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0000-0003-4236-2133.

*Corresponding author: stephane.breuils@univ-smb.fr;
Contributing authors: david.coeurjolly@cnrs.fr; jacques-olivier.lachaud@univ-smb.fr;

Abstract

Preserving surfaces or volumes is crucial when applying rigid transformations of 2D/3D digital objects
in medical images and computer vision. To achieve this goal, the digital geometry community has
focused on characterizing bijective digitized rotations and reflections. However, the angular distribu-
tion of these bijective rigid transformations is far from being dense. Other bijective approximations
of rigid transformations have been proposed, but the state-of-the-art methods lack the experimental
evaluations necessary to include them in real-life applications. This paper presents several new meth-
ods to approximate digitized rotations with bijective transformations, including the composition of
bijective digitized reflections, bijective rotation by circles and bijective rotation through optimal trans-
port. These new methods and several classical ones are compared in terms of accuracy with respect to
Euclidean rotations, as well as computational complexity and practical speed in real-time applications
and continuity. Finally, we determine some topological stability results of bijective rigid rotations.

Keywords: discretized rotations, bijective rotations

1 Introduction

While rotations and translations in R
d are triv-

ial isometric and bijective transforms, their dig-
itized counterparts in Z

d have attracted a lot
more attention, as in general, they do not pre-
serve distances and are not bijective. Of course,
direct applications of such transformations in Z

d

belong to image processing or computer vision
fields (template matching, object tracking. . . ).
However, the study of digitization effects of such
rigid motions in Z

d has led to interesting number
theoretic and arithmetical results. For instance,

Nouvel and Rémila (2004) has characterized the
set of angles for which the digitized rotation is
bijective in Z2, while Breuils et al. (2022) has
determined this set of bijective angles in Z3. Along
the same lines, Pluta et al. (2018) exhibited the set
of bijective angles on the hexagonal grid. We can
also take an interest in bijective transformations
that are close to rigid transformations: quasi-shear
transforms (Andres (1996); Carstens et al. (1999);
Toffoli and Quick (1997)), or reflections (Andres
et al. (2019); Breuils et al. (2021)). For specific
applications, Passat et al. (2022) have proposed
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an approximation of rotations that preserves the
homotopy for subsets of Z2.

In this article, we follow this line of previous
works focusing on a more practical question in Z

2:
for a given rotation angle, what is the best possible
discrete bijective transformation. More precisely,
we are looking for a bijective transformation from
Z
2 to Z

2 (or subsets of Z2) that minimizes some
quality metrics: a Euclidean distance-based one,
a metric that quantifies some continuity preserva-
tion, or image partition preservation. In this con-
text, we review existing bijective rotation methods
and propose two new approaches: the first one
relies on the composition of discrete reflections fol-
lowing the work of Breuils et al. (2021), the second
one on bijective rotation using circular annulus
(Andres (1992)). We demonstrate that the com-
position of four discrete reflections leads to the
rotation with the lowest metric error. For this
last approach, we also provide a lookup table that
returns the best sequence of reflections (and their
parameters) for a large set of angles.

We are also interested in how bijective rigid
transformations can preserve other qualitative
properties within images. A classical tool for mea-
suring the stability of transformations of functions
is persistent homology (e.g. see Edelsbrunner et al.
(2008)). However it is yet unclear how to use it
in the context of bijective rigid transformations,
since the image function may vary considerably
around contours and the bijective transformation
can shuffle slightly the pixels around the trans-
formed contours. Ngo et al. (2013) have studied
under which sufficient conditions a digitized rota-
tion preserves the topology of a binary picture
or an image partition, and their result is remark-
ably simple and local: just a few configurations
must be avoided. They also proposed a “repairing
tool” to remove these configurations. The consid-
ered transformation is however not bijective (some
points may disappear while some others are dupli-
cated in the transformation). A few years later
Ngo et al. (2019) aimed at improving the geometry
of the rotated image and proposed to polygo-
nalize the input digital set, rotate the polygon
and rediscretize it to mimic a digitized rotation.
This process offers some topological and geomet-
ric guarantees (for a subclass of sets), but is more
a heuristic solution and not really a bijective rigid
transformation in the grid. Passat et al. (2022)
have proposed a bijective affine transformation

whose aim is to preserve the homotopy of digital
sets within images through a combinatorial opti-
mization scheme. Their method remains limited
to extremely small images (≈ 30 × 30). We pro-
pose here to show how the worst-case error of any
bijective transformation induces stability results
of an image partition: the interiors of regions are
preserved, the region adjacency graph is preserved
under natural conditions.

2 Bijectivity of digitized rigid
transformation

Let us consider rigid transformations that act on
the integer lattice Z

d. A digitized rigid transfor-
mation is the composition of a rigid transforma-
tion T ∈ E(d) (element of the Euclidean group)
and a rounding to the nearest integer operator
D : Rd → Z

d. The rigid transformation is bijec-
tive, whereas the rounding operator is not, see
Figure 1.

However, there are three possibilities to ensure
the bijectivity of digitized rigid transformations,
either
(a) define a digitized transformation that leaves

invariant discrete lines (reflection) or discrete
circles (rotation),

(b) characterize rigid transformations that are
bijective after digitization. Once the char-
acterization is known, it is not difficult to
approximate any rigid transformation with
the ”nearest” bijective one.

(c) or by construction, like finding a bijective
map that minimizes an error with respect to
the real rigid transformation.

In the following, we only consider reflections and
rotations acting on the integer lattice Z2. We start
by briefly recalling the state-of-the-art bijective
approximation of rigid transformations.

2.1 Quasi-shears

The quasi-shear approach by Andres (1996) con-
sists of the discretization of the continuous hori-
zontal and vertical shears that approximate rota-
tion. This is a one-to-one point mapping thus
bijective. Note that the shear method is not lim-
ited to 2D as shown by Toffoli and Quick (1997)
and extends well to non-square lattices as shown
by Carstens et al. (1999).
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Fig. 1: 2D digitized rotations of points in blue. The digitized rotation of (a) is not bijective, since it
yields holes and double points, whereas the rotation of (b) is bijective.

