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Figure 1: Piecewise smooth reconstruction of a normal vector field on a digital shape, normal vectors are represented through the flat

shading of faces according to illumination (top-left: perfect digitization / down-right: noisy digitization): (a) input digital shape V , (b) input

normal vector field g obtained with digital integral invariant (II) method [CLL14] with r = 3, (c) output normal vector field u and (d) sharp

features v superposed in red. Perfect and noisy digitization results are obtained using the same parameters. Our approach smoothes the input

normal vector field except across sharp features, which are precisely delineated, thin, and consistent with the smoothing.

Abstract

We propose a novel method to regularize a normal vector field defined on a digital surface (boundary of a set of voxels).

When the digital surface is a digitization of a piecewise smooth manifold, our method localizes sharp features (edges) while

regularizing the input normal vector field at the same time. It relies on the optimisation of a variant of the Ambrosio-Tortorelli

functional, originally defined for denoising and contour extraction in image processing [AT90]. We reformulate this functional

to digital surface processing thanks to discrete calculus operators. Experiments show that the output normal field is very robust

to digitization artifacts or noise, and also fairly independent of the sampling resolution. The method allows the user to choose

independently the amount of smoothing and the length of the set of discontinuities. Sharp and vanishing features are correctly

delineated even on extremely damaged data. Finally, our method can be used to enhance considerably the output of state-of-

the-art normal field estimators like Voronoi Covariance Measure [MOG11] or Randomized Hough Transform [BM12].

Categories and Subject Descriptors (according to ACM CCS): [Computer Graphics]: Modeling - Digital Geometry Processing—
Modeling - Shape Analysis

1. Introduction

Processing discrete 3D data to enhance their geometric quality is
an important task in many shape modeling and computer graph-
ics applications. For instance, it influences deeply object rendering,
shape matching, shape compression, salient part extraction or the
stability of numerical simulation performed on object boundary.
We focus here on processing digital surfaces, which are bound-
aries of sets of voxels (i.e. points of Z

3). These data naturally

come from the segmentation or binarization of MR, X-ray tomo-
graphic or micro-tomographic images. Most of the time, the origi-
nal shape of interest has a piecewise smooth boundary whose digi-
tization introduces arithmetic artefacts and noise around its bound-
aries. A typical application is illustrated in Figure 2. Starting from
a volumetric tomographic images of a snow sample microstructure
(Figure 2-(a)), a binarization process extracts the ice/air interface.
Thermo-mechanical properties of the snow sample at this micro-
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scale level are related to geometrical properties of the ice/air in-
terface [CLB∗00]. Reconstructing smooth ice crystals facets while
preserving sharp edges at crystal facets boundaries (Figure 2-(b)) is
a crucial step in snow metamorphism modeling [FB08]. Preserving
the digital nature of the input surface is important here to alleviate
potential approximations when converting it to a triangular mesh.

In this paper, we propose a variational approach to recover such
underlying piecewise smooth object. More precisely, we regular-
ize a raw input normal vector field on the digital surface while
preserving sharp features defined as loci of high discontinuities
in the vector field. Although many works have been proposed
for estimating the normal vector field on point clouds or digital
shapes [CP05, MOG11, BM12, CLL14], their theoretical guaran-
tees require smoothness on the original shape. These methods are
often unreliable around sharp features of the surface. Statistical and
voting strategies can then be used to control the anisotropic regu-
larization of the estimation [BM12, ZCL∗13]. Note that getting a
consistent normal vector field considerably facilitates further post-
processing, notably surface reconstruction (as stated in [BTS∗14]).

In contrast with former approaches, our method reconstructs a
consistent and smooth normal field, and delineates discontinuities
of this field at the same time. We use a variational formulation that
incorporates the fit to an input normal data, its piecewise regulariza-
tion, and a penalty on the regularity and length of discontinuities.
When input data is an image, this functional is known as Ambrosio-
Tortorelli (AT) functional [AT90]. We adapt it to the piecewise
smooth reconstruction of a normal vector field. To avoid known dif-
ficulties related to the discretization and optimization of AT func-
tional, we reformulate it in a discrete calculus setting. The model is
thus able to locate precisely discontinuities as 1-dimensional curves
on the digital surface, and to smooth at the same time the input
normal field in directions without discontinuity. Experiments show
that sharp and vanishing features are correctly delineated even on
extremely damaged data.

1.1. Related works

Estimating normals on point clouds. There has been many works
published on this topic in the last twenty years. We mention here
only recent methods that either present theoretical robustness guar-
antees or incorporate sharp features in their formulation.

By formalizing and extending former works using the Voronoi
diagram for normal estimation (e.g. [ACSTD07]), Mérigot et. al.

estimate the geometry of point clouds with a covariance matrix
analysis of the distance function [MOG11], the so-called Voronoi
Covariance Measure (VCM). The VCM matrix is proved robust
to Hausdorff perturbation. Another interest of this method is that
edges/sharp features in data are recognizable in eigenvalues. Cuel
et. al. have generalized the VCM to make it resilient to outliers
[CLMT15]. However, when data is corrupted, the smoothing pa-
rameter affects both the normal estimation and the feature detec-
tion, which is either unstable or produces wide and fuzzy features.

