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A Statistics of connected components sizes
In Fig. 1-a, we evaluate the sorted connected components’ size, aver-
aged on 1000 runs while (monotone) merging the current bijection 𝑇
and the 𝑘-th bijection 𝑇𝑘 (for 𝑘 from 1 to 64). We first observe a few
large connected components and many small ones in this experiment.
As 𝑘 increases, the number of connected components gets smaller but
with larger components.

B Accuracy when considering other transport metrics
The merging strategies depend on a ground metric that defines the
transport cost we aim to minimize. In Fig. 1-b, we plot the relative
error, as 𝑘 increases, for various metrics of the form :
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where 𝑑𝑝 is the Euclidean 𝑝−norm 𝑑𝑝 (𝑥,𝑦) = (∑ |𝑥𝑖 − 𝑦𝑖 |𝑝 )
1
𝑝 . We

observe that our pipeline reasonably approximates optimal transport
regardless of the considered metric as 𝑘 increases.

C Orthogonal slicing strategies
Another strategy for building BSP matchings is to use an orthogonal
slicing strategy, i.e. using alternating orthogonal directions, (as in
kdtree matchings of Nurbekyan et al. [2020]). In order to randomize
this strategy, we perform random rotations to 𝜇 and 𝜈 , with either 𝜌
fixed to 1

2 , or random as-well. While cheaper in practice than Gaussian
slicing, this strategy also has a 𝑂 (𝑑3) complexity due to rotation
sampling. As illustrated in Fig. 2, this strategy gives comparable results
to random slicing (left). It is also an order of magnitude less efficient
than Gaussian slicing (right).
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Fig. 1. (a) When considering a pair of 1000 random points, we plot the average size of the connected components when using the monotone merging (averaged
over 1000 runs, one color per component). (b) Comparison of relative error with number of bijection merged across various transport metrics, using random slicing
between the armadillo and the ball in 3D, over 100 batches.
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Fig. 2. Comparisons of the evolution of the relative error as a function of number of bijections merged using orthogonal slicing: Comparison with random slicing
(left), and Gaussian Slicing (right). Curves with long dashes for orthogonal slices with 𝜌 random and short dashes for orthogonal slices with 𝜌 = 0.5.
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