2.2 Reflection with respect to

discrete lines

This more recent method was presented by Andres
et al. (2019) and was designed to leave invari-
ant discrete lines after reflections. The reflection
of a point is computed by simply identifying its
position with respect to the point of intersection
between the discrete line and its perpendicular dis-
crete line. Again, this approach leads to a one-one
point (bijective) map.

z

2.3 Bijective digitized reflections

and rotations

We focus in this subsection on the approach that
follows (b). First, let us recall the necessary and
sufficient conditions for a digitized rotation and a
digitized reflection to be bijective:

• for digitized rotations the subset R of angles
such that ∀α ∈ R, D ◦Rα is bijective, where
Rα is the rotation of angle α centered at the
origin,

• for digitized reflections, the subset H of
vectors such that ∀m ∈ H, D ◦ Hm is
bijective, where Hm is the reflection across
the straight line with normal vector m and
passing through the origin.

We start by recalling the characterization of 2D
bijective digitized rotation with angle α ∈ [0, π

2 ]
made by Nouvel and Rémila (2004). It consists of
the following set of angles:

R :=

{

α ∈
[

0,
π

2

[

, such that

cos (α) =
2n+ 1

2n2 + 2n+ 1
,

sin (α) =
2n2 + 2n

2n2 + 2n+ 1
, n ∈ Z

+

}

. (1)

We denote by Rk the subset of angles of R limited
to integers 0 ≤ n ≤ k. More recently, Roussil-
lon and Coeurjolly (2016) expressed the bijectivity
condition in the complex plane by the Gaussian
integers γ ∈ Z[i] (ring of Gaussian integers) with
the equivalent formula:

R =

{

γ · γ
√

(γ · γ∗)
| γ = (n+ 1) + ni, n ∈ Z

+

}

.

In order to express the bijectivity condition
of digitized reflections, Breuils et al. (2021) used
the Geometric Algebra G

2 with basis vectors
e1, e2. The resulting subsetH of bijective digitized
reflections is

H = H1 ∪H2 ∪H3 ∪H4 , (2)

where

H1 = {m ∈ Z
2,m = −ne1 + (n+ 1)e2, n ∈ Z

+},
H2 = {m ∈ Z

2,m = −(n+ 1)e1 + ne2, n ∈ Z
+},

H3 = {m ∈ Z
2,m = −e1 + (2n+ 1)e2, n ∈ Z

+},
H4 = {m ∈ Z

2,m = −(2n+ 1)e1 + e2, n ∈ Z
+} .
(3)

Again we denote by Hk the subset of reflections
of H limited to integers 0 ≤ n ≤ k.

In the following, we introduce some notions
of geometric algebra that allow us to express the
composition of reflections as either reflection or
rotations.
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2.4 Geometric Algebra

Geometric algebra was introduced through the
works of W. K. Clifford, whose aim was to unify
and to generalize both Grassmann algebra and
W. R. Hamilton’s quaternion. The product of the
algebra is called the geometric product and is
defined in any dimension. This product combines
the outer and inner product as follows.
Definition 1. Geometric product, outer
product and inner product (e.g., Dorst et al.
(2007)). Let (e1, e2), be an orthonormal basis

of the inner product space R2. Given two vec-

tors m,n ∈ R2 with m = mxe1 + mye2, n =
nxe1 + nye2, the geometric product mn is defined

as

mn = m ∧ n+m · n (4)

where

m ∧ n = (mxny −mynx)e12 (5)

is the outer product between m and n and rep-

resents the oriented area spanned by m and n.

and

m · n = (mxnx +myny) (6)

Note that the geometric product is invertible and

for a vector m ∈ R
2,

m−1 =
m

m ·m =
m

∥m∥2

This geometric product generates the 4-
dimensional (2d for a d dimensional vector
space) geometric algebra G

2 over R. The set
{1, e1, e2, e12} forms a graded basis of G

2. The
grades range from 0 for scalars, 1 for vectors, 2
for bivectors. The geometric product acts on basis
vectors and bivectors as follows

e1e2 = −e2e1

e1e1 = e2e2 = 1

e12e1 = −e2 = −e1e12

e12e2 = e1 = −e2e12

Example: Let m = mxe1 + mye2, and n =
(mx cos

α
2 −my sin

α
2 )e1+(mx sin

α
2 +my cos

α
2 )e2

(α2 is the angle between m and n), the result of
mn is

mn = (mxe1 +mye2)
(

(mx cos
α
2 −my sin

α
2 )e1

+(mx sin
α
2 +my cos

α
2 )e2

)

= ∥m∥2
(

cos α
2 + sin α

2 e12

)

.

Definition 2. Reflection. The reflection x′ of

a point x ∈ R
2 with respect to a hyperplane of

normal vector m ∈ R
2 can be written as

x′ = −mxm−1 = x− 2
m · x
m ·mm . (7)

A rotation can be expressed as the composition
of two reflections. In geometric algebra, it is conve-
niently expressed thanks to the geometric product
as follows.
Definition 3. Rotation as the composition of
two reflections. Assuming m,n be the two unit

normal vectors of the reflections with a relative of
α
2 , the rotation of angle α of x = xe1 + ye2 is

expressed as

x′=(nm)x(nm)−1

=(cos α
2 + sin α

2 e12)x(cos
α
2 − sin α

2 e12)

=
(

(x cos α
2 + y sin α

2 )e1 + (x cos α
2 + y sin α

2 )e2

)

(

(cos α
2 − sin α

2 e12)
)

=
(

(x cosα− y sinα)e1 + (x sinα+ y cosα)e2

)

.

Definition 4. Composition of n reflections
The composition of reflections with normal vec-

tors m1,m2, · · · ,mn is expressed as the reflection

induced by the hyperplane defined by the geometric

product of the normal vectors

m1m2 · · ·mn . (8)

As a consequence, if n is even and each normal

vector is a unit vector, then the above geometric

product acts as a rotation of a point x.

2.5 Metrics for comparing bijective

transformations

Let T be an arbitrary bijective transformation.
We will use several metrics to evaluate its qual-
ity with respect to a given Euclidean rotation Rα.
First of all, we will limit error computations to
some domain D, generally [−100, 100]∩Z

2, which
corresponds to an image resolution 201× 201.

The cardinality of D is denoted by #D. The
Euclidean distance between two points p and q is
d2

(

p, q
)

= ∥p− q∥, with ∥ · ∥ the Euclidean norm,
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Fig. 2: Angular density distributions of bijective digitized rotations colored in black (a), bijective digitized
reflections colored in blue (b), the composition of 2 bijective digitized reflections colored in red (c) and
the composition of 4 bijective digitized reflections colored in green (d) .

and for finite sets X and Y , we define:

d2

(

p, Y
)

:= min
q∈Y

d2

(

p, q
)

,

dH

(

X,Y
)

:= max{max
p∈X

d2

(

p, Y
)

,max
q∈Y

d2

(

q,X
)

},

the latter being the classical Hausdorff distance.
The first metric is the standard root mean square
error defined as:

L2(T, α) :=

√

1

#D

∑

p∈D

∥T(p)− Rα(p)∥2.