Boulch and Marlet follow a statistical approach to estimate nor-
mals on point clouds [BM12], called Randomized Hough Trans-
form (RHT). The idea is to consider many random triples of input
points and to bin their normal direction into a spherical histogram.

Maximal vote gives the local normal. The method offers some (sta-
tistical) guarantees and the output normal field is not smoothed
around edges. However, the normal field is not perfectly smooth
along smooth parts of the shape. Zhang et. al. adopt a low-rank
representation to segment locally the feature points into subspace
[ZCL∗13]. This approach handles better point clouds with variable
sampling around features, at the price of a very high computation
cost and parameter tuning. Liu et. al. improve the computation time
of the preceding method, essentially by restricting the set of points
where heavy computations are done [LZC∗15]. Both methods use
thresholds to discriminate between feature and common points.

Normal estimation on digital surfaces. Digital data are specific
point clouds whose coordinates are integers (subsets of Z

3) as-
sociated to a combinatorial structure. As said in the introduction,
such data often come from the binarization or segmentation of 3D
images (e.g. thresholding, Bayesian classification, watershed). For-
mally, given a compact shape X ⊂ R

3, its digitization at gridstep
h is {z ∈ Z

3,hz ∈ X}. Subsets of Z3 can be seen as a collection
of cubes, so their topological boundary forms a quadrangulated
mesh, called digital surface, whose vertices have (half-)integer co-
ordinates. They are thus approximations of continuous 2-manifolds
with a specific isothetic noise model: samples are evenly spaced,
quad normals are not informative, even perfect digitizations present
an Hausdorff noise of at least h, due to arithmetic approximations.
Hence local approaches to normal estimation cannot be convergent
toward exact normals when increasing the resolution. Digital vari-
ants of Integral Invariants (II) [CLL14] or VCM [CLT14] have con-
vergence guarantees for digitization of smooth shapes, but the radii
must be adapted to the sampling grid step. Although robust to noise,
these methods do not handle well sharp edges.

Sharp feature extraction. Many works aim at identifying spe-
cific geometric zones on shapes, like dominant points, sharp edges,
salient parts, gathered under the generic name “feature”. Here we
are interested in sharp features defined on the original continuous
shape boundary as discontinuities in the normal vector field. We
present below a representative set of feature detection techniques
which serve as benchmarks in Section 3.

For meshes or point clouds, many approaches are based on in-
tegral quantities computed in a local neighborhood. For instance,
Pauly et. al. [PKG03] and Clarenz et. al. [CRT04] use Principal
Component Analysis on nearby data points. Eigenvalues analysis,
sometimes as a function of the neighborhood size, provides a fea-
ture score. Mérigot et. al. [MOG11] use also a ratio of eigenvalues
of the VCM to identify large angle variations. The neighborhood
size is used in these methods to regularize possible perturbations on
data. Unfortunately it tends also to generate large and diffused fea-
tures. Park et. al. [PLL12] have proposed a Tensor-Voting strategy
on local surface patches. Edges are identified with a scale-space
analysis of the tensor vote. As shown in [LCL15], this technique
does not provide sufficiently robust results on digital surfaces. Mel-
lado et. al. [MGB∗12] have introduced a fast least square spher-
ical fitting approach to a point cloud to create a multi-scale fea-
ture score. Although qualitatively relevant, experiments show that
it fails to provide a precise localization of sharp features. Some
authors propose a statistical approach to extract feature lines in
point clouds and we mention the very recent work of Zhang et.
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(a) (b) (c)

Figure 2: Analysis of 3D snow micro-structures in Material Sciences: from a volumetric tomographic images of a snow sample (a), we

process the ice/air interface geometry (AT feature extraction to determine snow facets in (b)) thermo-mechanical properties of the material

(LIRIS - 3SR - MétéoFrance - CEN/CNRM GAME). (c) A close-up showing the noise model of the OctaFlower shape of Fig.1.

al. [ZGW∗16]. Authors identify potential features as points which
vary too much from growing faces. Consistency between feature
points, lines, and faces is then used to eliminate false positives, and
provides a reconstruction of feature lines and not solely a score.
However, regularization of point positions and normals, feature de-
tection, and topological reconstruction are performed as a pipeline
involving several parameters. Finally, features can be extracted fol-
lowing a spectral analysis of the shape from eigenvalues of the sur-
face Laplacian matrix [GBAL09, SOG09, SLMR14]. In this con-
text, features are characterized by spectral quantities which are lo-
cally stable and distinguishable from its neighborhood. However,
these features or saliency maps are not related to sharp edges, but
more to a behaviour with respect to vibrations.

