1 ADDITIONAL RENDERING RESULTS
The following figures show renderings of the example scenes found in the paper.

Fig. 1. Rendering direct lighting with 4-dimensional samples. Smooth integrands.
Fig. 2. Rendering 1 bounce indirect lighting with 6-dimensional samples.
Fig. 3. Rendering 2 bounces indirect lighting with 8-dimensional samples.
Fig. 4. Rendering depth of field, motion blur, and 1 bounce indirect lighting with 10-dimensional samples.
Fig. 5. Rendering 3 bounces indirect lighting with 12-dimensional samples.
Fig. 6. Rendering 1 bounce indirect lighting with 6-dimensional samples. Cornell box with a high frequency sub-pixel texture pattern on the back wall. Highly discontinuous integrands.
2. L_2-DISCREPANCY OF THE CASCADED SOBOL’ SEQUENCE

Fig. 7. L_2-discrepancy of the cascaded Sobol’ sequence, compared to Sobol’/Owen and White Noise, for dimensions 2 to 101. Each point of the graph has been calculated by averaging the L_2-discrepancies of 1024 independent point sets. Bumps of the Sobol’/Owen curve represent a true lack of uniformity, as shown in the teaser of the main paper.

Cascaded Sobol’ Sampling
Supplementary Material, ACM SIGGRAPH 2020
Fig. 8. L_2-discrepancy of the cascaded Sobol' sequence, compared to Sobol'/Owen and White Noise, for dimensions 2 to 101 (cont).
Fig. 9. L_2-discrepancy of the cascaded Sobol’ sequence, compared to Sobol’/Owen and White Noise, for dimensions 2 to 101 (cont).
Fig. 10. L_2-discrepancy of the cascaded Sobol’ sequence, compared to Sobol’/Owen and White Noise, for dimensions 2 to 101 (cont).
Fig. 11. L_2-discrepancy of the cascaded Sobol' sequence, compared to Sobol’/Owen and White Noise, for dimensions 2 to 101 (cont).