The second metric is the worst case error:

L∞(T, α) := max
p∈D

∥T(p)− Rα(p)∥.

Denoting N8(p) the eight neighbours of a pixel p,
the third metric, based on Saadetoğlu et al. (2024),
is the continuity error, defined as:

Lc(T) :=

√

√

√

√

1

8#D

∑

p∈D

∑

q∈N8(p)

∥T(p)− T(q)∥2.

Finally, we combine the worst-case error and the
continuity error balanced with some coefficient
λ ⩾ 0 as:

L∞+λc(T, α) := L∞(T, α) + λLc(T).

In Section 8, we further extend these metrics
with some quantification of the preservation of
partitions during a rotation.

3 Composition of bijective
digitized reflections

Transformations based on either Pythagorean
triples or discrete reflections lead to bijective dig-
itized rigid maps. However, the resulting angular
distribution of both Rk and Hk is far from being
dense, even for large k, see Figure ??a-c. When
computing a rotation by an angle that is not
in Rk and Hk, one option would be to consider
the nearest bijective rotation or reflection. How-
ever, this leads to low quality transformations (e.g.
the mean squared distance error between rotated
grid points and the original subset of the grid
can be significant). Since the composition of an
even number of reflections results in a rotation, an
alternative is to compose bijective digitized reflec-
tions, for instance 4 of them, to approximate a
given target rotation angle. More precisely, we aim
at constructing a look-up table that associates, to
some prescribed rotation angles, the sequence of
reflections that minimizes some error metrics as
described in section 2.5.

3.1 Candidate set construction and

duplicates

First of all, let us fix k = kmax and compute the
composition of the elements of Hkmax . The set of
the compositions of 4 bijective digitized reflections
Ckmax is expressed as

Ckmax := {(m1,m2,m3,m4), such that

m1,m2,m3,m4 ∈ Hkmax} . (9)
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From our experiments, we do not compose more
reflections than 4 since the maximum angular
uncertainty is already lower than one degree
(0.00015 rad) for kmax = 15. Figures 2c and 2d
show the two normalized angular histograms of
Ckmax for 2 and 4 reflections.
Remark 1. #Ckmax = (4kmax)

4.

Furthermore, Ckmax is a superset of the
Pythagorean triple based angle set:
Proposition 1. Rkmax ⊂ Ckmax .

Proof. Let γ = (k + 1) + ki ∈ Rkmax . Since the
subalgebra composed of the scalar and bivector
R⊕∧2

R2 is isomorphic to the complex numbers
((e12)

2 = i2 = −1), then ∃m1,m2 ∈ Hkmax , γ =
m1m2. For instance, choose m1 = e1,m2 = (k +
1)e1 + ke2. Their product is

m1m2 = (e1)((k + 1)e1 + ke2) = (k + 1) + ke12,

which corresponds to the sought rotation. Now
choosing for instance m3 = m4 = e1, we have
defined m = m1m2m3m4 that belongs to Ckmax

and corresponds to the rotation γ.

We also observe that several compositions of
bijective digitized reflections result in the same
rotation angle. This becomes critical if the value
of kmax increases (with kmax = 15, #Ckmax =
1.3× 107). In order to reduce the overhead associ-
ated with the storage of this table, the duplicates
must be removed. This involves sorting Ckmax by
increasing angle of the resulting rotation. Fur-
thermore, it is important to note that two com-
positions resulting in the same angle might have
different digitizations, see the example of Figure 3.

Therefore, letting Ckmax

α be the subset of Ckmax

restricted to the transformations resulting exactly
in the angle α, we choose a representative C̄kmax

α

for each angle α as:

C̄kmax

α := arg min
m∈Ckmax

α

L∗(Π
4
i=1(D ◦ −mipm

−1
i ), α),

where L∗ is a user-chosen metric among
L2, L∞, L∞+λc.

Note that, for all m ∈ Ckmax

α , we have
Π4

i=1mi = cos
(

α
2

)

+ sin
(

α
2

)

e12. Finally, with
kmax = 15, we have reduced the number of trans-
formations to #C̄kmax ≈ 105 instead of 1.3 × 107

before.

3.2 Rotation angle to the most

accurate bijective composition

Given a target rotation angle α and C̄kmax sorted
and without duplicates, seek C̄kmax

β ∈ C̄kmax that

best approximates Rα. Firstly, since C̄kmax is
sorted by ascending angle, finding C̄kmax

β closest
to the sought angle α is a binary search opera-
tion. However, this element is not necessarily the
composition that is the most accurate: it may not
minimize the distance to the Euclidean rotation
Rα. For instance, let us consider a target rota-
tion angle ϵ near 0, there might be a composition
of 4 bijective reflections resulting in ϵ whereas
the most accurate one is simply the composition
of the two trivial reflections with normal vectors
m1 = m2 = e1.

To address this issue, we start by identifying
the K elements of C̄kmax nearest to C̄kmax

β , where
the latter is chosen such that |β − α| is minimal.
We call this subset NN(C̄kmax

i , α).
Finally, the best composition of digitized

reflections is determined within NN(C̄kmax

i , α)
according to the user-chosen metric L∗ as:

m̂ := arg min
m∈NN(Ckmax

i
,α)

L∗(Π
4
i=1(D ◦−mipm

−1
i ), α).

(10)

3.3 Computational complexity

The computational cost of sorting the Ckmax and
removing duplicates is

O(max(#D,#Ckmax) log(#Ckmax). (11)

Note that #D = 201×201. Since this latter opera-
tion can be computationally expensive, we choose
to precompute C̄kmax . In practical implementa-
tion, we go a step further by precomputing the
table of the most accurate composition of bijec-
tive digitized reflections for each integer angle in
degree. It is worth mentioning this table remains
reusable, as the number of points increases. There-
fore, if we consider an image of size N × N ,
the complexity of the approach is the complexity
of applying bijective digitized reflections to each
point of the image. Thus, the overall complexity
is O(N2). Table 2, page 14, shows two examples
of the composition of digitized reflections applied
to an image. The resulting implementation of this
approach is available in DGtal .
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Fig. 3: Composition of 2 bijective digitized reflections m1,m2. (a) m1 = −2e1 +3e2, m2 = −5e1 +4e2.
(b) m1 = 4e1 + 5e2, m2 = 3e1 + 2e2. The angle between the normal vectors in (a) and (b) is the same
whereas their digitizations (points in blue) are different, for example 4e1 + e2 is in the lattice of (b) but
not (a).