Very few works exist for extracting sharp features on digital sur-
faces. We mention the recent approach of Levallois et. al. [LCL15],
which detects features in scale-space, using multigrid convergence
properties of curvature estimation with digital integral invariants. It
will be compared to our method in section 3.

Variational models for piecewise smooth reconstruction. The
Mumford-Shah (MS) model is a classical variational formulation
of image restoration and segmentation [MS89]. It allows the piece-
wise smooth reconstruction of a possibly perturbated function,
while controlling the amount of discontinuities. Notably difficult to
solve directly, this formulation has inspired many works in image
analysis as well as more tractable variants. Most of them transform
the original formulation so that discontinuities are the boundary of
regions, and the result is a partition. Since we would like to process
shapes with fading sharp features, such relaxations are not suitable.
Our approach follows the Ambrosio-Tortorelli (AT) relaxation of
MS [AT90], which can handle dangling or fading discontinuities.
However, AT is not so easy to solve numerically, and we discuss
this issue with more details in Section 2.4.

We also mention also the convex relaxation of MS functional
proposed by Alberti et. al. [ABDM03], by means of a calibration
(some well-chosen vector field). It leads to algorithms targeting
global optimum of the MS for scalar functions [PCBC09] and for
vectorial functions [SCC12]. However, global optimality is not al-
ways guaranteed and these approaches are computationally very

demanding (more than 600 seconds for a 128×128 images with 32
greylevels with a fast GPU implementation reported in [PCBC09]).
They are not usable on meshes with hundred of thousands faces.

Variational models for mesh denoising. Note that other image
processing techniques have proven to be useful in the context of
mesh processing. Apart from the ubiquitous spectral approaches,
we can mention methods that regularizes meshes while trying to
preserve features. Fleishman et. al. [FDCO03] propose to use bi-
lateral filtering for this purpose. This approach is not very well
adapted to digital surfaces, which are too perturbated at a lo-
cal scale for this local processing. Along the same lines, Jones
et. al. [JDD03] smooth a mesh by projecting vertices onto pre-
dicted local tangent planes. Both approaches are interesting on
meshes whose perturbation is small, about 1/5 of the average
edge length, but would fail on our data. More recently, several au-
thors have considered l0 (sparsity) or l1 minimization (total vari-
ation) schemes to denoise a mesh while preserving its features
[HS13, WYL∗14, WZCF15, ZWZD15]. Compressed sensing opti-
mization is used to detect features in [WYL∗14]. All these recent
approaches denoise triangulated meshes and use vertex positions as
input. They achieve impressive results especially on piecewise flat
shapes, when the topology of the initial mesh is correct. Although
our formulation is specific to normal vector field reconstruction on
digital surfaces and does not use vertex positions, reformulating our
AT model for mesh processing allowing comparisons with these lit-
erature is a challenging future works.

Other works with AT functional. Chambolle and Dal Maso
[CDM99, BC00] and Bourdin and Chambolle [BC00] have pro-
posed to use finite elements to solve AT functional for restoring
2D images, with a refinement procedure valid only for planar do-
mains. Shah uses AT functional to determine 2D and 3D shape
skeletons [Sha05]. The skeleton is determined by the discontinu-
ity set of the gradient of the squared distance to the boundary of
the shape. Hence AT functional can recover smooth skeletons of
controled length, even for noisy shape. Shah emphasizes the fact
that the skeleton may be thick. In a more recent work, Rosman et.

al. [RBB∗11] have proposed a motion-based segmentation process
of a 3D articulated shape into rigid parts. Assuming that motion
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transformation should vary smoothly into rigid parts and vary sud-
denly into non-rigid parts, they regularize a map between shapes
describing different motions with AT functional to recover a mo-
tion estimation. The numerical scheme used in these two works
cannot detect thin discontinuities and the resulting reconstructions
are smooth everywhere, in opposition to our formulation. Finally,
Kee and Kim [KK14] have studied several convex relaxations of
AT functional, by using the factorability of some non-convex prob-
lems. Although interesting, their best relaxation presents some blur-
ring around edges on given images, as well as some false contours.
We discuss more about it in the supplementary material.

1.2. Contributions

Our method takes into account the fact that, on a piecewise smooth
shape, sharp features lie exactly where normal vectors are not con-
tinuous. The AT functional defines two functions, a function v de-
scribing the set of discontinuities, a function u that is a smoothed
version of the raw input normal field except at places where v indi-
cates a discontinuity. Thanks to discrete calculus formulation, we
propose a global optimization approach that minimizes AT func-
tional on digital surfaces. We obtain a robust regularization of the
normal vector field and a precise localization of sharp features as a
set of edges. As a side product, our method can enhance the output
of state-of-the-art anisotropic normal estimators.

We describe our model in Section 2 as well as its numerical
implementation. Section 3 presents an experimental evaluation of
our method as well as many comparisons with existing techniques.
Section 4 concludes with a discussion on the pros and cons of the
method as well as possible future directions of research.

