BSP-OT: Sparse transport plans between discrete measures in loglinear

time

BAPTISTE GENEST, Université Claude Bernard Lyon 1, CNRS, INSA Lyon, France
NICOLAS BONNEEL, CNRS, Université Claude Bernard Lyon 1, INSA Lyon, France
VINCENT NIVOLIERS, Université Claude Bernard Lyon 1, CNRS, INSA Lyon, France
DAVID COEURJOLLY, CNRS, Université Claude Bernard Lyon 1, INSA Lyon, France

BSP matchings
— » 3
O(knlogn)

Lo

Merging ¢,
r—
O(kn)

Fig. 1. To build a bijection between two point sets (here, stippled images of L. Kantorovich and G. Monge, left), we simultaneously build a pair of BSP-tree on
both sets, by recursively splitting the points along the same random direction. We then match the corresponding leaves of the trees to obtain an assignation.
After building such k assignations in parallel, we combine them into a single one, of low transport cost (color-coded on the right). This allows for numerous

applications in computer graphics.

To solve the optimal transport problem between two uniform discrete mea-
sures of the same size, one seeks a bijective assignment that minimizes some
matching cost. For this task, exact algorithms are intractable for large prob-
lems, while approximate ones may lose the bijectivity of the assignment.
We address this issue and the more general cases of non-uniform discrete
measures with different total masses, where partial transport may be de-
sirable. The core of our algorithm is a variant of the Quicksort algorithm
that provides an efficient strategy to randomly explore many relevant and
easy-to-compute couplings, by matching BSP trees in loglinear time. The
couplings we obtain are as sparse as possible, in the sense that they provide
bijections, injective partial matchings or sparse couplings depending on the
nature of the matched measures. To improve the transport cost, we propose
efficient strategies to merge k sparse couplings into a higher quality one.
For k = 64, we obtain transport plans with typically less than 1% of relative
error in a matter of seconds between hundreds of thousands of points in 3D
on the CPU. We demonstrate how these high-quality approximations can

Authors’ Contact Information: Baptiste Genest, Université Claude Bernard Lyon 1,
CNRS, INSA Lyon, France, baptiste.genest@liris.cnrs.fr; Nicolas Bonneel, CNRS, Uni-
versité Claude Bernard Lyon 1, INSA Lyon, France, nicolas.bonneel@liris.cnrs.fr;
Vincent Nivoliers, Université Claude Bernard Lyon 1, CNRS, INSA Lyon, France,
vincent.nivoliers@liris.cnrs.fr; David Coeurjolly, CNRS, Université Claude Bernard
Lyon 1, INSA Lyon, France, david.coeurjolly@cnrs.fr.

This work is licensed under a Creative Commons Attribution 4.0 International License.
© 2025 Copyright held by the owner/author(s).

ACM 1557-7368/2025/12-ART

https://doi.org/10.1145/3763281

drastically speed-up usual pipelines involving optimal transport, such as
shape interpolation, intrinsic manifold sampling, color transfer, topological
data analysis, rigid partial registration of point clouds and image stippling.

CCS Concepts: « Computing methodologies — Image manipulation; Shape
modeling.

Additional Key Words and Phrases: optimal transport, binary space parti-
tioning, bijections, coupling, partial optimal transport

ACM Reference Format:

Baptiste Genest, Nicolas Bonneel, Vincent Nivoliers, and David Coeurjolly.
2025. BSP-OT: Sparse transport plans between discrete measures in loglinear
time . ACM Trans. Graph. 44, 6 (December 2025), 15 pages. https://doi.org/10.
1145/3763281

1 Introduction

Optimal transport naturally arises from a resource allocation prob-
lem. Given n sites each producing a unit of resource and n sites
each consuming a unit of that resource, how should one assign each
production site to a consumption site to minimize the total cost of
transporting resources? This problem has seen many applications
in computer graphics, where particles, Diracs, vertices, or colors
have been interpreted as sites to be matched. It has thus been con-
sidered for image color matching, stippling, shape interpolation,
fluid simulation and many other uses [Bonneel and Digne 2023].
In its simplest form, this problem can be formulated as finding
a bijection T* from the set of production sites X = {x;} to the

ACM Trans. Graph., Vol. 44, No. 6, Article . Publication date: December 2025.

HTTPS://ORCID.ORG/0009-0009-7718-5553
HTTPS://ORCID.ORG/0000-0001-5243-4810
HTTPS://ORCID.ORG/0000-0001-5242-1585
HTTPS://ORCID.ORG/0000-0003-3164-8697
https://orcid.org/0009-0009-7718-5553
https://orcid.org/0000-0001-5243-4810
https://orcid.org/0000-0001-5242-1585
https://orcid.org/0000-0003-3164-8697
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3763281
https://doi.org/10.1145/3763281
https://doi.org/10.1145/3763281

2 .« Baptiste Genest, Nicolas Bonneel, Vincent Nivoliers, and David Coeurjolly

consumption sites Y = {y;} such that:

n
T* = arg min Z e (s, T(x1)), 1)
Tx—y =1

where ¢ is typically a (power of a) distance. The combinatorial
nature of the set of bijections makes this problem difficult to solve.
Fortunately, it can be made much easier when formulated as a
Linear Programming (LP) problem. Instead of looking for a map
T : X — Y, onelooks for a coupling matrix 7 = [;; € R*]; j, where
m;,j indicates the amount of mass sent from x; € X to y; € Y. Mass
preservation is expressed in terms of 7’s marginals: 2, := {7 €
M,(R*) | XL mij = 1and X7, m; = 1}, and the assignment
problem rewritten:

7* = argmin Z 7 je(xi, yj). (2)

TEX, i

While this relaxes bijectivity, allowing mass to split, in practice,
when considering that each production and consumption site carries
a single unit of mass, the optimal coupling 7* remains a bijection.
To our knowledge, no efficient and scalable algorithm (i.e., handling
hundreds of thousands of points in seconds) produces bijections,
approximating the optimal solution well. In addition, many problems
of interest may involve more production sites n than consumption
sites m (m < n) resulting in a search for injective maps (a so-called
partial transport problem), or involve non-uniform mass distribution
where couplings are sparse, but no transport map may exist.

In this paper, we introduce a way to produce and explore many
sparse couplings in quasi-linear time and linear space complexity,
based on Binary Space Partitioning (BSP). While each coupling is
not optimal, we show that an efficient (linear-time in the bijective
and partial cases) merging scheme exploiting their sparsity allows
to sufficiently reduce the transportation cost and, in practice, yields
approximations close to the optimal transport solution. We demon-
strate important speedups on problems encountered in computer
graphics such as shape interpolation and barycenters, blue noise
sampling of surfaces and stippling of images, color transfer between
images, partial point cloud registration, and persistence diagram
matching in topological data analysis. In practice, we propose three
variants of our BSP-based approach, depending on the settings, that
either produce a bijective transport map in the simplest setting of
matching point sets of the same cardinality (Sec. 3), an injective
transport map when matching point sets of different cardinalities
(Sec. 4) or a sparse coupling matrix when transporting weighted
point sets, i.e., more general discrete measures, of equal total mass
(Sec. 5).

2 Related works

General reviews of numerical methods for optimal transport can be
found in the books of Peyré et al. [2019] and Santambrogio [2015].
A survey of Bonneel and Digne [2023] describes its use in computer
graphics, and Khamis et al. [2024] reviews scalable optimal transport
techniques in machine learning. We focus here on work related to
providing discrete-to-discrete optimal transport couplings.

Exact solutions. The LP problem can be solved using a general
LP solver such as the simplex algorithm [Nabli 2009] with an O(n®)

ACM Trans. Graph., Vol. 44, No. 6, Article . Publication date: December 2025.

complexity. The network-simplex algorithm [Orlin 1997], of the
same complexity class, benefits from the bipartite structure of the
optimal transport problem and runs faster. For bijective assignment
problems, the Hungarian method [Kuhn 1955] computes the exact
solution in O(n®) time, and variants in the geometric setting (where
the cost is the Euclidean distance) in O(n?) [Gattani et al. 2023].
For data structured on grids and when the cost ¢ is separable, com-
plexity is reduced [Auricchio et al. 2018]. Approximations to the LP
problem may be obtained, up to ¢ relative error, via the auction algo-
rithm [Bertsekas 1990], or in O(n poly(log(n), %) using acceleration
structures [Sharathkumar and Agarwal 2012]. e-optimality is costly
to ensure, making such a scheme unfit for large-scale problems.

Entropic regularization. To make the problem tractable, adding
a regularization penalizing the entropy of the coupling matrix has
proven very effective, but blurs the optimal coupling. The regular-
ized problem is solved orders of magnitude faster using the Sinkhorn
algorithm, possibly on the GPU [Cuturi 2013; Solomon et al. 2015].
Altschuler et al. [2019] uses an extremely fast low-rank approxima-
tion of 7 but at the price of higher entropy. Our approach instead
relies on sparsity to enable efficient combinatorial optimization.