4 Bijective rotation by circles

We build a bijective approximation of a rota-
tion by decomposing the plane into concentric
digital circles around the center of rotation. The
points along each digital circle are sorted accord-
ing to the angle they form with the center of
rotation and the x-axis. Then the global trans-
formation is constructed by mapping circles onto
themselves, shifting the points according to the
desired angle α.

More precisely, assuming the origin of the
frame lies at the center of rotation, let Cr := {p ∈
Z
2, r ⩽ ∥p∥2 < r+ 1}. It is clear that (Cr)r∈Z,r⩾0

forms a partition of Z2. We then sort the points of
each circle Cr according to their angle with the x-
axis: let (Cr

i )i=0,...,nr−1 be the induced sequence
of points, where nr is the cardinality of Cr. We
have thus ∀0 ⩽ i < j < nr,∠(Cr

i Ox) < ∠(Cr
jOx).

Denoting by ⌊·⌉ the nearest integer rounding oper-
ator, we define the rotation along circles RC

α of
angle α as:

∀p ∈ Z
2, RC

α (p) = q, with p = Cr
i , q = Cr

j ,

and j =
(

i−
⌊ α

2π
nr

⌉)

mod nr.

This transformation is clearly bijective: it maps
the points of a circle onto the same circle, and
the shift of indices is a one-to-one mapping. This
transformation also preserves circles and mini-
mizes the radial error in some sense.

From a computational point of view, rotating a
whole image of size N×N takes a time Θ(N2), see
Table 1. It suffices to proceed circle by circle, each
shift takes a time linear in the number of points of
the circle. If one is interested in rotating just one
point p = Cr

i , the complexity is then O(logN): it
takes O(1) to find the correct circle radius r, then
O(logN) worst case to find the index i of p in the
sequence, and finally O(1) to get the shifted point.

5 Optimal Transport method

In recent years, Optimal Transport (OT for short)
has become a key mathematical framework for
manipulating generalized probability density func-
tions (e.g. Villani (2009)). The most general way
to describe the interest of OT is that it allows
quantifying meaningfully how costly it is to move
masses from a generalized probability density
function to another one, so-called the Wasser-
stein distance. Depending on the nature of the
measures, discrete-to-discrete, semi-discrete, or
continuous-to-continuous, a huge literature exists
on numerical methods to efficiently solve OT prob-
lems Peyré et al. (2019); Flamary et al. (2021).
When dealing with discrete measures with unit
masses, the OT problem boils down to an opti-
mal assignment problem: given two sets of points
X = {xi}n and Y = {yi}n in Rd, and a cost func-
tion c : Rd × Rd → R+, we are looking for the
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permutation σ in {1..n} such that

n
∑

i=1

c(xi, yσ(i))

is minimal. Back to our setting, ifX and Y are two
discrete sets and c the squared Euclidean distance,
the OT approach allows us to construct a bijective
map X → Y that minimizes the mean squared l2
error between X and Y . If X is a finite disk of Zd

and T ∈ E(d) any continuous rotation, one can
define the OT variant of T (e.g., OT based rota-
tions) as the optimal assignment between X and
T (X) for the (squared) l2 cost. On the computa-
tional side, the Hungarian method can be used to
compute the optimal assignment (see, for example,
Peyré et al. (2019)) with an O(n4) computational
cost, for n the number of pixels. In this paper,
we rely on a fast network simplex algorithm Bon-
neel (2018). The worst-case computational cost
remains highly polynomial in n (i.e., O(N8) for an
image N×N), but the upper bound is not reached
in practice. To get an idea of computation times,
rotating a 100 × 100 image takes several minutes
on an Apple M2 processor.

6 Optimal Transport by
circles

Since the OT of an image is very costly and
impracticable for nowadays image resolutions, we
construct a new bijective transformation by mix-
ing rotation by circles and OT. More precisely, for
a constant k ⩾ 2, we group concentric circles Cr

by k-tuples, leaving only C0 alone. We thus build
digital sets Di that are grouped into concentric
circles:

D0 := C0 ∀i ⩾ 0, Di+1 :=

k
⋃

j=1

Cki+j . (12)

Then, given a rotation Tα of angle α, for each cir-
cular ring Di, we perform the optimal transport
between Tα(D

i) and Di to find the best (as of
L2) bijective rotation within each ring. Note that
the computational cost is now N×O(k4N4), since
the number of points within a ring is proportional
to kN . Finally, we can build a lookup table for
a fixed number of angles (like 360) that gives the
assignment for each ring.

7 Experimental results and
discussions

We consider the following bijective approxima-
tions approaches

• Quasi-shears (QSH)
• Rotation as the composition of discrete line
reflections (CDLR)

• Bijective digitized rotations (BROT)
• Composition of bijective digitized reflections
(CBDR)

• Bijective rotation by circles (RBC)
• Optimal transport (OT)
• Optimal transport by circles (OTC)

The next subsections present the respective per-
formances of these approaches both in terms of
computational complexity and accuracy.

7.1 Computational complexity

We evaluate the computational complexity of
rotating a full image of size N × N . As for the
quasi-shear approach, we consider the Final QSR

algorithm of Andres (1996). Applying a shift to
a point is a constant time algorithm, leading
to an overall complexity in O(N2). Concerning
the rotation as the composition of the discrete
line reflection approach, we rely on Algorithm
1 of Andres et al. (2019). The function X(y)
defined in line 2 computes a rounding operation
and this operation is a constant-time operation.
The table 1 summarizes the complexity of both
the image transformation and the table precom-
putation for the methods presented in this paper.