2. Variational reconstruction of a piecewise-smooth normal

vector field

2.1. Ambrosio-Tortorelli approximation of MS functional

Let Ω be a 2-dimensional compact domain (for instance the plane
R

2 or a surface S). Let g : Ω→ R
d be the function we wish to

approach. The continuous formulation of the Ambrosio-Tortorelli
functional can be written as:

ATε(u,v) :=
∫

Ω
α|u−g|2 + v

2|∇u|2 +λε|∇v|2 +
λ

ε

(1− v)2

4
dx,

(1)
where u,v ∈ SBV (Ω) (continuous functions in Ω with bounded
variations). Function u is designed to be a piecewise smooth ap-
proximation of g, while function v is meant to approach disconti-
nuities. More precisely, the first term expresses the fit to the input
function g, the second term tells that u must be smooth except at
places where v is zero. The third term measures the smoothness of
function v while the last term forces v to stay close to 1. The sec-
ond term is critical since it decides between a smooth part of the
reconstruction (v≈ 1) and a discontinuity (v≈ 0).

Ambrosio and Tortorelli have proved that functional ATε Γ-
converges toward the Mumford-Shah functional as ε tends to-
ward 0 [AT90]. This convergence means that discontinuities are
approached by stiffening progressively function v around them
[Bra98]. At first, a large ε makes the function v be a diffuse ap-
proximation of discontinuities. Then, parameter ε is decreased so

that the strip where v is close to 0 is made more and more narrow.
Ultimately, in the continuous case, the set {v = 0} is exactly the
set of discontinuities. Using dimensional analysis, ε is a distance
defining the width of diffusion of discontinuities. 1/α is the area

over which input data is smoothed. The smaller α is, the stronger
the smoothing is. Finally, 1/λ is a distance, proportional to the
length of discontinuities we allow in the piecewise smooth recon-
struction. The smaller λ is, the longer discontinuities are.

At first glance, this functional perfectly fits our purpose: if we
define the domain Ω to be our input surface and if we set g as the
raw normal vector field, considered as a normal direction field, then
minimizing ATε with ε→ 0 provides (1) the piecewise smooth ap-
proximation u of this input field and (2) the set of discontinuities,
i.e. sharp features, as {v ≈ 0}. Unfortunately, it is not easy to op-
timize this energy in the discrete world. We discuss this problem
in details in Section 2.4. Just note for now that the optimal v has
almost everywhere value 1, and has value 0 only on a set of null
2-Hausdorff measure: singularities are thin. Therefore it is difficult
to capture v with a sampling, and most numerical schemes fail.

2.2. Digital formulation of AT functional

Our input data is a set of voxels V (i.e. a subset of Z3) and the do-
main Ω will be the boundary of V , seen as a collection of closed
unit cubes. Then Ω is decomposed as a 2-dimensional closed cu-
bical complex K, composed of unit cube faces, edges and vertices.
Note that we add a notion of adjacency between face elements to
get a digital surface [Her92]. From this primal cubical complex,
a dual complex is constructed by considering dual vertices at the
center of each primal square face, dual edges orthogonal to primal
edges joining adjacent primal square face centers and dual faces as
umbrellas centered around primal vertices with borders composed
of dual edges (see Fig. 3).

Eq. (1) is discretized by considering discrete k-forms as scalars
associated with k-cells of K. This approach follows the discrete cal-
culus approach of [GP10] and shares also several characteristics of
the discrete exterior calculus scheme [DHLM05], modified to han-
dle cubical cells instead of simplexes. It induces the discretization
of linear operators between k-forms as matrices.

The input field g of raw normal vectors is defined by its three
dual 0-forms g1,g2,g3 associating to each primal face the three
components of the normal vector. Similarly, estimated normal u is
defined as three dual 0-forms u1,u2,u3 associating to each primal
face the components of the regularized normal vector. Finally v is
a primal 0-form associating the feature selection scalar to each pri-
mal vertex. This definition allows us to make ε as small as we want
(typically 1

4 of the distance between two voxels), and v become
identically 1 everywhere except at some vertices lying on disconti-
nuities where it will be able to retain value 0.