Sliced transportation. Sliced Optimal Transport (SOT) [Bonneel
et al. 2015; Rabin et al. 2011] exploits the simplicity of discrete op-
timal transport in 1D, which boils down to sorting 1D points and
assigning the i*" source to the i target. The sliced transporta-
tion distance between d-dimensional points is the average of 1-
dimensional transport costs obtained by projections onto random
1D lines. This leads to an O(nlogn) algorithm, efficiently imple-
mentable on the GPU, also benefiting machine learning [Deshpande
et al. 2018; Heitz et al. 2021; Liutkus et al. 2019; Wu et al. 2019].
However, this simplicity comes at the cost of lacking an explicit
coupling between measures. It is possible to perform a gradient
flow of the SOT energy until convergence to recover a coupling, but
this requires many gradient descent iterations that undermine its
computational efficiency. Instead, a single well-chosen direction can
be used to obtain an assignment from a single 1D problem [Mahey
et al. 2023], but this results in significant approximation errors.

Multiscale approaches. Multiscale solvers can improve scalability,
typically by building a partition of the two point clouds (e.g,, using
k-means), and recursively matching and combining clusters [Blum-
berg et al. 2020; Oberman and Ruan 2015; Schmitzer 2016, 2019].
To our knowledge, the fastest such method for discrete optimal
transportis the multiscale Sinkhorn algorithm of Feydy et al. [2019],
implemented in the Geomloss library. Running on the GPU, it allows
to compute registrations between hundreds of thousands of points
in around 10s on high-end GPUs. Similar to sliced transport, they do
not produce explicit couplings but register the source to the target
measure via a gradient flow. Our approach runs faster, on the CPU,
with comparable quality and directly provides couplings.

Particular optimal transport distances over (graph) trees, such as
trees obtained from Bounding Volume Hierarchies, have a closed-
form expression for specific costs ¢(x, y). This allows to compute
the optimal transport distance in linear time [Backurs et al. 2020;
Le et al. 2019; Tran et al. 2025; Yamada et al. 2022], but does not
provide explicit couplings. Nurbekyan et al. [2020] and Negrini and

Xt , L
/_) /' @
4 + _-->0
° "> e-- 0@
@ ® Wi+l PP
T Je
.- P A29.,0
SOt Y) o Y LT
.- Y “‘ .‘. - -7

X _/y X—“ / [OFSS]

Fig. 2. We call BSP matchings between two point sets X and Y the following
process: using linear slices we first split X into X, X* and Y into Y, Y*,
where X~ (resp. X*) and Y~ (resp. Y*) have the same number of points.
Then we recursively match X~ to Y~ and X* to Y™, until we reach a trivial
case (here matching a single point of X to another of Y. When n = m with
uniform mass the result is a bijection, but we show how to generalize the
process while keeping a sparse output assignment.

Nurbekyan [2024] obtain a collision-free transport map by simulta-
neously partitioning two measures into two BSP trees (kd-trees in
practice) and matching their leaves. While they mainly study the
properties of the continuous map obtained after infinite subdivisions
of a single kd-tree, and numerically evaluate the discrete bijective
case, we take inspiration from these works for more general discrete
measures. We instead consider multiple BSP trees and extend BSP
matchings to injective and non-uniform settings.

3 BSP Matching: the bijective case

We first describe BSP Matchings in the uniform balanced case, i.e.,
matching point sets X and Y of the same cardinality n. Sections 4
and 5 generalize our algorithm to different cardinalities and non-
uniformly weighted points.

3.1 Randomized BSPs

By projecting onto 1D lines, sliced optimal transport loses significant
information. The motivation behind BSP Matching is to keep SOT
algorithmic simplicity and runtime complexity while reducing as
much as possible information loss and benefiting from a multiscale
strategy.

BSP matching proceeds by constructing BSP trees simultaneously
on point sets X and Y. A BSP recursively splits a point set into
two subsets, until each region only contains a single point (see
Fig. 1). The key idea is to split simultaneously both X and Y: at
each node of the tree, the two point sets are each divided into two
parts. In the first (resp. second) part of X, there is the same number
of points as in the first (resp. second) part of Y, and this number
is expressed as a fraction p of the number of points in that level
of the tree. While the work of Nurbekyan et al. [2020] considers
splitting axis-aligned hyper-planes into two half-spaces containing
the same number of points (p = 0.5) — resulting in a kd-tree — we
instead generalize to unbalanced splits of arbitrary p with arbitrary
hyper-plane orientations. For each node ¢ of the tree, a direction w,
is chosen, and point sets are split based on their dot product with
wy, ensuring that both point sets contain the same number of points
in the left (resp. right) side of the split.

BSP-OT: Sparse transport plans between discrete measures in loglinear time « 3

O

N1 NZ

Fig. 3. Displacement interpolation with respect to the ‘W, optimal transport
between two gaussians Nj (x1, C1), N2 (x2, Cy) , expressed in closed form
by an affine map Ty, n, (x) = Ac, ¢, (x — x1) + x2. One can observe that a
point that starts its trajectory on any side of the eigenvectors (here noted
x1,x2) of Ac, c,, remains on the same side after transport. Hence we use
such eigenvectors to define the slicing direction to build BSP matchings.

This process is illustrated in Fig. 2 and a pseudo-code imple-
mentation can be found in Alg. 1. The QuickSelect procedure
(std::nth_element from the standard C++ library) rearranges an
array in linear time based on the dot product with w, such that the
elements before the pivot index have smaller dot products than the
ones after. The resulting algorithm runs in O(nlogn).

Algorithm 1: BSPMatching
Data: X = [x1...x,],Y = [y1...Ynl,
start € [1,n],end € [1,n+ 1], TeX > Y
if end — start = 1 then
L T(xstart) € Ystart;
return
w; < GenerateSliceDirection();

// See Sec. 3.2
piv « PickPivot(starteend); // Random int. or median

// reorder X and Y according to w, and piv
QuickSelect(X, wy, start, piv, end);

QuickSelect (Y, wy, start, piv, end);
BSPMatching (X, Y, start, piv, T);

BSPMatching (X, Y, piv, end, T);

Interestingly, if w, = w is kept constant over the entire tree, then
Alg. 1 boils down to a QuickSort algorithm where the sorting predi-
cate is chosen to be the dot products with wy, i.e., exactly recovering
the optimal 1D assignment along the @ used in SOT. Remarkably,
Feydy [2020] describe empirically the behavior of their multiscale
Sinkhorn algorithm as a higher-dimensional generalization of the
Quicksort algorithm, hinting at connections between numerical
discrete OT and sorting.

3.2 Gaussian slicing for low dimensions

In the kd-tree approaches of Nurbekyan et al. [2020] and Negrini and
Nurbekyan [2024], hyperplane normals @, are chosen axis-aligned,
and alternate between dimensions. While this strategy is simple,
general and relatively efficient, it easily admits cases where the final
matching is far from optimal. We propose a stochastic heuristic to
efficiently split the point sets in a way that improves the quality of
the matchings.

ACM Trans. Graph., Vol. 44, No. 6, Article . Publication date: December 2025.

4 .« Baptiste Genest, Nicolas Bonneel, Vincent Nivoliers, and David Coeurjolly

Randomly sampling the slicing direction at each node and choos-
ing the quantity of mass that is sent left and right of the split maxi-
mizes the range of couplings explored. They may however not all be
highly relevant, hence undermining the quality of the final merged
matching. In lower-dimensional settings, we propose an alternative
strategy that restrains the exploration to higher-quality ones.

Our solution resides in a choice of directions that would ac-
tually separate the problem when matching (continuous) Gauss-
ian distributions, for the quadratic cost. When transporting Ny =
N (x1,Cy) towards N2 = N (x2, Cy), the optimal map is provided by

1 1

1 1

Tan, (X) = Ac, ¢, (x—x1)+x; where Ac, ¢, = C; 2 (CZC,C2)2C, 2.
When separating the problem in the BSP construction, the points
are partitioned along parallel hyperplanes. Since Ty, A, is affine,
and Ac, c, symmetric positive definite, a half space orthogonal to a
direction w, is mapped to the corresponding parallel half space in
N, only if w, is an eigenvector of Ac, c,. Hence, we choose these
eigenvectors since they linearly separate the optimal transport in the
Gaussian case. We define the Gaussian slicing strategy between two
point sets X, Y as randomly picking an eigenvector of Ac(x),c(v),
where C(X) is the covariance matrix of X. We found that sampling
eigenvectors uniformly resulted in a better exploration of couplings
rather than importance sampling them based on their magnitude,
since the slicing policy should be symmetric in X and Y while the
eigenvalues of Ac(x)c(y) are the inverse of those of Ac(y)c(x)-
Note that a classical heuristic to build the BSP of a single point set
consists in slicing along the largest eigenvector of its covariance
matrix [Gottschalk et al. 1996] — our method can be seen as a gener-
alization of this process when two sets of points must be considered
at the same time.