7.2 Accuracy for a fixed image size

The accuracy of each method is given in terms
of Euclidean distance between the continuous
rotation and its discrete approximation. More pre-
cisely, we compute both the L2 and L∞ norms of
the error between the Euclidean rotation and the
approximation method. As for the CDLR method,
we change it by modifying Algorithm 1 Andres
et al. (2019), see Algorithm2, where we choose
the first reflection such that one metric is mini-
mized, please refer to Algorithm 2 in the appendix.
By default, we choose the worst-case error L∞.
Figures 4 and 5 display, respectively, the L2-error
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Complexity QSH CDLR BROT CBDR RBC OT OTC-k
Image transf. Θ(N2) Θ(N2) Θ(N2) Θ(N2) Θ(N2) O(N8) O(N2 log(N))
Precomp. n.a. n.a. n.a. Eq.(11) O(N2) n.a. O(k3N5)

Timings (ms) QSH CDLR BROT CBDR RBC OT OTC-2 OTC-3 OTC-4
Image transf. 2.7 43.5 3.8 3.8 3.5 > 105 15.9 16 16
Precomp. 0 0 0 5300 13 0 4 · 105 7 · 105 13 · 105

Table 1: For the main approaches, the first two lines describe the time complexity and the precomputation
time complexity to apply each bijective transformation method to a N ×N image. The remaining lines
present both the time (ms) to transform a 201×201 image (Image transf.) as well as the precomputation
time required for the same image (Precomp.). For CBDR, we choose kmax = 15. Methods proposed in
this paper are emphasized in bold font. For OTC-k, k stands for the width of each ring (see Eq. (12)).

and L∞-error for each method as a function of the
angle of rotation for a 200× 200 image.

We also evaluate the continuity of each method
in Figure 6. For both methods CBDR and CDLR,
we combine both L∞ and Lc using the last for-
mula of Section 2.5. The results are shown for
λ ∈ [0, 100] and for angles in [0, 90] in Figure 11.
Some visual results are shown in Figure 12 for the
same target angle but with different λ.

Overall, bijective rotations (BROT) constitute
the worst trade-off because their angle density is
too scarce, however, it preserves the continuity
the most. Quasi-shears (QSH) is among the best
methods, since it has quite regular errors and pre-
serves the continuity well. Composition of discrete
line reflections (CDLR) induces low errors. How-
ever, for angles far from multiples of π

2 , it does
not preserve the continuity even after penalizing
the L∞-errors by the Lc term. Rotations by cir-
cles (RBC) induce quite large errors (especially in
the worst-case). However the errors of their opti-
mal transport extensions (OTC-k) decrease as the
width k of each ring is increased. Indeed method
OTC with rings of width 4 is only outperformed
by CBDR, and not for all angles. Increasing the
ring width would probably induce the method
with the lowest average error, but its precompu-
tation is very costly (several days). Compositions
of Bijective Digitized Reflections (CBDR) provide
generally the best results on average and is com-
petitive with respect to QSH in the worst-case,
while staying fast to compute.

7.3 Evaluation of CBDR: Impact of

image Size, K and kmax

In this subsection, we study the impact of chang-
ing the CBDR parameters:

• the size of the image,
• kmax the cardinality of the subset of bijective
reflections,

• K the number of composition of bijective
reflections closest to the target angle.

For the sake of clarity, we compute the average,
minimum and maximum values of both the L∞
and L2 norms of the errors. Figure 14 shows the
evolution of the errors when we increase K for
an image of size 201 × 201 and for an image of
size 1001 × 1001. Increasing kmax from 30 to 50
does not have any noticeable effect on the result-
ing curves. A low kmax = 8 however has a large
effect on the errors, an explanation of these large
errors is the fact that for kmax=8, the angular den-
sity distribution is sparser than for kmax = 30 as
shown in Figure 13.

Finally, these results show that both kmax =
30 and K = 1000 are good candidates for CBDR.
Increasing more kmax is interesting for larger
images but then the precomputation time is a
problem. For kmax = 50, the precomputation time
is approximately 7 hours.

7.4 Impact of the image size for

each approach

To further support the previous section, Figures 9
and 10 show some statistics about both L∞ and
L2 for each method with image sizes ranging from
200 × 200 to 1000 × 1000. First, the impact of
increasing the image size is the most noticeable
for RBC while it has almost no impact on QSH.
Increasing image size has also a limited impact on
CBDR. This effect is reduced by increasing further
kmax at the price of a larger precomputation time.
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Fig. 4: Plots of L2-errors for the different bijective transformations as a function of the angle (91 angles
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2 ]) for an image of size 1000× 1000, y-range is between 0 and 6 pixels.
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Fig. 9: Plots of average, minimum and maximum of L2-errors for the different bijective transformations
(91 angles betweeen [0, π

2 ]) for images of sizes between 300× 300 to 1000× 1000.
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Fig. 10: Plots of average, minimum and maximum of L∞-errors for the different bijective transformations
(91 angles betweeen [0, π

2 ]) for images of sizes between 300× 300 to 1000× 1000.

7.5 Enforce continuity for CBDR

and CDLR

Furthermore, it is possible to enforce the conti-
nuity of the bijective transformation for several
angles by choosing a λ that minimizes L∞ while
ensuring a low Lc. Table 2 gives a visual com-
parison of each approximation method for both
the worst case and a fixed angle (61◦). For both
the worst case and the fixed angle, we also show
the L2-error field with respect to the Euclidean
rotation.

Note that all implementations are available
in DGtal1 . The next subsection gives a brief
overview of these resulting implementations.

7.6 Implementation details

We slightly changed the algorithm of Andres et al.
(2019) by adding a solver that looks for the two
Discrete Line Reflections that minimize a distor-
tion metric as defined in Section 2.5. Note that
the user can add his/her own metric distortion

1Pull request #1741 retrieved from https://github.com/
DGtal-team/DGtal/pull/1741

by inheriting from the Policy class. The user
can rotate any image or a Z

2 point by creat-
ing a CDLR object. The framework of CBDR is
based on digitized reflections, implemented in the
DigitizedReflection class. Thanks to the dig-
itized reflections, the class CBDR naiverotation

composes an even number of digitized reflec-
tions. The class CBDRSolver allows finding the
CBDR naiverotation that minimizes a metric dis-
tortion implemented in the Policy class (the same
as CDLR). In order to avoid the tedious com-
putation of each optimal composition of bijective
rotation, we invite the user to download the pre-
computed table. The OTC method uses a table that
gives the assignment that minimizes the L2 aver-
age error for each RBC ring. Note that the OTC

precomputed table is also available online.

8 Rotations of regions and
partitions

Up to now we have looked at how pixels are
rotated through different bijective transforma-
tions and we have measured the errors in distance
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Method its worst-case angle its pointwise error for angle 61◦ its pointwise error

QSH

CDLR

BROT

RBC

OTC-2

OTC-3

OTC-4

CBDR

Table 2: For each method, from left to right: the image rotation inducing its worst-case L2 result,
pointwise error with respect to the Euclidean rotation (the redder the higher), and the image rotated
by 61-degree and its corresponding error. The expected rotated image bounding box is in blue and each
circular inset is a zoom on the central part (delineated in green).
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Fig. 11: Plots of L∞, L2, Lc by optimizing L∞+λc with λ ∈ [0, 100] for both CDLR and CBDR methods
for angles ∈ [0, π

2 ].