Let dk (resp. dk̄) be the primal (resp. dual) discrete exterior
derivative operator from primal (resp. dual) k-forms to primal (resp.
dual) k + 1-forms. Discrete inner product between primal (resp.
dual) k-forms is denoted by 〈·,·〉k (resp. 〈·,·〉k̄). The wedge prod-
uct between a primal 0-form γ and a dual 1-form β is a dual 1-form
whose discretization can be computed as

γ∧β = diag(Mγ)β = diag(β)Mγ,
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where diag(·) denotes the matrix whose diagonal elements are the
components of the given vector and the operator M transports a
primal 0-form to a dual 1-form, and, for each edge, simply averages
the values at the extremities of this edge without taking into account

orientation. In our setup, it is defined as M := 1
2 |d0|. With ui as dual

0-forms and v as a primal 0-form, we formulate a digital version of
ATε as follows:

ATd
ε (u,v) :=α

3

∑
i=1
〈ui−gi,ui−gi〉0̄ +

3

∑
i=1
〈v∧d0̄ui,v∧d0̄ui〉1̄

+λε〈d0v,d0v〉1 +
λ

4ε
〈1− v,1− v〉0. (2)

A possibility would be to inject metrics into the discrete calculus,
by means of inner products (as in [GP10]). This is difficult in our
case since the input data V may be very noisy. We therefore choose
identity metrics for inner products. Denoting A the matrix form
of d0 (the incidence matrix sending vertices toward edges) and B

the matrix form of d0̄ (the incidence matrix sending faces toward
edges), we rewrite (2) in matrix/vector form:

ATd
ε (u,v) =α

3

∑
i=1

(ui−g)ᵀ(ui−g)+
3

∑
i=1

ui
ᵀ

B
ᵀdiag(Mv)2

Bui

+λεv
ᵀ

A
ᵀ

Av+
λ

4ε
(1−v)ᵀ(1−v) (3)

=α
3

∑
i=1

(ui−g)ᵀ(ui−g)+
3

∑
i=1

v
ᵀ

M
ᵀdiag(Bui)

2
Mv

+λεv
ᵀ

A
ᵀ

Av+
λ

4ε
(1−v)ᵀ(1−v), (4)

where column vectors ui and v contain the scalars defining the dis-
crete k-forms ui and v, given a numbering of the k-cells. All the
matrix/vector computations in (3) and (4) correspond to very sim-
ple and local operations on the quad mesh, as illustrated on Fig. 3.

2.3. Optimization of digital variant of AT

Energy ATd
ε should have null derivatives with respect to u and v at

optimum. Consequently we alternately solve the following systems
until equilibrium:

∀i ∈ {1,2,3},
[

αId−B
ᵀdiag(Mv)2

B
]

ui = αgi, (5)
[

λ

4ε
Id+λεA

ᵀ
A+M

ᵀ(
3

∑
i=1

diag(Bui)
2)M

]

v =
λ

4ε
1. (6)

The three linear systems in Eq.(5) are identical and estimate {ui}
for a given v. Eq.(6) is a linear system that resolves v for fixed
{ui}. All involved matrices are symmetric, definite, positive, so we
use a Cholesky LLᵀ factorization to solve the systems. Both sys-
tems involve sparse matrix whose number of non-null coefficients
is proportional to the number of faces or vertices of the input mesh.
They are almost equal for digital surfaces with bounded genus.

Ambrosio and Tortorelli have shown the Γ-convergence of ATε

toward the MS functional. This means that a sequence of mini-
mizers for decreasing ε tends toward the MS minimizer. Since our
problem is convex for fixed u or fixed v, we compute at each it-
eration a unique minimum. A result of convex analysis related to

Figure 3: Illustration of discrete k-forms u and v on a simple cu-

bical complex. Primal faces (light blue quad) are oriented to have

opposite orientation on a common primal edge (solid black ar-

row). Primal face and edge orientations induce oriention of dual

edges (dotted black arrow). Dual 0-forms (u1,u2,u3) are attached

to dual vertices (blue point), represented as primal faces normals

(blue arrow). Primal 0-form v is attached to primal vertices (red

point) and its discrete values are displayed in red. Dual 1-form

Mv, appearing in the discrete wedge product, is the average of v

attached to dual edges and displayed in magenta. Dual 1-forms

(Bu1,Bu2,Bu3) (green arrow) are obtained by simple difference

of (u1,u2,u3) across the two faces touching each edge. The sign

is determined by the respective orientation of incident faces with

respect to edge orientation.

block coordinate descent (see [Ber99], Prop. 2.7.1) ensures that the
minimizers at each iteration must converge to a stationnary point of
ATd

ε . Remember that a large ε convexifies the AT energy. Our op-
timization process thus starts with a relatively large ε (generally 2
in our examples), and after convergence for a given ε, we decrease
ε (typically by dividing it by 2) and the process is restarted from
this initial guess. We provide further illustration in supplementary
material with a visual feedback of this progressive optimization.

OPTIMIZE-AT( (g1,g2,g3): 0̄-forms, (α,λ,ε1,ε2,εr): reals );
Var (u1,u2,u3): 0̄-forms, (v,v′): 0-forms, ε: real ;
begin

foreach i ∈ {1,2,3} do ui← gi v← 1, ε← ε1;
while ε≥ ε2 do

repeat1

v′← v;
Solve Eq.(5) for all ui;
Solve Eq.(6) for v;

until ‖v−v′‖ is small ;
ε← ε/εr ;

end

Normalize (u1,u2,u3);
return ((u1,u2,u3),v) ;

end
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The inner optimization loop (line 1) stops when the 0-form v

becomes stable. In practice, a few iteration is always sufficient. We
have used maximum 5 iterations in all our examples.