A drawback of this approach is that it strongly depends on dimen-
sionality, since computing the eigenvectors of the d X d transport
matrix has a O(d*) complexity. Hence, this heuristic is mainly usable
in the low-dimensional setting. Since the transport map between
Gaussians first centers the distribution before applying the linear
map Ac(x),c(v), the pivot point must be as close as possible to the
mean of the distributions. In this context, setting p = 0.5 provided
best results (see Sec. 6 and 7). In practice, since empirical covariance
matrices are not relevant when estimated from too few samples, we
only perform the Gaussian slicing when n > 50 in any given tree
node, and d < 20. We also deduce the covariance matrix of the right
child from that of the left child and its parent to halve covariance
matrix computational time (see Appendix A).

3.3 Bijection merging

While the assignments produced by Alg. 1 have higher quality with
respect to Eq. (1) than the ones obtained by sorting along 1D slices,
with the same time complexity, they are still far from optimal. Our
second key idea is to exploit their sparsity to further improve their
quality by combining multiple assignments into one.

Assignment swapping. Here we con-

sider that we have a current bijection T X
and another T’ that we want to merge T(xj)
together. For a given point x; assigned to T(x;)
T(x;), re-assigning it to a new proposal i

T’ (x;) would break bijectivity, unless .—]— -=>

ACM Trans. Graph., Vol. 44, No. 6, Article . Publication date: December 2025.

the point x; such that T(x;) = T’ (x;) is

assigned to T(x;). Hence, we perform the swap only if it is a global
improvement of the cost, i.e., whenever c(x;, T’ (x;)) +¢(x}, T(x;)) <
c(x;, T(x;)) + c(xj, T(x})). The assignment of x; to T(x;) becomes
a new proposal that might be present neither in T nor T’, which
breaks linear separation artifacts, present in BSP matchings.

Monotone merging. An assignment swap only considers pairs of
points x; and x;, but more global swaps may be interesting to ex-
plore. By clustering the (unoriented) bipartite graph whose nodes
are {x;};=1., and {y;}i=1..» and arcs connect each x; to both T(x;)
and T’ (x;) into connected components, disjoint sets of nodes are ob-
tained. This clustering is performed in linear time using a depth-first
traversal. For each component, we select the assignment of lower
cost, either T or T’ entirely for all x; of that connected component.

Combining both. While monotone merging operates at larger
scales and can be executed in parallel, assignment swapping is better
at breaking slicing artifacts observed in individual BSP couplings.
In practice, for each connected component of the monotone merge,
we either start from T and try to improve this map by assignment
swapping each node with T’ sequentially, or start with T” and try to
improve it with T, depending on which map offers the lowest total
cost. Furthermore, since the disjoint components are independent,
the entire process can be performed in parallel on each set. The
resulting map is guaranteed to be no worse than the better of T and
T’ in transportation cost. Algorithm 2 describes this strategy and is
illustrated in Fig. 4.

Accounting for the construction of k BSPs of n points in dimen-
sion d and the merging of these BSPs, the complexity of our entire
algorithm is O(kn log(n)d), with an additional d* factor when using
Gaussian slicing (Sec. 3.2).

This construction is independent of the considered transport
cost. While we focus on the ‘W, case (c(x,y) = ||x — y||?), we show
in Section B of the supplementary materials that our approach is
efficient for more general L, metrics.

Algorithm 2: Bijection merging
Data: X = [x;...x,,Y =[y1...yn], . T e X > Y
// Find disjoint cycles in the conflict graph
CC « ConnectedComponents(T U T’) ;
T «T;
for in parallel C € CC do
et — Yiecc(x;, T(x:)) ; // cost using T
e — Diee (xi, T (x1)) 5 // cost using T’
if c;v < ¢y then // use the best assignment on C
fori<NeCdo
T*(x;) < T'(x:);
T (x;) < T(xi) 5
swaps

// for the assignment

forie Cdo // greedy local improvement
L AssignmentSwap (T*, T, i);

return T*;

T
>
<————‘ .\\
T

o.i o—]

— @

Fig. 4. When merging two bijections T and T’, identifying connected com-
ponents in the (unsigned) graph induced by TUT’ decomposes the merging
on disjoint sets. On each set, in parallel, we first identify which bijection
gives the lower cost, T or T’, then perform assignation swapping.

Pivx

m-~ m*
‘9 @ 0|0 ©
| | |

Y | | |

_ | | |
m m*

A\ 4

Fig. 5. In the partial setting, once a pivot for X is chosen along a slice w,
sending m; atoms to the left and m; atoms to the right, the pivot of Y must
be chosen so that at least m; points are sent left and m; to the right (here
pivy can be chosen as any of the three dashed line).

4 BSP Matching: the partial case

We now consider the case where the target point set Y = {y;}i=1.n
has more points than the source point set X = {x;}i=1.m, i.e. n > m,
also known as partial transport. This results in a search over injective,
rather than bijective maps.

4.1 BSP construction

When choosing a pivot in the balanced case, one would make sure
that the same number of points was present on any given side for
both X and Y, to enforce bijectivity at the leaf level. In the partial
setting, after sending m™ points of X to the left child of the current
BSP node, and m™ points to the right (with m~ + m* = m), we need
to split Y such that the left child has at least m~ points and the right
one at least m* points. Since m~ + m* < n, the location of this split
can be chosen anywhere in the middle part (see Fig. 6).

In practice, since partial OT is not translation invariant, among
possible choices, we set the pivot of Y to be as close as possible, for
the cost ¢, to the pivot of X. This ensures that transportation cost is
overall reduced.

Since the partial sorting routine has a linear complexity, we still
maintain an O(nlog(m)) complexity.

4.2 Merging partial matchings
We extend our merging procedure to the partial, injective, case.

Assignment swapping. Given two injective T(x;)
maps T and T’ and a point x;, either the point to

which x; is mapped by T’ already receives mass T (x;)
from T, then it boils down to the bijective case, _ -7
or T’(x;) does not receive mass by T and so x; / ~ g

Xi

BSP-OT: Sparse transport plans between discrete measures in loglinear time « 5

Algorithm 3: PartialBSPMatching
Data: X = [x1...xn, Y =[y1...yn].m <n,
starty, endy, starty, endy, T
if endy — starty =1 then
// Assign atom to closest point of Y

T(xstartx) — arg min C(xstartx, yi);
i€[starty,endy [

return
w, < GenerateSliceDirection();
pivy < PickPivot(starty,endx);

// Minimum number of points to send on both sides
m~ < pivy — starty;

m* « endx — pivy;

QuickSelect (X, wy, starty, pivy, endx);

QuickSelect (Y, wy, starty, starty + m~, endy);
QuickSelect (Y, wy, starty + m~,endy — m*, endy);

// Set pivy as closest point to pivy while
respecting the mass constraint
c(xpivxa yi);

pivy « arg min

i€[starty +m~,endy —m™* [
PartialBSPMatching (X, Y, startx, pivy, starty, pivy, T);
PartialBSPMatching(X,Y, pivy, endx, pivy, endy, T);

can just accept it directly if it reduces the cost, as
displayed in the inset.

Algorithm 4: Injective Assignment swapping
Data: X = [x1... %], Y =[y1...yn]. T.T', x;
yi — T(x:);

¥ T'(x);
if T™!(y}) # 0 then
X T (y))s
if c(x;,y]) + c(x], y;) < c(x;, ;) + c(x],y;) then
T(x;) < yj;
L T(x}) < yi;
else if c(x;,y}) < c(x;,y;) then
| T(x) <« yjs

Monotone merging. Alg. 2 still holds, using this modified assign-
ment swap.

5 BSP Matching: non-uniform balanced distributions

BSP Matchings can also be extended to the case two non-uniform
measures p = Y2 p;8y; and v = Y7L, v;8,, with the same total
mass.

5.1 BSP construction

While balanced (m = n) uniform discrete distributions result in bijec-
tive assignments, the non-uniform case results in mass splitting, i.e.,
a point may be assigned to multiple points in the target point cloud.
We here formulate the problem in terms of measures, matching a
measure y supported on point set X with a measure v supported

ACM Trans. Graph., Vol. 44, No. 6, Article . Publication date: December 2025.