Fig. 12: Bijective rotation of the same image and
the same target angle (10◦) with CDLR but we
choose to minimize with respect to L∞+λc (a) with
λ = 0, (b) with λ = 70.

induced by these transformations. As stated in the
introduction, other properties could be interest-
ing to preserve through bijective transformations,
like the persistent homology of the image func-
tion or the homotopy of image regions. Since this
objective is out of reach at the moment;we take
an interest here in how regions are transformed.
For instance, when trying to register a segmented
image to another segmented image, we wish to see
how regions are mapped to one another. We then
wish to keep transformed regions as connected
as possible, to keep regions adjacent, and also to
guarantee that transformed regions do not become
too intertwined.

We use the fact that, for each bijective trans-
formation Tα associated with a rotation of angle
α, there is a strict upper-bound µ on the distortion
with respect to the Euclidean rotation. Indeed,
L∞(Tα, α) < µ implies:

∀p ∈ D, d2
(

Tα(p),Rα(p)
)

< µ. (13)

For instance, for images of size D = 201 × 201
with kmax = 15, CBDR presents an upper bound
µ ≈ 1.5 (see Figure 5). This bound implies that

dH

(

Tα(D),Rα(D)
)

< µ. (14)

Indeed, Let δ := maxz∈Tα(D) d2

(

z,Rα(D)
)

. So

δ =max
p∈D

d2

(

Tα(p),Rα(D)
)

⩽max
p∈D

d2

(

Tα(p),Rα(p)
)

< µ.

The same reasoning applies to δ′ :=
maxx∈Rα(D) d2

(

x,Tα(D)
)

, leading to δ′ < µ.

We have proven (14) since dH

(

Tα(D),Rα(D)
)

=
max{δ, δ′}.

Before stating some properties, we need a few
definitions to characterize interior points within a
region. For some digital set X ⊂ Z

2, we denote
by ∂X its interpixel boundary (i.e. the topologi-
cal boundary of the union of pixels of X, seen as
squares). If I is an interval of R+, then the I-subset
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Fig. 13: Angular density distributions of the composition of bijective reflections for kmax = 8 in the first
row and kmax = 15 in the second row. The composition of 2 bijective digitized reflections is colored in
red in the left column and the composition of 4 bijective digitized reflections is colored in green in the
right column.

XI of X is defined as:

XI := {x ∈ X | d2
(

x, ∂X
)

∈ I}. (15)

Obviously, X[0, 1
2
[ = ∅ and X = X[ 1

2
,+∞[ and

all X{a} are mutually disjoint sets. The set X 1

2

corresponds to the border of X (i.e. pixels of X
directly adjacent to pixels not in X). For some
non-negative real number ϵ, we call ϵ-core of X

the [ϵ,+∞[-subset of X, which we denote X⩾ϵ as
a shorthand (see Figure 15 for an illustration).

We show first how interiors of regions may not
interlace when transformed.
Proposition 2. Let X and Y be two mutually dis-

joint subsets of the domain D ⊂ Z2, then Tα(X⩾ϵ)
and Tα(Y⩾ν) are nowhere adjacent whenever ϵ +
ν ⩾ 2µ+ 1.
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Fig. 14: Plots of the average,min and max of L∞-errors (left) and L2 errors (right) for K ∈ [30, 2000]
and for kmax = {8, 30, 50} are shown. The image size is 201× 201 in the first row and 1001× 1001 in the
second row.

Proof. We assume that the cores are not empty,
otherwise the result is obvious. Let x be in the
ϵ-core of X and y in the ν-core of Y . For any
x′ ∈ ∂X and y′ ∈ ∂Y , we have d2

(

x,x′) ⩾ ϵ and

d2

(

y,y′) ⩾ ν. SinceX and Y are mutually disjoint

sets, we have immediately d2

(

x,y
)

⩾ ϵ+ ν.
Now, by triangular inequality, we have:

d2

(

Rα(x),Rα(y)
)

⩽ d2

(

Rα(x),Tα(x)
)

+ d2

(

Tα(x),Tα(y)
)

+ d2

(

Tα(y),Rα(y)
)

.

Since Rα is an isometry, it preserves distances so
d2

(

Rα(x),Rα(y)
)

= d2

(

x,y
)

. Furthermore, from

(13), we know that d2

(

Rα(x),Tα(x)
)

< µ and

d2

(

Rα(y),Tα(y)
)

< µ. Reordering terms above, it
yields

d2

(

Tα(x),Tα(y)
)

> d2

(

x,y
)

− 2µ

> ϵ+ ν − 2µ.

The conclusion follows if ϵ + ν − 2µ ⩾ 1, since
then the transformed x and y cannot be adjacent

(a necessary condition to be adjacent is that the
distance is less or equal to 1).

We illustrate Proposition 2 in Figures 16
and 17. As input, we use the regions of Figure 15
and we check the potential adjacencies of their ϵ-
cores after bijective rotations, for two values of ϵ

(
√
2
2 and 3

2 ). We compare five bijective rotations
(CBDR, OTC2, QSH, RBC, CDLR) and we test
every integer degree rotation angle from 0 to 90◦.
We display for each rotation which angle gives
the greatest number of bad adjacencies between
ϵ-cores.

As expected by the above proposition, the
bijective rotations having the lowest L∞-error
show the smallest number of bad adjacencies.
Experiments show that CBDR, QSH and OTC2
present much fewer bad adjacencies than RBC
and, more surprisingly, CDLR. For higher val-
ues of ϵ, the number of bad adjacencies decreases
quickly (and is guaranteed to be zero if 2ϵ > 2µ+1
with µ the L∞-error of this rotation for this angle).

Experiments also show that the proposition
is a bit conservative. For instance QSH rotation
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Fig. 15: Illustration of some ϵ-cores of several regions within a domain. From left to right: input regions,

distance function to the interpixel region boundaries,
√
2
2 -cores, 3

2 -cores and 2-cores of input regions (pixels
outside cores are in white).

presents no bad adjacencies for 3
2 -cores of a 65×65

image. We also notice that CDLR presents only
one bad adjacency for angle 54◦, which is indeed
its worst-case L∞-error. We did not display the
results for 2-cores, since every bijective rotation
presents no bad adjacency, regardless of the angle.
This was expected for CBDR and CDLR (since
it is guaranteed for µ < 3/2 according to above),
but not for the other rotations. However, keep in
mind that the input image is quite small, while
L∞-errors of Figure 5 are computed for images of
size 201× 201.