The input dual 0-forms (g1,g2,g3) corresponds to the input raw
estimation of the normal vector field on the digital surface. In Sec-
tion 3 and supplementary material, we discuss about the influence
of the normal vector estimator on the AT minimization. When the
minimization stops, the dual 0-forms {ui} define the regularized
normal vector field and the 0-form v is a scalar value in [0,1] which
is close to zero on features. The final feature extraction evaluated
in Section 3 corresponds to the collection of 1-cells such that the
values of v at their vertices are both smaller than 1

2 . This naive
thresholding on v values could be improved but it already leads to
very stable and precise results.

2.4. Discussion about discrete formulation

There are many alternate ways of discretizing functional (1): some
of them should definitely be avoided, while others are acceptable
but remain behind our formulation. We sum up in this section our
experience on several alternative discretizations.

General comments. The continuous formulation of Ambrosio-
Tortorelli involves two functions u and v defined over some domain.
When ε tends to 0, the two last terms tends toward the perimeter of
the set of discontinuities. The main problem when discretizing this
functional comes from the fact that v tends toward a function that
cannot be approached by a standard sampling. More precisely v

tends toward a function that is almost everywhere 1, meaning ex-
cept on sets with null Hausdorff-2 measure.

Discrete calculus versus other numerical schemes. A discretiza-
tion with standard finite differences fails for this functional. Indeed,
as noted for instance by Bourdin and Chambolle [BC00], if h is the
sampling step, then both ε, h and h/ε must tend toward zero to
get a correct approximation of ATε, otherwise results are poor. In
practice this means that ε should be between 5-10 times greater
than h, leading to “features” more than 10 voxels wide. Therefore,
several people have proposed to use a finite-element approach to
solve this problem [CDM99,BC00] in the case where Ω is a planar
square (e.g. an image domain). The mesh should then be adapted
progressively to the set of discontinuities, by refining triangles so
that edges are tangent to discontinuities. This is required to get a
correct approximation of the gradient of u close to discontinuities.
Such approaches are complex to implement. We cannot follow this
strategy for two reasons. First it would be extremely costly on our
input meshes, which have often 1 million faces. Second, our in-
put meshes may be strongly perturbated and do not constitute an
accurate tiling of a smooth domain. It would be very difficult to
refine such mesh along discontinuities. In supplementary material,
we provide a comparison between our AT formulation and classical
finite difference or finite element methods on flat domains.

Possible variants in discrete calculus. From (1), it is natural to
consider u as dual 0-forms and v as a 0-form. Different formula-
tions could have been considered, for instance with both u and v

being 0-forms. However, the crucial point in the formulation is the
discretization of the term v2|∇u|2 since it relates the two functions
u and v. We observe that this term must be seen as a 1-form living

on edges. It is consistent with the fact that the antiderivative of u

lives on edges. Form v must thus either be defined on 1-cells or be
transported to it. We have chosen u to be a dual 0-form, since the
normal field is associated to faces of digital meshes, and v is a 0-
form so that it lives in between normals. Form v is transported by
simple averaging onto edges as a 1-form.

Γ-convergence towards a unitary normal vector field. In the
vectorial case, Focardi et. al. proved that the Ambrosio-Tortorelli
functional Γ-converges toward a kind of Mumford-Shah functional,
where the length term is equal to one to three times the perime-
ter [FI14]. Optimizing a unitary tangent vector field may be diffi-
cult [KCPS13], we prefer a simpler component-wise approach. In
smooth parts, each component converges independently and since
the input field g is unitary, the overall vector is close to be unitary
almost everywhere.

3. Experiments

One of the main originality of AT functional is its ability to regular-
ize the normal vector field and to localize features at the same time.
For comparisons to state of the art methods, we evaluate them inde-
pendently in the following sections. Our approach is parametrized
by an input raw normal vector field and α, λ and ε values. In the fol-
lowing experiments, we discuss the impact of these parameters on
the regularized field and on the feature extraction. Extended anal-
ysis is provided in supplementary material. For some experiments,
noisy digital objects are considered. The noise model adapted to
digital data consists in flipping the grid point value at p with prob-
ability defined by a power law k1+dt(p) for some user-specified
k ∈ [0,1] (dt(p) being the distance of p to the boundary voxels
of the original digital shape).

3.1. Feature extraction

In Figure 4, we compare the feature extraction ability of AT func-
tional with methods working at a single scale like VCM [MOG11]
or with methods using a scale-space (Pauly et al [PKG03], Mellado
et al [MGB∗12] and Levallois et al [LCL15]). Except for the lat-
ter one which is specific to digital surfaces, all methods have been
originally designed for point cloud processing. The digital surface
is thus seen as a point cloud defined by surfel centers. Such point
cloud induced by the digitization process can be seen as an Haus-
dorff sampling of the underlying continuous object, and is consis-
tent with sampling hypotheses usually considered in point cloud
processing (see [MOG11] for example).