6 + Baptiste Genest, Nicolas Bonneel, Vincent Nivoliers, and David Coeurjolly

on point set Y, by finding a coupling 7 rather than a map T. While
the principle remains the same, considering previous cases where
p; =1 and v; =1 for all i, the splitting of mass makes the search for
a pivot more difficult. In the uniform case, since each term of the
measure carries the same weight, splitting the array can be done
based on array indices, and results in an integer number of samples
on each side, obtained via QuickSelect. In the non-uniform case,
we adapt the splitting procedure so that the subtrees of the BSP
for y and v have matching masses. While it is generally not possi-
ble to group the terms of a measure so that they match any target
amount of mass, a term can always be split in two to respect this
constraint. At any level of recursion, for the measure y, we simply
partition the set of points of i based on the dot product (xpivot, @)
(PartitionCDFByDot, Alg. 5), and record their corresponding mass
4~ on the left side of the pivot. For the measure v, we extend the
QuickSelect to a QuickCDF algorithm that, instead of partitioning
based on the number of elements, partitions the atoms {(y;, vi)}:
to match the amount of mass on each side — see Alg. 6. This algo-
rithm produces a pivot atom (y,, vp) and the total mass v~ of the
atoms before the pivot. The atoms are partitioned so that v~ < u~,
v~ + v, 2 p~ and for any y; before the pivot and y; after the pivot,
(yi,) < (y;, w). Intuitively, as illustrated in Fig. 6, y, is the atom
responsible for making the amount of mass of v, along the slice,
go from below pi~ to above. To split v and respect the prescribed
masses, the pivot atom has to be split into two atoms (y,, vp,—), and
(Yp, vp,+), one for each side of the BSP with v, + v, = v, and
V™ + v, = p~. In general, at each level of the BSP, an atom of v is
split. This process is applied recursively, until one of the measures
is made of a single atom. In that case, this atom is assigned to all
the atoms remaining for the other measure. The overall algorithm
for non-uniform distributions is summarized in Alg. 7.

We prove in Appendix B that a coupling 7 produced by Alg. 7
is an extremal point of the coupling simplex II(y, v), i.e., 7 is an
acyclic graph. As such, the number of edges in 7 is bounded by
n + m — 1 similarly to optimal couplings.

Invariance by similarity transform . Denoting s, the measure
Hst = 23 HiOsx;+t, With s > 0,¢ € R (similarly for v), then:

T (/—’s,t’ Vs’,t’) =7 (:u’ V) s

where 7 denote the coupling resulting from GeneralBSPMatching
or BSPMatching. Indeed, since the BSP only relies on the ordering of
dot products, applying a similarity transform does not change their
order and hence the output is the same. Since, we also have that
7(p, po o) = o, where p o o is a permutation of y by o, 7 is optimal
(in the sense of optimal transport) when computing transport maps
between measures only differing by a similarity transform.

5.2 BSP merging

While we can merge couplings produced by Alg. 7 in a way similar to
the previous settings, it is algorithmically much more involved and
the complexity of the merge depends on the degree of each vertex,
which leads to significantly worse run times. These algorithms are
implemented in the code we provide in supplementary materials.

ACM Trans. Graph., Vol. 44, No. 6, Article . Publication date: December 2025.

Algorithm 5: PartitionCDFByDot

Data: i = 37, 11;8x,, @ € R4, T C [[1, m]), start, piv, end
im e start; it —end; pT —0; t e (Xpppiv], @)
while i~ <i* do
while i~ < end and (xj;-}, w) < t do
// Accumulate the mass before the pivot
[T R S U T
im—i +1
while i* > start and (x7[;-}, @) > t do
L it e it -1
if it > i~ then

L swap(I[i~],I[i*]);

// Return the new index of the pivot and its CDF

return i, u";

Algorithm 6: QuickCDF

Data: v = 31, vidy,, @ € R4 T C [1,n], start, end, =, v~
if end — start = 1 then
// start is the pivot index

// v~ is the total mass before the pivot
return start,v™ ;

piv «UniformlyDraw([start, end]) ;
i~,dv” «PartitionCDFByDot (v, w,, start, piv, end);
if v +dv™ >y~ then

// The desired split is before the pivot
L return QuickCDF (v, w, I, start,i~, p~,v™);
else

// The desired split is after the pivot
L return QuickCDF (v, w, i~ ,end, p=, v~ +dv7);

CDF of p along @

- ® ® ® ® @

' CDF of v along @

Vi=% ()

Fig. 6. Unlike in the bijective case, when the atoms of the two measures
do not have the same masses, there is generally no offset along the slice
separating the measure atoms into subsets of matching masses. To ensure
that the mass constraint is preserved, an atom of v is split. Here when
separating yi leaving two atoms on each side, we get = = 1. Splitting v
using Alg. 6 (QuickCDF) yields v~ = % and the third atom of v is split with

= =1
masses Vp - = Vp 4 = 15-

Algorithm 7: GeneralBSPMatching
Data: H= Zlnil ﬂigxi, V= Z?:l Viéyial,u c |[1’ m]]’IV c
[1,n], start,, end,, start,, end,
if end, — start, = 1 then
for j € [start,,end,[do

ﬂlu[Start,u]:lv[j] - VI\/[j];

return;

if end, — start, = 1 then
for i € [start,,end,[do

”Iu[i],l‘,[startv] — pl;,[i];

return;

@ < GenerateSliceDirection();

p < PickPivot(start,end,);

// Split p

piv,, u~ < PartitionCDFByDot (y, w, I, starty, p, endy);

// Split v and find split atom

piv,, v~ < QuickCDF (v, w, I, start,, end,, p~,0);
p < Llpiv,] vy —p —v7;
// Execute left branch

Vp = Vp s
GeneralBSPMatching(u, v, 1, I, start”,piv”, start,, piv, +1);

Vpt < Vp T Vp—s

// Execute right branch
I[piv,] < p;
GeneralBSPMatching(p, v, Iy, I, piv,, endy, piv,, end,);

Vp — Vp)+;

Vp < Vp— + Vp,+3

6 Numerical study

All experiments were performed on an Intel(R) Xeon(R) W-2245
3.90Hz, with 8 cores, and a A5000 GPU. We provide our code in
supplementary materials.

Number of trees. We evaluate the quality of the transport cost and
speed of our algorithm with respect to the number of points, when
matching two point clouds in 2D and 3D with the same number
of points. We compute the mapping obtained from our bijective
algorithm and compare it to a ground-truth given by the network-
simplex implementation of Bonneel et al. [2011]. We use the Monge
to Kantorovitch stippled images (see Fig. 1), and a single disk to
two disks densities in 2D, an armadillo to a ball (3D, volumetric),
and a dragon to a bunny (3D, surfacic) (see Fig. 7-d). In Fig. 7-a and
7-b, we plot the relative error in transport distance as a function of
the number of trees, k, that are merged (10k random subsamples of
each point cloud, averaged on 100 realizations). We also assess our
random slicing (Fig. 7-a) and Gaussian slicing (Fig. 7-b) strategies.
Both graphs show a fast decay in the first iterations then a slower
convergence to a plateau. While this tends to indicate that we do
not recover the ground truth optimal transport matching, the rel-
ative error remains small. The error quickly drops below 1% with
Gaussian slicing, while it remains between 1 and 3% for an equiv-
alent number of random slices. Note that it performs particularly

BSP-OT: Sparse transport plans between discrete measures in loglinear time « 7

well on the sphere to double sphere because the Gaussian slicing
can identify the exact cut to split the sphere in two. In Figures 7-a
and 7-b, we also compare with a single, axis-aligned, kd-tree con-
struction as suggested by Nurbekyan et al. [2020]. Best results are
obtained using Gaussian slicing as seen in Fig. 7-b. In Section C
of the supplementary materials, we detail additional results where
our merging strategy is combined with tree constructions with
orthogonal directions.

In the remaining experiments, unless specified otherwise, we
have fixed k = 64 and the Gaussian slicing strategy is used. In Fig. 7-
¢, we evaluate the speed for k = 16 as a function of the number of
samples (random samples on the dragon and the bunny models).
We experimentally confirm the loglinear behavior of our variations
of the QuickSort algorithm for both slicing strategies.

Number of connected components. In Section A of the supplemen-
tary materials, we provide statistics of connected component sizes
across merging iterations.

Synthetic examples. Methods that compute sliced transport often
only provide distances but no actual coupling. In the bijective case,
to compare to these approaches, we compare our coupling to a
gradient flow which advects particles X towards Y by minimizing
a (sliced) transportation cost via gradient descent, resulting in the
advected point set X* We evaluate the quality of the transport by
computing both the quadratic distance between the initial point
set X and its advection X*, ||X* — X||? [Rabin et al. 2011], and the
transport distance between the advected point set X* and the target
Y, Wy(X*,Y) [Tran et al. 2025]. While ||X* — X||? should ideally
approximate W, (X, Y), W2 (X", Y) should be as close as possible to
0. Table 1 shows comparisons on several synthetic datasets used in
this literature: Swiss-Roll (2D), 25-G-2D (mixture of 25 random
2d Gaussians), G-20D (random Gaussian in 20D). Our method uses
k = 64 trees. In all cases, our approach better approximates optimal
transport and perfectly match the target measure.

7 Applications

7.1 Shape interpolation and barycenters

Interpolation. We assess shape interpolation in the bijective case.
We interpolate between two 3D shapes randomly sampled within
their volume by computing a bijective map, and partly advect-
ing samples in a straight line, producing a displacement interpola-
tion [Bonneel et al. 2011; McCann 1997]. In Fig. 8 we show that we
obtain an interpolation between two shapes comparable to the result
of the multiscale Sinkhorn implementation in Geomloss [Feydy et al.
2019] but significantly faster, without requiring a gradient flow and
we provide an explicit bijective matching between the shapes.