Finally, the shape of rotated regions varies con-
siderably between the different bijective rotation
methods. Visually, CBDR, OTC and QSH are the
most pleasant to the eye, while RBC and CDLR
present unusual deformations (even if the latter
has quite a low L∞-error). Figure 18 confirms that
CBDR, OTC and QSH are indeed much better for
preserving the connectivity of regions in images,
regardless of the rotation angle.

We now evaluate how the adjacency graph of
regions is preserved through bijective rotations.
Let {X1, . . . Xn} be a family of disjoint subsets
of the domain D ⊂ Z

2 (generally called regions).
Two different regions Xi and Xj are said adja-

cent if and only if dH
(

Xi, Xj
)

= 1, and we denote
the non-reflexive symmetric relation as Xi

∼

Xj . Adjacency relations are preserved through
bijective transformation Tα in the following sense:
Proposition 3. Assume the ϵ-core of Xi and the

ν-core of Xj are not empty. If Xi
∼ Xj, then

dH

(

Tα(X
i
⩾ϵ),Tα(X

j
⩾ν)

)

< ν + ϵ+ 2µ+ 1. (16)

Otherwise if Xi ̸∼ Xj and dH

(

Xi, Xj
)

⩾ ρ ⩾
√
2,

then

dH

(

Tα(X
i
⩾ϵ),Tα(X

j
⩾ν)

)

> ρ+ ν + ϵ− 2µ− 1.

(17)

Proof. For the sake of clarity, we omit the param-
eter α in Tα and Rα. If Xi ∼ Xj , then
dH

(

Xi
⩾ϵ, X

j
⩾ν

)

⩽ ϵ+ ν +1 (even if the boundaries
of the two regions intersect, the centers of pixels
are at a distance of at least 1). Using triangular
inequality, we get:

dH

(

T(Xi
⩾ϵ),T(X

j
⩾ν)

)

⩽ dH

(

T(Xi
⩾ϵ),R(Xi

⩾ϵ)
)

+ dH

(

R(Xi
⩾ϵ),R(Xj

⩾ν)
)

+ dH

(

R(Xj
⩾ν),T(X

j
⩾ν)

)

< 2µ+ ϵ+ ν + 1,

using two times (14) and the equality
dH

(

R(Xi
⩾ϵ),R(Xj

⩾ν)
)

= dH

(

Xi
⩾ϵ, X

j
⩾ν

)

(the
rotation R preserves Euclidean distances).

If Xi ̸∼ Xj and dH

(

Xi, Xj
)

⩾ ρ ⩾
√
2, then

dH

(

Xi
⩾ϵ, X

j
⩾ν

)

⩾ ϵ + ν + ρ − 1. So, again by
triangular inequality we have:

dH

(

R(Xi
⩾ϵ),R(Xj

⩾ν)
)

⩽ dH

(

R(Xi
⩾ϵ),T(X

i
⩾ϵ)

)

+ dH

(

T(Xi
⩾ϵ),T(X

j
⩾ν)

)

+ dH

(

T(Xj
⩾ν),R(Xj

⩾ν)
)

,

which entails (using the same arguments):

dH

(

Xi
⩾ϵ, X

j
⩾ν

)

< 2µ+ dH

(

T(Xi
⩾ϵ),T(X

j
⩾ν)

)

⇔ ϵ+ ν + ρ− 2µ− 1 < dH

(

T(Xi
⩾ϵ),T(X

j
⩾ν)

)

,
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Fig. 16: Bijective rotations of
√
2
2 -cores of image regions. Each column displays the result of a different

bijective rotation method. Each row displays the worst case of each bijective rotation, and displays the
result of every rotation for this angle. The number of incorrect adjacencies (two pixels belonging to
different ϵ-cores that are adjacent) is written in the lower right part of each image.

thus concluding the proof.

These properties can be used to show a kind of
robustness result for the region adjacency graph
of an image partition through a bijective rigid

transformation. For some positive µ, let
µ
∼ be the

adjacency relation between subsets X,Y of Z2

defined as X
µ
∼ Y whenever dH

(

X,Y
)

< 4µ+ 2.

Proposition 4. Assume µ is the upper-bound

error the bijective transformation T for a given

angle α. Let us choose ϵ = µ+ 1
2 . Let {X1, . . . Xn}

be a family of disjoint subsets of Z2, such that ∀i ∈
{1, . . . , n}, Xi

⩾ϵ ̸= ∅. Then, ∀i, j ∈ {1, . . . , n}, i ̸=
j, we have

non-interlacing: T(Xi
⩾ϵ) ̸∼ T(Xj

⩾ϵ),
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Fig. 17: Bijective rotations of 3
2 -cores of image regions. Each column displays the result of a different

bijective rotation method. Each row displays the worst case of each bijective rotation, and displays the
result of every rotation for this angle. The number of incorrect adjacencies (two pixels belonging to
different ϵ-cores that are adjacent) is written in the lower right part of each image.

adjacency: Xi ∼ Xj implies T(Xi
⩾ϵ)

µ
∼ T(Xj

⩾ϵ),

separation: Xi ̸∼ Xj and dH

(

Xi, Xj
)

⩾ 4µ + 2

implies T(Xi
⩾ϵ) ̸

µ
∼ T(Xj

⩾ϵ).

Proof. For the first point, Proposition 2 concludes
immediately with ϵ = ν = µ+ 1

2 .

For the second point, Proposition 3, Equation
(16) implies that (α is omitted for conciseness):

dH

(

T(Xi
⩾ϵ),T(X

j
⩾ϵ)

)

< 2ϵ+ 2µ+ 1 = 4µ+ 2,

which means T(Xi
⩾ϵ)

µ
∼ T(Xj

⩾ϵ).
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Fig. 18: Number of bad adjacencies for each type of bijective rotation as a function of the angle (in
degrees). Increasing the parameter of the cores decreases this number. QSH, CBDR and OTC2 present
the smallest numbers of bad adjacencies, while RBC and CDLR are very unstable and may induce a lot
of bad adjacencies. Results for 2-cores are not displayed since every type of bijective rotation presents no
bad adjacencies regardless of the angle (note, however, that the size of the image is 65× 65, hence quite
small).
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For the third point Equation (17) tells that:

dH

(

T(Xi
⩾ϵ),T(X

j
⩾ϵ)

)

> ρ+ 2ϵ− 2µ− 1 = 4µ+ 2,

by substituting ρ = 4µ+2 and again ϵ. This shows

T(Xi
⩾ϵ) ̸

µ
∼ T(Xj

⩾ϵ).