For the VCM approach [MOG11], each point p of the surface
is associated with a Voronoi Covariance Measure, which depends
on two parameters R and r: the offset radius R dilates the input set
while the convolution radius r defines the Voronoi cells that are
integrated to smooth the measure. Both parameters allow to control
the impact of noise in the input data while preserving geometrical
information. To extract a feature score, authors compute a ratio of
the eigenvalues of the convolved VCM at each point p: r(p) :=

λ1
λ0+λ1+λ2

. The point is considered as a sharp edge when the ratio is
greater than a threshold parameter T . Value of r(p) greater than T

is thus the feature score of p.
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Pauly et al. [PKG03] use the eigenvalues of the covariance ma-
trix of the point cloud at each point on the shape surface in a given
neighborhood. More precisely, they consider the values of τi(p) :=

λ0
λ0+λ1+λ2

for a range of radii {Ri}i = 0..n (λ0 ≤ λ1 ≤ λ2 being the
eigenvalues of the covariance matrix). Since these eigenvalues de-
crease as the curvature increases, τi will be higher on edges than on
flat parts of the surface. To enhance this classification, the weight
ω(p) is defined as the number of times τi is greater than τmax on the
range of radii (ω(p) :=Card{τi ≥ τmax |0≤ i < n}). This quantity
is then used as a feature score.

Mellado et al [MGB∗12] consider a least squares spherical fit-
ting approach at surface points. The scale-space parameter is the
neighborhood size considered in the fitting. Then, following their
notations, for each scale t, they fit an algebraic hyper-sphere and
get the algebraic offset distance τ between p and the 0-isosurface,
the unit normal η and the signed curvature κ of the hyper-sphere.
Then, they compute a geometrical variation ν(p, t) at a point p

defined from fitted sphere parameters. For a range of scale t ∈
[rmin,rmax], the authors define a continuous feature score function
f (p) :=

∫
tanh(ν(p, t))dt that differentiates regions with no geo-

metrical variations from those with high variations.

Finally, Levallois et al [LCL15] is based on a scale-space anal-
ysis of Integral Invariant based curvature estimators [PWY∗07,
CLL14]. More precisely, these estimators are defined from the vol-
ume, or covariance matrix eigenvalues, of the intersection between
a ball of radius R and the object surface. For a given range of radii
[rmin,rmax], an analysis is performed on the estimated values in or-
der to classify each surfel of the digital surface into three classes,
Edge part, Smooth part and Flat part (or zero mean curvature part).

In Figures 4, we have considered the same set of pa-
rameters for all shapes (with or without noise). Even if
some existing approaches provide robust feature selection
(VCM or [LCL15]), the global minimization of AT func-
tional allows us to have more precise and thin delineation of
sharp features. Furthermore, our fea-
tures are outputed as a collection
of 1-cells (quad edges), compared
to a feature score that needs to be
post-processed to localize a one-
dimensional feature (see zoom on
the noisy OctaFlower shape). From
the set of parameters chosen for our
method in these experiments, we can
observe that the smooth edge van-
ishing on the front part of fandisk object has not been reconstructed
by AT compared to [LCL15] or [PKG03]. Changing the parameters
would allow us to capture such feature. In supplementary material,
we provide more experiments to show the influence of the parame-
ters (α, λ and ε) on the results.

3.2. Regularization of normal vector field

We then evaluate the quality of the regularized normal vector field.
To compare normal vector fields, we use a rendering of quads asso-
ciated with their normal vector and a specular material. In Figure 5,
we consider several noisy versions of the Fandisk object and the es-
timated normal vector field using VCM, RHT, II and our approach

where the input normal vector field is II with radius 4. Both VCM
and RHT provide robust and moderately smooth normal vector re-
constructions with respect to the noise level. However, edges are
also smoothed. Since II has not be designed to be anisotropic with
respect to discontinuities, large integration radii lead to smooth re-
construction but all edges disappear (see row “II, r = 8”). If the in-
tegration is small (r = 4 for instance) edges are preserved but noise
becomes visible. If we feed the AT functional with this II input esti-
mation (input functional g), we obtain a smooth reconstruction with
preserved edges. In supplementary material, we provide additional
results when combining RHT or VCM as input to AT functional.
We observe that AT functional always improves the input normal
vector field while preserving the features.