Barycenters. The Wasserstein barycenter problem allows to in-
terpolate between multiple shapes, but it involves minimizing a
weighted sum of optimal transport distances. Instead, we compute
the linearized barycenter of S point sets Y*, which approximates
the Wasserstein barycenter, by computing S transport maps T°
between a pivot point set X (here, we sample a random uniform
distribution) and each Y, and transform X by the weighted sum

ACM Trans. Graph., Vol. 44, No. 6, Article . Publication date: December 2025.

Baptiste Genest, Nicolas Bonneel, Vincent Nivoliers, and David Coeurjolly

Relative error

monge -- kantorovitch (2D) =

disk -- double-disk (2D) =
armadillo -- ball (3D)

dragon -- bunny (3D) =

0.001
1 10 100 1000
k
(a)
10000 7
] Random slicing
1000 < Gaussian slicing
] O(nlogn) - - -
100 § o(n?)
— 10 1
D i
(0] 4 -
g
T 01
0.01 {
0.001 1
0.0001 -
1000 10000 100000 1e+06
number of samples
(c)

Relative error

0.1

0.01

0.001

monge -- kantorovitch (2D) ==

disk -- double-disk (2D) ==
armadillo -- ball (3D)

dragon -- bunny (3D) =———

0.0001

1 10

100

1000

(b)

(d)

Fig. 7. For 2D and 3D matching problems (d), we compute the relative error of our BSPOT cost to W, as a function of the number of merged trees (k) using a
random slicing (a) and with a Gaussian slicing (b). Dashed lines correspond to the relative error of a single kd-tree (axis aligned) as suggested by Nurbekyan
et al. [2020] In (¢) we compare timings for such sampling strategies for increasing number of random samples on the bunny to the dragon model (k = 16).
Armadillo, Bunny and Dragon from the Stanford Computer Graphics Laboratory 3D scanning repository.

T(X) = 2 A T°(X), given interpolation weights {A;}. We illustrate
these linearized barycenters in the bijective setting in Fig. 9.

7.2

To obtain a blue-noise sampling of a curved surface M, one can
optimize a point set such that its optimal transport cost to a given
measure (uniform or any probability density function) is minimal
[Genest et al. 2024; Qin et al. 2017]. Optimizing point location di-
rectly on the surface rather than in ambient space results in better
samplings in difficult cases, such as thin features, and near object
boundaries [Genest et al. 2024; Zong et al. 2023]. Solving optimal
transport problems on manifolds is challenging [Solomon et al. 2015,
2014], and in our settings, BSP matching is defined in Euclidean
space. We hence rely on spectral embeddings. Let {(A;, u;)} be the
(sorted) eigenpairs of the Laplace-Beltrami operator of M. Using
the first A eigenpairs, the embedding Sp from M to R” is defined

as:
(u1 (x) ua(x))
= DR 5
Vi VAa
and is called global point signature [Rustamov et al. 2007]. Hence,
we approximate the intrinsic matching between two point sets on
M by an Euclidean mapping in R on the embedded point sets,

Intrinsic blue-noise manifold sampling

ACM Trans. Graph., Vol. 44, No. 6, Article . Publication date: December 2025.

where Euclidean distances in R* approximate geodesic distances
on M. In practice, we use A = 64 eigen vectors. In our method,
we further benefit from the fully bijective transport map between
uniform measures, even when sampling non-uniform densities.

To compute blue-noise samples X = {x;};=1_, following a den-
sity v on M, we draw p sets {Y/ = {y{}izl,_n}jzl,_p of n random
samples from v on M, and compute the embedding of each point
by Sa, denoted g{ = SA(y{). We denote Y = J;_; , ¥;. We also
compute the embedding of points x; denoted X; = Sy (x;) and set
X ={%}and ¥/ = {g{ }. We then proceed iteratively to refine an
estimate X (©) of blue noise samples, which we initialize by setting
Xim =Y!, and denote the embedded point set X(©). At each step
¢, we compute the BSP-OT matching Tj([) between X () and each
Y/, For each sample point of X(©), we compute the arithmetic mean
)((321.([)) = % Zi-1.p Tj([) (9?1,([)) of its p assignments by all Tj(l) in RA,
We then obtain the sample xi(e“) on M by reassigning xi(e) to the
sample y{ of Y on M whose embedding g{ is closest to)((9?1.([)). This
reassignment process allows the points X(©) to remain within the
fixed set of points Y and thus to only compute the embedding Sx
once and for all, without having to invert the spectral embedding

Geomloss (GPU, 15s)

BSP-OT: Sparse transport plans between discrete measures in loglinear time « 9

Ours (CPU, 5s)

Fig. 8. Comparison with Geomloss: Result of the shape interpolation between two discrete uniform measures of 350k points from armadillo (left) to a ball
(right). We used k = 64 plans for our method, with gaussian slicing, and the default parameters of Geomloss (10 iterations with o = 0.01). In the rightmost
column the points in red correspond to the target measure (the ball). It is not visible on the bottom row since, because of the bijectivity of our assignation, our
points exactly match both measures, while flow based approaches hardly do. Computations performed on a A5000 GPU (for the record, on an older computer,
with a GTX 1060, geomloss takes 1 minute for the same task, whereas our running time remains below 8s).

%%°
0% %%’
W %% %%
o e s % ¥
4.t I T

Ours

*%6a0
g 4 4]

RNE

PSS
BTNt

GeomLoss

Fig. 9. We compare linearized barycenters computed using our matchings (left) with linearized barycenters computed with entropy-regularized transport on
the GPU with GeomLoss (right), Our result is computed in 0.68s, with k = 64, and 1.98s with GeomLoss with 10 iterations and o = 0.01, of 65k points.

back to M. To stabilize and improve convergence, we initialize the
BSP merging process to obtain Tj(Hl) by the resulting assignment

obtained at the previous iteration Tj(().

In Fig. 10, we show intrinsic sampling results on uniform and non-
uniform densities. We compare our approach to the (non-intrinsic)
restricted centroidal Voronoi tessellation sampling (CVT) of Liu et al.
[2009] as a reference in the uniform case (from Levy [2025]), and

the intrinsic sliced-based OT minimization NESOTS [Genest et al.
2024], on challenging, self-intersecting geometries. In the uniform
case, the CVT fails because of their purely ambient approach. CVT
in spectral coordinates (dimension 64) produces good results but
is significantly slower (17x) than our approach, mostly due to an
expensive re-projection to the mesh, a step that we completely avoid
using bijectivity. Compared to NESOTS, we are 2.8 times faster with

ACM Trans. Graph., Vol. 44, No. 6, Article . Publication date: December 2025.

10 « Baptiste Genest, Nicolas Bonneel, Vincent Nivoliers, and David Coeurjolly

Table 1. We use the same parameters as Tran et al. [2025], with L = 25,k =4,
8 = 10 for the Db-TSW [2025], L = 100 slices for SW [2015] min-SWGG
[2023],LCVSW [2023] with a learning rate of 5e-3 (5e-2 for Gaussian20D),
with n = 2000 particles and 10000 iterations with the ADAM optimizer). For
our method, we used Gaussian slicing in 2D and random slicing in 20D.

method |relative error | W2 (X*,Y)
. swW 0.011 0.85
S min-SWGG| 0.093 16.12
% DbISW | 0015 0.019
2 LCVSW 0.004 0.008
BSP-OT 0.002 0
SW 0.025 7.01
2 min-SWGG| 0.121 1.17
& DbTSW | 0.005 0.64
& LCVSw 0.004 2.85
BSP-OT 0.001 0
SW 0.14 120
A min-SWGG| 0.61 177.3
S Db-TSW 0.13 91.8
O Lcvsw 0.16 111.2
BSP-OT 0.027 0

a slightly better point distribution. For a non-uniform target where
CVT cannot be used anymore, our results are similar to NESOTS
but obtained 4 times faster.

7.3 Color transfer

Optimal transport is routinely used to transfer colors from one im-
age to another, by matching their color histograms. Sliced optimal
transport advects each individual pixel to its target by gradient
flow, but this requires repeated (sliced) optimal transport computa-
tions [Bonneel et al. 2015]. Alternatively, one may directly match
color clusters, but at the cost of quantization artifacts [Morovic and
Sun 2003]. Our approach allows to directly use the bijection between
the source and target image to reorder pixels of the target image to
compose an image as close as possible to the source image using
only pixels from the target image, without requiring gradient flow.
We use our bijective framework and assume that the number of
pixels in both images match (up to stretching images, if necessary).
Fig. 11 illustrates our results compared to sliced transport [Bonneel
et al. 2015], or the bijection obtained by min-SWGG [Mabhey et al.
2023]. Our color transfer exactly matches the target color distribu-
tion by construction which is not the case for sliced color transfer
at the same computation cost. It also runs at a fraction of the cost
of a fully-converged sliced color transfer.