In other words, the adjacencies of regions are
stable in some sense through bijective rotations,
provided that regions have a non-empty core and
non-adjacent regions are not too close to each
other.

Overall, CBDR, OTC and QSH seem more
adapted to rotate partitions and to compute the
rigid registration of partitions. Furthermore, using
the ϵ-cores to make the registration seems a much
more pertinent approach than using the regions
themselves.

9 Conclusion

In this paper, we presented multiple approaches
and conducted a quantitative and qualitative
study of the main 2D bijective rigid rotations. Our
experimental results highlight the performances of
optimal transport with circles, quasi-shears rota-
tion and the composition of bijective digitized
reflections both in terms of accuracy and preser-
vation of continuity. The symmetrized version of
QSH offers a compelling balance of low precom-
putation, low L∞ error and strong robustness to
variations in image size. CBDR could be preferred
for its low L2 error and its continuity qualities, but
it requires quite large precomputation time. OTC
presents also low errors but requires high precom-
putation time and is only usable for medium size
images. The other tested methods are outmatched
by the previous ones: OT gives the lowest error
but it is limited to mini-images with current algo-
rithms, RBC presents high L∞ error, CDLR is
outperformed by QSH and CBDR in all categories.

We also considered the problem of rotating a
partition in a bijective way and how the worst-
case error of any bijective transformation induces
stability results of an image partition. Tackling
the problem of registration with bijective and
as continuous as possible rigid transformation is
among our perspectives as well as extending to
3D the proposed approximation methods. Overall
QSH seems the most promising method for image

registration, while both CBDR and QSH are
competitive candidates for 3D bijective rotations.
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Peyré, G., Cuturi, M., et al.: Computational
optimal transport: With applications to data
science. Foundations and Trends in Machine
Learning 11(5-6), 355–607 (2019)

Passat, N., Ngo, P., Kenmochi, Y., Talbot, H.:
Homotopic affine transformations in the 2D
cartesian grid. Journal of Mathematical Imag-
ing and Vision 64(7), 786–806 (2022)

Pluta, K., Roussillon, T., Cœurjolly, D., Romon,
P., Kenmochi, Y., Ostromoukhov, V.: Char-
acterization of bijective digitized rotations on
the hexagonal grid. Journal of Mathematical
Imaging and Vision 60(5), 707–716 (2018)

Roussillon, T., Coeurjolly, D.: Characterization of
bijective discretized rotations by Gaussian inte-
gers. Research report, LIRIS UMR CNRS 5205
(2016)
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A Appendix

A.1 QSH algorithm

Starting from the QSH algorithm presented
in Andres (1996), we recall the definition of hor-
izontal and vertical quasi shears V QS,HQS as
follows

∣

∣

∣

∣

HQS(a, b, c) : Z
2 −→ Z

2

x = xe1 + ye2 7→ x+ ⌊ay+c
b ⌋e1.

∣

∣

∣

∣

V QS(a, b, c) : Z
2 −→ Z

2

x = xe1 + ye2 7→ x+ ⌊ax+c
b ⌋e2.

Then, given a rotation angle θ and a rotation
center (x0, y0),

∣

∣

∣

∣

QSR(θ, x0, y0) : Z
2 7→ Z

2

x 7→ HQS′ ◦ V QS′ ◦HQS′(x).

with HQS′ = HQS(−a′, b′, ⌊ b′−2y0a
′

2 ⌋) and

V QS′ = V QS(a, ω, ⌊ω−2ax0

2 ⌋) and ω = 215, a =

⌊ω cos θ⌋, a′ = ⌊ω cos( θ2 )⌋ and b′ = ⌊ω sin( θ2 )⌋.
Algorithm 1 presents a symmetrized version of the
original QSH algorithm of Andres (1996) used for
our experiments.

A.2 CDLR algorithm

Let us also recall the bijective reflection algorithm
as presented in Andres et al. (2019). Algorithm 2
is the base for CDLR computation. Since we are
focusing on bijective rotation, we slightly revise
this algorithm by double looping over a range of
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Algorithm 1: Pseudocode of the sym-
metrized QSH method

1 Function QSH

Input: θ rotation angle
x0, y0 rotation center

2 θf = θ − 2π⌊ θ+π
4

2π ⌋ // restrict to [0, 2π[

3 Q = ⌊ 1
2 +

2θf
π ⌋ // Quadrant

4 θf = θ −Qπ
2 // Angle in [0, π

2
[

5 θsym = π
2 − θf // Sym. angle in ]0, π

2
]

6 To all points of the input image
7 if θf − π

4 > 0 then

8 Apply QSR(θsym, x0, y0)

9 Apply

[

0 1
1 0

]

10 else Apply QSR(θf , x0, y0)

11 if Q = 1 then Apply

[

0 −1
1 0

]

12 else if Q = 2 then Apply

[

−1 0
0 −1

]

13 else if Q = 3 then Apply

[

0 1
−1 0

]

reflections CDLRef and choosing the composition
that minimizes a given metric.

Algorithm 2: Pseudocode of the bijec-
tive reflection method used in CDLR

1 Function CDLRef

Input: θ the rotation angle
x0, y0 the rotation center
x, y the digital point to rotate

2 a = sin θ, b = cos θ // Extract slope a/b

3 k = ⌊(x− x0) +
a
b (y − y0) +

1
2⌋

4 X : y 7→ ⌈ 2k−1
2 + x0 − a

b (y − y0)⌉
5 (x1, y1) = (X(⌈abk + y0⌉), ⌈abk + y0⌉)
6 (x2, y2) = (X(⌊abk + y0⌋), ⌊abk + y0⌋)
7 if −b/2 ≤ a(x1−x0)− b(y1− y0) < b/2

then

8 (x′, y′) = (X(2y1 − y), 2y1 − y)

9 else if

−b/2 ≤ a(x2 − x0)− b(y2 − y0) < b/2
then

10 (x′, y′) = (X(2y2 − y), 2y2 − y)

11 else

12 (x′, y′) = (X(y1+y2−y), y1+y2−y)
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