3.3. Implementation details and timings

Many digital geometry processing tools used in this work are avail-
able in the open-source DGtal library [tDGtal]. More precisely,
DGtal has optimized implementations of normal vector estima-
tors (II, VCM, RHT) and discrete calculus operators (with Eigen
[GJ∗10] backend for linear algebra factorization and resolution) on
digital surfaces. For the OctaFlower object of Fig. 4 (5123), the
digital surface has 671270 quads. The input normal vector field es-
timation (using II with r = 8) takes 443 seconds. Each inner loop
iteration takes approximately 14 seconds (prefactorization, solve
for {ui} and solve for v). The overall AT optimization process
(ε = [2,0.25], 5 iterations on the inner loop) takes 423 seconds. On
the same data and as an indicative basis, VCM (R1 = 10, r1 = 10,
T = 0) takes 97 seconds. RHT (r = 6) For Mellado et al., Pauly
et al. and Levallois et al., the feature extraction is multiscale and
requires local convolutions for a range of radii (rmin = 5, rmax = 20
with step 1). Even if local convolutions differ, all processes have
similar overall timings (approx. 2400 seconds). Note that these tim-
ings correspond to non optimized CPU versions of the algorithms.

4. Discussions and limitations

This paper proposes a new method for the piecewise regularization
of normal vector fields onto digital surfaces. Its originality lies in
its global variational formulation that addresses at the same time
the regularization of normals and the delineation of sharp features
as the locii of vector discontinuities. Experiments show that sharp
features are correctly localized even on damaged data while keep-
ing smooth normal vectors except across features. Our method can
also be used to enhance the normal estimation of several state-of-
the-art methods (see also supplementary material for a quantitative
evaluation).

Limitations. As many methods developed for this purpose (regu-
larization in presence of sharp features), our formulation requires
parameters (α,λ,ε). First note that parameter ε is related to the op-
timization process, and we have used the same sequence 2,1, 1

2 ,
1
4

for ε in all experiments. The roles of paremeters α and λ are clearly
differentiated: parameter α controls the strength of the smoothing
and should be adjusted according to the quality of the input normal
vector field, parameter λ controls the length of discontinuities. This
parameter can also be used as a filtration scale-space parameter on
the extracted feature, allowing scale-space or persistent homology
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Figure 4: Evaluation of feature detectors on perfectly digitized shapes. SharpSphere: 2563 voxels, CubeSphere: 2003 voxels, Fandisk: 5123

voxels, OctaFlower: 5123 voxels. Parameters used for [MOG11]: R1 = 10, r1 = 10, T = 0. Parameters used for [MGB∗12]: rmin = 5,

rmax = 25. Parameters used for [PKG03]: rmin = 5, rmax = 25, τmax = 0.01. Parameters used for [LCL15]: rmin = 5, rmax = 20. Parameters

used for our approach: α = 0.1, λ = 0.01, ε = [2,0.25] with integral invariant normal vector estimator with radius 8. Bottom-right parts of

images correspond to the results with the same parameters and noise level k = 0.5.
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normal directions for each method.
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based analyses. Note that we have used the same α and λ in all pre-
sented experiments. The supplementary material also confirms the
relative invariance of the method to large ranges of parameters.

Another limitation is that the method requires a combinatorial
surface structure (digital surface), and a lot of the robustness of
the method is related to this topological information. Hence the
method cannot be used as is on an arbitrary cloud of points. Last,
the method performs a global analysis of possible discontinuities
on the surface. This analysis is thus performed at a given scale (a
balance between α and λ) and not in an adaptive way. Therefore the
distinction between sharp or smooth feature is related to an angle
variation and it cannot directly handle well variable noise over the
input normal vector field.

Finally, our discrete AT formulation is not convex, so our alter-
nate optimization procedure, while being convergent, may stop on
a local minima. Our experiments nevertheless show that the multi-
scale approach (decreasing sequence of ε) limits this issue. Other
convex relaxations of AT model (like in [KK14]) would be interest-
ing to cast in a discrete calculus framework. The classical convex
relaxation of MS model of [ABDM03,PCBC09,SCC12] seems for
now too computationnaly costly for practical geometry processing.

Future works. First it would be interesting to introduce metrics in
our discrete calculus formulation in order to remove some metrica-
tion artefacts introduced by our staircase surfaces. One possibility
is to inject the projected area of quads along the current estimated
normal into the hodge star operator ?. We intend to see if some
results can be enhanced with this new metric.

It is clear also that our method is rather straightforwardly exten-
sible to triangulated meshes. DEC [DHLM05] offers exactly the
tools to transpose this formulation to such meshes. This reformula-
tion to meshes would allow us to address specific mesh processing
tasks such as mesh reconstruction with optimization of the vertex
position, similarly to [HS13, WYL∗14, WZCF15, ZWZD15].

A more challenging task would be to transpose this work on
point clouds. Approximated Laplacian operators exist on such data
and should help in designing an AT functional over point clouds.

Our piecewise smooth regularization model does not require at
all that g (and u) be a normal vector field. In fact, the AT functional
is suited to the piecewise reconstruction of any function. We intend
to check its ability to regularize arbitrary functions, vector fields or
tensors, in problems involving unknown discontinuities. Last, this
model is fully compatible with user-interaction either for selecting
smooth zones (forcing v to be one in these places) or for delineating
manually some sharp features (forcing v to be zero).
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