7.4 Matching of persistence diagrams

In Topological Data Analysis, one can visualize properties of a scalar
field using persistence diagrams. Given a function f : X — R, we
compute the sublevel set g which assigns to a given threshold o
the set of points of X where f(x) < @, ie,g: a — {x|f(x) < a}.
As «a increases, the sublevel set grows and its topology evolves:
new connected components may appear, existing ones merge, and

ACM Trans. Graph., Vol. 44, No. 6, Article . Publication date: December 2025.

higher-dimensional features such as loops or voids can emerge and
disappear.

recording the birth and death of each feature.

A persistence diagram captures this evolving topology by Per-
sistence diagrams are typically encoded as point sets on the 2D
plane, each point encoding (gq: as a function of ap;,, for a con-
nected component appearing and disappearing (see Fig. 12). In this
context, optimal transport has been used to compare persistence
diagrams [Kerber et al. 2017].

When comparing persistence dia- 4 death P /

grams with optimal transport, since)<
<
AN ﬂr
g . L
N
N
N
N
N
ey
0]

N

ically performed by comparing D; = AN
D;UA(D») and D, = D,;UA(Dy), where
A is the projection on the diagonal. D, birth
and ﬁz thus have the same number of
points, and can be compared in the bijective transport setting. Op-
timal transport is then computed using a modified quadratic cost
c(x,y) = ||x — y||? if x and y are not on the diagonal, and c(x,y) = 0
otherwise. We integrate this modified cost in our bijection merg-
ing procedure. Intuitively, a point matched to a diagonal point is
considered as topological noise.

We show in Fig. 12 that the matching we provide offers a x52
speedup compared to a state-of-the-art auction solver, implemented
in the hera library [2017], with less than 1% of relative error.

each point is labeled, mass is not al-
lowed to split, even if they have dif-
ferent number of points. Matching two
persistence diagrams Dy, D; is then typ-

7.5 Point cloud registration

Bonneel and Coeurjolly [2019] use partial optimal transport to re-
place the nearest neighbor assignation in the Iterative Closest Point
(ICP) algorithm to recover a similarity transformation to align two
point clouds of different cardinality. Bai et al. [2023] follow this idea
with another solution to the partial optimal transport problem in 1D.
At each ICP iteration, Bonneel and Coeurjolly [2019] replaces near-
est neighbor assignment by a gradient flow, while Bai et al. [2023]
uses the assignment obtained by a projection on a single direction,
and both then compute the transformation (rotation, translation
and scaling) with Kabsch’s formula. Both remain of quadratic com-
plexity in the worst case since they solve the partial problem exactly
in 1D. In Table 2 and Figure13 we show that the injective matchings
produced by Alg. 3 in the partial transport settings, provides similar
or better results than that of Bonneel and Coeurjolly [2019], and an
order of magnitude faster. Registering point sets with the implemen-
tation of Bai et al. [2023] takes about 10 minutes for 10k samples on
our machine, for comparable results, while our code runs within a
second in that case.

7.6 Image stippling

We use our non-uniform transport matching for image stippling
[Ahmed et al. 2022; de Goes et al. 2012; Do et al. 2025; Salatin
et al. 2022]. We encode the image as a measure v supported on
a point set Y where each point {y;} is the center of a pixel, with
mass inversely proportional to the pixel brightness. We also set a

CVT CVT (spectral)

NESOTS

Ours Density

BSP-OT: Sparse transport plans between discrete measures in loglinear time « 11

NESOTS Ours

Fig. 10. Intrinsic blue-noise sampling of manifolds: to emphasize the intrinsic nature of our approach, we uniformly sample a flat mesh (top) with 1024 samples
and highlight the sample distribution on isometrically unflatten one (middle). We compare the (non-intrinsic) CVT approach [Liu et al. 2009] (0.27s), a spectral
(intrinsic) CVT approach (37.2s), the NESOTS sampling [Genest et al. 2024] (6s), our approach (A = 64, p = 256, 5 optimization steps for the barycenter, and 16
assignments merged per bijection, in 2.15 seconds). On a non-uniform density with 512 samples (bottom), NESOTS runs in 5.2s while our method runs in 1.3s.

Spot model from [Crane et al. 2013].

(a) Target

(b) Input (c) Ours

(d) [Bonneel et al. 2015] (e) [Bonneel et al. 2015] (f) [Mahey et al. 2023]
(eq. time)

(converged)

min-SWGG 2.03s

Fig. 11. We reorder the 850k pixels of the color image (a) to transfer its colors to the source image (b) using our bijection with k = 16 (c). This process hence
exactly matches color distributions. Alternatively, we produce a gradient flow of the sliced optimal transport functional, and show results at equal time (d,
after 8 steps of 8 slices in parallel) and at higher convergence (e, with 99 steps of 8 slices). Our approach exactly matches the target colors, with lower transport
cost. This better preserves the texture of the input painting, as shown in the inset. We also show the result of the min-SWGG assignation (f). The target image

is from Steve Johnson (@steve_j).

Table 2. We consider two sets X and Y, X C Y, with respectively n and
m points. X is either a random sub-sampling of Y, or given by removing
a part of Y. We consider X = RXs + t, where R using a random rotation
of angle between | — %, Z[, s €]0,2[and t € [-o,]9, with o is the
standard variation of X. We also concatenate to both point clouds 1k points
of uniform noise. We perform the registration between X and Y, with 100
iterations of ICP, with k = 16 for BSPOT and 40 slices for SPOT. We display
the median error over 20 tries between the obtained registration and the
template as 1 ||X — X||2.

name (n to m) SPOT BSP-OT
error timing (s) | error timing (s)
Mumble (80k to 90k) 0.009 70.3 0.002 8.81
Castle (150k to 200k) | 0.003 175.2 0.004 17.37
Cat-2D (5k to 10k) 0.053 5 0.0002 0.77
Car (50k to 70k) 0.074 50 0.052 7.75

uniform measure y supported on a uniformly random point set
X. We set 4(© = 4 supported on X(© = X and then proceed
iteratively. At each iteration £ we compute k BSP matchings to
match ;) to the non-uniform v using Alg. 7. The resulting k cou-
plings 759 allow to each determine an expected transport direction:
E(x(0) y)y~mk(0) [Y -XOIXO =x;] = 37 P (l) (yj —x)/ 25 m; P (t’).
We then obtain X (+1) by advecting points of X in the dlrectlon
of the geometric median of these k direction vectors, computed with
Wietzfield’s algorithm, as in Genest et al. [2024].

In Figure 14, we compare our method with baseline algorithms:
BNOT and GBN for high-quality but slower image stippling, and
the recent rectified flow approach of Do et al. [2025] for fast OT-like
approximation of the transport. Since our matching depends on
the source image size, we present results for both 1024 X 1204 and
256 X 256 image sizes. Note that our results and timings have been
obtained using the 256 X 256 image (see Fig.15 for a discussion). Our

ACM Trans. Graph., Vol. 44, No. 6, Article . Publication date: December 2025.

https://unsplash.com/fr/photos/peinture-abstraite-XXcgyMlYx0Q

12« Baptiste Genest, Nicolas Bonneel, Vincent Nivoliers, and David Coeurjolly

g

100 3 1000
Auction, epsilon=1 - - - - Auction, epsilon=1 - - - -
10 1 Auction, epsilon=0.001 Auction, epsilon=0.001
T —— 100 BSPOT ——

0.001 4 0.1 v,_/

0.0001 0.01 +
1 10 100 1000 1 10 100 1000

Relative error

o

s ©
@
1]
T

/ |

Time (s)

Fig. 12. On the isabel dataset of Vidal et al. [2019] (two recordings of the
magnitude of the velocity of a storm), we compute the matching between
two persistence diagrams (of 8406 and 8263 points) where each point is a
saddle point in the levelset filtration (top), and compare our approach for
various k with the e—auction algorithm, both in terms of relative error to
the W; and timings.

= - — g
5 k= | |
5 e YN
& = |
[_1

OI 4
& =1
4 ﬁ|

Fig. 13. Partial matching of two noisy point clouds, with translation, rotation
and scaling. Using the assignment provided by the merging of 16 partial
plans per iteration, we iteratively estimate the transformation to align the
two point clouds (see Table. 2)

approach yields higher quality stippling compared to rectified flows,
and comparable quality to BNOT or GBN but with a significant
increase in speed.

8 Failure cases

As our merging procedure performs local optimizations over a com-
binatorial set (e.g. the set of bijections), the convergence toward the
global minimum is unlikely. While the local minima we reach are

ACM Trans. Graph., Vol. 44, No. 6, Article . Publication date: December 2025.

typically of low relative error, it is not always the case. The worst
case we identified is the computation of a bijection between two
near identical point-sets, i.e., {X;} and a very small perturbation
{X; + o€;}, where ¢; ~ N(0,1;). As illustrated in Fig. 16, when o is
below a given threshold, the noise is small enough to be ignored by
the BSP construction and it produces the optimal matching. How-
ever, when o is just above this threshold, the points x; and x; + o¢;
are sent on possibly very different branches of a BSP which produces
a close but not exact matching that is then not corrected by merging
since most proposed matchings are also incorrect. This results in an
arbitrary high relative error since the ground truth has near zero
cost. Finally, when o keeps growing we recover the level of quality
we usually obtain.

