrow] \\ X \odot Y &= [\min(\downarrow \underline{x} \cdot \underline{y} \downarrow, \downarrow \underline{x} \cdot \overline{y} \downarrow, \downarrow \overline{x} \cdot \underline{y} \downarrow, \downarrow \overline{x} \cdot \overline{y} \downarrow), \\ \max(\uparrow \underline{x} \cdot \underline{y} \uparrow, \uparrow \underline{x} \cdot \overline{y} \uparrow, \uparrow \overline{x} \cdot \underline{y} \uparrow, \uparrow \overline{x} \cdot \overline{y} \uparrow)] \end{split}$$

Appendix

Interval Arithmetic Analysis Example

Variation on the Theme (1): The Discrete Voronoi Diagram

Voronoi Diagrams

Given a set of sites $S = \{s_i\}$ in \mathbb{R}^2 , the Voronoi diagram is a decomposition of the plane into cells $C = \{c_i\}$ (one cell $c_i \subset \mathbb{R}^2$ per site s_i) such that each point p in the (open) cell c_i , we have $d(p, s_i) < d(p, s_i)$ for $i \neq j$.

DT and Voronoi Diagrams

- DT ← Voronoi Diagram of background grid points
- - Association of each grid point to its associated cell s_i
 - Difficulties to handle equidistant background points (when Voronoi diagram edges/vertices intersect Z^d points)

Variation on the Theme (1): The Discrete Voronoi Diagram

Ideas

Propagate parabola apex indices and detect when two parabolas intersect at an integer coordinate position

Variable

- Eight slots to encode the uses of the variable in a PLANAR-4-3-SAT formula
- Two minimal decomposition with d_E balls (72 balls)
 - one protrudes out only at even slots ⇒ True
 - one protrudes out only at odd slots ⇒ False
- Constant size

<u>Clauses</u>

[Details skipped...]

The Minimum Medial Axis problem is NP-complete

- GUNILLA BORGEFORS (Rapporteur), Pr, CBA, Uppsala Universitet, Suède
- ACHILLE BRAQUELAIRE (Rapporteur), Pr, LaBRI, Université Bordeaux 1
- HENRI MAITRE (Rapporteur), Pr, LTCI, ENST Paris
- ANNICK MONTANVERT (Examinateur), Pr, GIPSA-Lab, Université Pierre Mendès-France, Grenoble
- OLIVIER DEVILLERS (Examinateur), DR INRIA, Sophia-Antipolis
- BERNARD PÉROCHE (Examinateur), Pr, LIRIS, Université Lyon 1