Note that this limitation is common to projection based assigna-
tion techniques as Min-SWGG [2023] and Kd-tree matchings [2020].
We however perform much better, the relative error on the example
in Fig. 16 is twice higher for a kdtree matching and 42 times higher
for the best 1D assignation of Min-SWGG.

9 Conclusion

We show that matching BSPs appears to be an efficient, simple, and
scalable way to explore and parameterize the set of sparse couplings
that are relevant for the optimal transport problem, that generalizes
transport over slices. This combinatorial optimization for discrete
measures yields many applications in computer graphics.

While Nurbekyan et al. [2020] analyze the properties of the contin-
uous limit of the kd-tree subdivision for a single map and Bonnotte
[2013] provides bounds for sliced transportation, we do not have
such guarantees, and further analysis of our algorithm would be
an interesting avenue for future research. The recursive nature of
our BSPs makes them less GPU friendly, making integration into
modern Machine Learning pipelines more difficult. The sequen-
tial merging procedure further complicates efficient GPU usage.
Nonetheless, when slice directions are fixed, reformulating BSP
Matchings similarly to Radix sort could offer a viable alternative. In-
jective matchings offer the advantage of extreme sparsity, enabling a
merging procedure with linear time complexity. Yet, in non-uniform
settings, varying point degrees and masses often result in quadratic
complexity in the worst case. Designing a scalable merging proce-
dure for general sparse couplings remains an open question. Finally,
a major appeal of BSP matchings is the ease with which they can be
generalized. Extending this approach to other settings of optimal
transport like Gromov-Wasserstein, unbalanced optimal transport,
or even non-Euclidean domains, is also an interesting axis of re-
search.

Acknowledgments

This work is partially supported by the French National Research
Agency within the StableProxies project (ANR-22-CE46-0006), by
the ERC AdG 101054420 EYAWKAJKOS project, and donations from
Adobe Inc. We thank Mattéo Clémot for his help on Topological
Data Analysis experiments.

References

Abdalla GM Ahmed, Jing Ren, and Peter Wonka. 2022. Gaussian blue noise. ACM
Transactions on Graphics (TOG) 41, 6 (2022), 1-15.

BSP-OT: Sparse transport plans between discrete measures in loglinear time « 13

BNOT 1024x1024 BNOT 256x256

GBN 256x256 Rectified flows Ours

16k samples

8k samples

16k samples

GBN 1024x

1024
ey

Fig. 14. Stippling results: on three different images, we compare BNOT [de Goes et al. 2012], GBN (10k iterations as suggested by Ahmed et al. [2022]) and
Rectified Flows [Do et al. 2025], with our stippling approach (with k = 32 couplings per iteration, 100 iterations) on 256 X 256 images (see Fig.15 for discussion),
either for 16k or 8k samples. Our approach provides high quality results (comparable to BNOT and GBN) but several orders of magnitude faster. Rectified

flows produce extremely fast stippling but with noticeable sample alignments.

128x128 256x256

512x512 1024x1024

Fig. 15. Additional stippling results obtained by our approach when varying the target image resolution. In Fig. 14, we settled for 256 X 256 as a good

compromise.

Jason Altschuler, Francis Bach, Alessandro Rudi, and Jonathan Niles-Weed. 2019. Mas-
sively scalable Sinkhorn distances via the Nystrom method. Advances in neural
information processing systems 32 (2019).

Gennaro Auricchio, Federico Bassetti, Stefano Gualandi, and Marco Veneroni. 2018.
Computing Kantorovich-Wasserstein Distances on d-dimensional histograms using
(d +1)-partite graphs. Advances in Neural Information Processing Systems 31 (2018).

Arturs Backurs, Yihe Dong, Piotr Indyk, Ilya Razenshteyn, and Tal Wagner. 2020.
Scalable nearest neighbor search for optimal transport. In International Conference
on machine learning. PMLR, 497-506.

Yikun Bai, Bernhard Schmitzer, Matthew Thorpe, and Soheil Kolouri. 2023. Sliced
optimal partial transport. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition. 13681-13690.

Dimitri P Bertsekas. 1990. The auction algorithm for assignment and other network
flow problems: A tutorial. Interfaces 20, 4 (1990), 133-149.

Andrew] Blumberg, Mathieu Carriere, Michael A Mandell, Raul Rabadan, and Soledad
Villar. 2020. MREC: a fast and versatile framework for aligning and matching point

clouds with applications to single cell molecular data. arXiv preprint arXiv:2001.01666
(2020).

Nicolas Bonneel and David Coeurjolly. 2019. Spot: sliced partial optimal transport.
ACM Transactions on Graphics (TOG) 38, 4 (2019), 1-13.

Nicolas Bonneel and Julie Digne. 2023. A survey of optimal transport for computer
graphics and computer vision. In Computer Graphics Forum, Vol. 42. Wiley Online
Library, 439-460.

Nicolas Bonneel, Julien Rabin, Gabriel Peyré, and Hanspeter Pfister. 2015. Sliced and
radon wasserstein barycenters of measures. Journal of Mathematical Imaging and
Vision 51 (2015), 22-45.

Nicolas Bonneel, Michiel Van De Panne, Sylvain Paris, and Wolfgang Heidrich. 2011.
Displacement interpolation using Lagrangian mass transport. In Proceedings of the
2011 SIGGRAPH Asia conference. 1-12.

Nicolas Bonnotte. 2013. Unidimensional and evolution methods for optimal transportation.
Ph.D. Dissertation. Université Paris Sud-Paris XI; Scuola normale superiore (Pise,
Ttalie).

ACM Trans. Graph., Vol. 44, No. 6, Article . Publication date: December 2025.

14« Baptiste Genest, Nicolas Bonneel, Vincent Nivoliers, and David Coeurjolly

Median error

; \ Worst error

s -
) 0.1 N
[}
2
K 0.01
[
o
0.001
0.0001 : ! ! ,
0.001 0.01 0.1 1 10

Noise std

Fig. 16. (left) Median and worst relative error of our produced bijection
between near identical point sets, i.e., between {X; } and {X;+o€; } where ¢;
are standard Gaussian noise, with increasing o. Using k = 64 and Gaussian
slicing, results over 100 batches. Note that the relative error is exactly zero
when o is small enough, which results in the curves not displaying below
o < 0.002. (right) Worst example with 267% of relative error. Assignation
displayed in black, most of the points are correctly assigned except for a
chain of points where each point is assigned to the optimal match of the
previous one in the chain.

Keenan Crane, Ulrich Pinkall, and Peter Schréder. 2013. Robust fairing via conformal
curvature flow. ACM Transactions on Graphics (TOG) 32 (2013), 1-10.

Marco Cuturi. 2013. Sinkhorn distances: Lightspeed computation of optimal transport.
Advances in neural information processing systems 26 (2013).

Fernando de Goes, Katherine Breeden, Victor Ostromoukhov, and Mathieu Desbrun.
2012. Blue noise through optimal transport. ACM Transactions on Graphics (TOG)
31, 6 (2012), 1-11.

Ishan Deshpande, Ziyu Zhang, and Alexander G Schwing. 2018. Generative model-
ing using the sliced wasserstein distance. In Proceedings of the IEEE conference on
computer vision and pattern recognition. 3483-3491.

Khoa Do, David Coeurjolly, Pooran Memari, and Nicolas Bonneel. 2025. Linear-time
Transport with Rectified Flows. ACM Transactions on Graphics (TOG) 44, 4 (2025).

Jean Feydy. 2020. Geometric data analysis, beyond convolutions. Applied Mathematics
3 (2020).

Jean Feydy, Pierre Roussillon, Alain Trouvé, and Pietro Gori. 2019. Fast and scalable
optimal transport for brain tractograms. In Medical Image Computing and Computer
Assisted Intervention—-MICCAI 2019: 22nd International Conference, Shenzhen, China,
October 13-17, 2019, Proceedings, Part III 22. Springer, 636—644.

Akshaykumar Gattani, Sharath Raghvendra, and Pouyan Shirzadian. 2023. A robust
exact algorithm for the euclidean bipartite matching problem. Advances in Neural
Information Processing Systems 36 (2023), 51706-51718.

Baptiste Genest, Nicolas Courty, and David Coeurjolly. 2024. Non-Euclidean Sliced
Optimal Transport Sampling. In Computer Graphics Forum, Vol. 43. Wiley Online
Library, €15020.

Stefan Gottschalk, Ming C Lin, and Dinesh Manocha. 1996. OBBTree: A hierarchical
structure for rapid interference detection. In Proceedings of the 23rd annual conference
on Computer graphics and interactive techniques. 171-180.

Eric Heitz, Kenneth Vanhoey, Thomas Chambon, and Laurent Belcour. 2021. A sliced
wasserstein loss for neural texture synthesis. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition. 9412-9420.

Michael Kerber, Dmitriy Morozov, and Arnur Nigmetov. 2017. Geometry helps to
compare persistence diagrams. Journal of Experimental Algorithmics (JEA) 22 (2017),
1-20.

Abdelwahed Khamis, Russell Tsuchida, Mohamed Tarek, Vivien Rolland, and Lars
Petersson. 2024. Scalable optimal transport methods in machine learning: A con-
temporary survey. IEEE transactions on pattern analysis and machine intelligence
(2024).

Harold W Kuhn. 1955. The Hungarian method for the assignment problem. Naval
research logistics quarterly 2, 1-2 (1955), 83-97.

Tam Le, Makoto Yamada, Kenji Fukumizu, and Marco Cuturi. 2019. Tree-sliced variants
of Wasserstein distances. Advances in neural information processing systems 32
(2019).

Bruno Levy. 2025. geogram. https://github.com/BrunoLevy/geogram

Yang Liu, Wenping Wang, Bruno Lévy, Feng Sun, Dong-Ming Yan, Lin Lu, and Chen-
glei Yang. 2009. On centroidal Voronoi tessellation—energy smoothness and fast
computation. ACM Transactions on Graphics (ToG) 28, 4 (2009), 1-17.

Antoine Liutkus, Umut Simsekli, Szymon Majewski, Alain Durmus, and Fabian-Robert
Stoter. 2019. Sliced-Wasserstein flows: Nonparametric generative modeling via
optimal transport and diffusions. In International Conference on machine learning.

ACM Trans. Graph., Vol. 44, No. 6, Article . Publication date: December 2025.

PMLR, 4104-4113.

Guillaume Mahey, Laetitia Chapel, Gilles Gasso, Clément Bonet, and Nicolas Courty.
2023. Fast optimal transport through sliced generalized Wasserstein geodesics.
Advances in Neural Information Processing Systems 36 (2023), 35350-35385.

Robert] McCann. 1997. A convexity principle for interacting gases. Advances in
mathematics 128, 1 (1997), 153-179.

Jan Morovic and Pei-Li Sun. 2003. Accurate 3d image colour histogram transformation.
Pattern Recognition Letters 24, 11 (2003), 1725-1735.

Hédi Nabli. 2009. An overview on the simplex algorithm. Appl. Math. Comput. 210, 2
(2009), 479-489.

Elisa Negrini and Levon Nurbekyan. 2024. Applications of no-collision transportation
maps in manifold learning. SIAM Journal on Mathematics of Data Science 6, 1 (2024),
97-126.

Khai Nguyen and Nhat Ho. 2023. Sliced wasserstein estimation with control variates.
arXiv preprint arXiv:2305.00402 (2023).

Levon Nurbekyan, Alexander Iannantuono, and Adam M Oberman. 2020. No-collision
transportation maps. Journal of Scientific Computing 82, 2 (2020), 45.

Adam M Oberman and Yuanlong Ruan. 2015. An efficient linear programming method
for optimal transportation. arXiv preprint arXiv:1509.03668 (2015).

James B Orlin. 1997. A polynomial time primal network simplex algorithm for minimum
cost flows. Mathematical Programming 78 (1997), 109-129.

Gabriel Peyré, Marco Cuturi, et al. 2019. Computational optimal transport: With
applications to data science. Foundations and Trends® in Machine Learning 11, 5-6
(2019), 355-607.

Hongxing Qin, Yi Chen, Jinlong He, and Baoquan Chen. 2017. Wasserstein blue noise
sampling. ACM Transactions on Graphics (TOG) 36, 5 (2017), 1-13.

Julien Rabin, Gabriel Peyré, Julie Delon, and Marc Bernot. 2011. Wasserstein barycenter
and its application to texture mixing. In International conference on scale space and
variational methods in computer vision. Springer, 435-446.

Raif M Rustamov et al. 2007. Laplace-Beltrami eigenfunctions for deformation invariant
shape representation. In Symposium on geometry processing, Vol. 257. 225-233.
Corentin Salaiin, Iliyan Georgiev, Hans-Peter Seidel, and Gurprit Singh. 2022. Scal-
able multi-class sampling via filtered sliced optimal transport. arXiv preprint

arXiv:2211.04314 (2022).

Filippo Santambrogio. 2015. Optimal transport for applied mathematicians. Vol. 87.
Springer.

Bernhard Schmitzer. 2016. A sparse multiscale algorithm for dense optimal transport.
Journal of Mathematical Imaging and Vision 56 (2016), 238-259.

Bernhard Schmitzer. 2019. Stabilized sparse scaling algorithms for entropy regularized
transport problems. SIAM Journal on Scientific Computing 41, 3 (2019), A1443-
A1481.

Raghvendra Sharathkumar and Pankaj K Agarwal. 2012. A near-linear time &-
approximation algorithm for geometric bipartite matching. In Proceedings of the
forty-fourth annual ACM symposium on Theory of computing. 385-394.

Justin Solomon, Fernando de Goes, Gabriel Peyré, Marco Cuturi, Adrian Butscher,
Andy Nguyen, Tao Du, and Leonidas Guibas. 2015. Convolutional wasserstein
distances: Efficient optimal transportation on geometric domains. ACM Transactions
on Graphics (ToG) 34, 4 (2015), 1-11.

Justin Solomon, Raif Rustamov, Leonidas Guibas, and Adrian Butscher. 2014. Earth
mover’s distances on discrete surfaces. ACM Transactions on Graphics (ToG) 33, 4
(2014), 1-12.

Hoang V Tran, Khoi NM Nguyen, Trang Pham, Thanh T Chu, Tam Le, and Tan M
Nguyen. 2025. Distance-based tree-sliced Wasserstein distance. arXiv preprint
arXiv:2503.11050 (2025).

Jules Vidal, Joseph Budin, and Julien Tierny. 2019. Progressive wasserstein barycenters
of persistence diagrams. IEEE transactions on visualization and computer graphics
26,1 (2019), 151-161.

Jiging Wu, Zhiwu Huang, Dinesh Acharya, Wen Li, Janine Thoma, Danda Pani Paudel,
and Luc Van Gool. 2019. Sliced wasserstein generative models. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition. 3713-3722.

Makoto Yamada, Yuki Takezawa, Ryoma Sato, Han Bao, Zornitsa Kozareva, and Su-
jith Ravi. 2022. Approximating 1-wasserstein distance with trees. arXiv preprint
arXiv:2206.12116 (2022).

Chen Zong, Pengfei Wang, Dong-Ming Yan, Shuangmin Chen, Shiqing Xin, Changhe
Tu, and Qiang Hu. 2023. Parallel post-processing of restricted voronoi diagram on
thin sheet models. Computer-Aided Design 159 (2023), 103511.

A Second order moment decomposition

From the mean E(y) and covariance C(y) matrices computed from
n points, we aim at computing the same quantities for the disjoint
sub-measures p~,u* of n~ and n* points respectively (with n =
n~ +n"). We still have to compute E(x~) and C(p~) using the linear
time standard algorithms, but one can compute E(x*) and C(p*) in

https://github.com/BrunoLevy/geogram

constant time by
E H) — aE ,ll_

A” = (E() -E@))® (E@w -E}))

A" = (BE(p) -E@Y) ® (E(p) —E@h))

o C)—a(C(p)+A7)
Cu™) = -

B
Wherea:%andﬁzl—a.

A+

B Proof that Alg. 7 produces acyclic couplings

We prove by induction that the output of the general BSP matching
does not contain cycles. The recursive construction of the BSP stops

BSP-OT: Sparse transport plans between discrete measures in loglinear time « 15

when one of the measures contains a single atom. In that situation,
the produced assignation assigns this atom to all the atoms of the
other measure. The corresponding graph is therefore a star and con-
tains no cycle. In the general case of the recursion, by the induction
hypothesis, the results of the recursive calls are acyclic couplings
for both sides of the tree. By construction, the intersection of the
atoms of i on both sides is empty. For v, a single pivot atom (y,, vp)
is used on both sides. The resulting coupling is therefore the union
of two acyclic graphs with a single common vertex. There can be
no cycle in such a graph, since there is no cycle on each side, and a
cycle across both sides would require at least two common vertices
to go from one side to the other. Alg. 7 therefore produces a coupling
without cycles.

ACM Trans. Graph., Vol. 44, No. 6, Article . Publication date: December 2025.

	Abstract
	1 Introduction
	2 Related works
	3 BSP Matching: the bijective case
	3.1 Randomized BSPs
	3.2 Gaussian slicing for low dimensions
	3.3 Bijection merging

	4 BSP Matching: the partial case
	4.1 BSP construction
	4.2 Merging partial matchings

	5 BSP Matching: non-uniform balanced distributions
	5.1 BSP construction
	5.2 BSP merging

	6 Numerical study
	7 Applications
	7.1 Shape interpolation and barycenters
	7.2 Intrinsic blue-noise manifold sampling
	7.3 Color transfer
	7.4 Matching of persistence diagrams
	7.5 Point cloud registration
	7.6 Image stippling

	8 Failure cases
	9 Conclusion
	Acknowledgments
	References
	A Second order moment decomposition
	B Proof that Alg. 7 produces acyclic couplings

