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Abstract

In many applications, separable algorithms have demonstrated their efficiency to perform high performance volumetric

processing of shape, such as distance transformation or medial axis extraction. In the literature, several authors have

discussed about conditions on the metric to be considered in a separable approach. In this article, we present generic

separable algorithms to efficiently compute Voronoi maps and distance transformations for a large class of metrics.

Focusing on path-based norms (chamfer masks, neighborhood sequences), we propose efficient algorithms to compute

such volumetric transformation in dimension n. We describe a new O(n ·Nn · logN ·(n+ log f )) algorithm for shapes in

a Nn domain for chamfer norms with a rational ball of f facets (compared to O( f b
n
2 c ·Nn) with previous approaches).

Last we further investigate a more elaborate algorithm with the same worst-case complexity, but reaching a complexity

of O(n ·Nn · log f · (n+ log f )) experimentally, under assumption of regularity distribution of the mask vectors.

1. Introduction

Volumetric analysis of digital shapes is crucial in many

geometry processing applications, for instance to measure

distances between two points in Z
n, or to measure the

width of a shape or the proximity between two shapes.

Since early works on digital geometry, distance transfor-

mation has been widely investigated (e.g. Rosenfeld and

Pfaltz (1968)). Given a finite input shape X ⊂ Z
n, the dis-

tance transformation labels each point in X with the dis-

tance to its closest point in Z
n \X . Labeling each point by

the closest background point leads to Voronoi maps (e.g.

the restriction to Z
n of Voronoi diagrams from computa-

tional geometry (de Berg et al., 2000)). Distance transfor-

mation (or distance field) is a key tool in many applica-

tions such as shape modeling, shape matching, geometry

processing, motion planing, object tracking. . . (see Fabbri

et al. (2008) or Jones et al. (2006) for surveys of tech-
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niques and applications). In this article, we propose a the-

oretical analysis to speed up the distance transformation

computation for a large class of metric, allowing efficient

and parallel implementations.

As the distance transform is parametrized by a dis-

tance function, many authors have addressed this distance

transformation problem with trade-offs between algorith-

mic performances and the accuracy of the digital distance

function with respect to the Euclidean one. Hence, au-

thors have considered: distances based on chamfer masks

(Rosenfeld and Pfaltz, 1968; Borgefors, 1986; Fouard

and Malandain, 2005) or sequences of chamfer masks

(Rosenfeld and Pfaltz, 1966; Mukherjee et al., 2000;

Strand, 2008; Normand et al., 2013a); vector displace-

ment based Euclidean distance (Danielsson, 1980; Ragne-

malm, 1993); Voronoi diagram based Euclidean distance

(Breu et al., 1995; Maurer et al., 2003) or square of the

Euclidean distance (Hirata, 1996; Meijster et al., 2000).

For the Euclidean metric, separable volumetric computa-

tions have demonstrated to be very efficient with the de-

sign of optimal O(n ·Nn) time algorithms for shapes in

[1,N]n domains, optimal multithread/GPU implementa-

tion or extensions to toric domains (please refer to Coeur-
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jolly (2012) for a discussion).

Path-based approaches (e.g. chamfer mask or –

weighted– neighborhood sequences) approximate the Eu-

clidean distance as the length of shortest paths defined

from sequences of displacement vectors on the grid (from

a finite set of possible moves). Aside distance infor-

mation, path-based approaches provide an explicit notion

of discrete path that is not accessible for the Euclidean

norm. Furthermore, the discrete and combinatorial nature

of the distance function has been used to define efficient

algorithms to extract discrete medial axis (Borgefors and

Nyström, 1997; Remy and Thiel, 2002; Saha et al., 2016)

as local maxima of the distance map. Normand et al.

(2013b, 2014) further exploits the combinatorial structure

of path-based distances to compute distance transforma-

tion in on-the-fly streaming context. In terms of distance

transform computation, two main techniques exist. The

first one considers a weighted graph formulation of the

problem and Dijkstra-like algorithms on weighted graphs

to compute distances. If m denotes the size of the cham-

fer mask, computational cost could be in O(m ·Nn) us-

ing a cyclic bucket data structure as suggested by Ver-

wer et al. (1989). Another approach consists in a raster

scan of the domain: first the chamfer mask is decomposed

into disjoint sub-masks; then the domain grid points are

scanned in a given order (consistent with the sub-mask

construction) and a local computation is performed before

being propagated (Rosenfeld and Pfaltz, 1966; Borgefors,

1986). Scanning the domain several times (one per sub-

mask) leads to the distance transformation values. Again,

we end up with a O(m ·Nn) computational cost. Besides

specific applications which use the anisotropic nature of

the chamfer mask, rotational dependency is usually en-

forced by increasing the mask size m (its number of vec-

tors, see below) leading to expensive computational costs.

Contributions The goal of this work is to demonstrate

that the linear factor in the mask size can be lowered down

to a logarithmic one in any dimension for path-based met-

rics. This is achieved by first detailing and analyzing the

separable distance transformation algorithm and briefly

recalling the preliminary analysis of Coeurjolly (2014) for

the 2D case, before extending it to higher dimensional

distance transformation problems. More precisely, we

describe efficient and parallel algorithms in arbitrary di-

mension n to compute error-free distance transformation

and Voronoi map for chamfer norms and other path-based

metrics. Overall computational costs are summarized in

Table 1 (see 3.1 for the predicate definitions).

The article is organized as follows: First, we re-

call basic definitions and properties of path-based norms

(Section 2). In Section 3 we clarify the separable n-

dimensional Voronoi map extraction. Section 4 is a short

discussion about the complexity of this algorithm for Lp

metrics. Then Section 5 is dedicated to the design of a fast

implementation of the separable algorithm for path-based

metrics. In Section 6, we present and analyse the pro-

posed n−dimensional algorithm for path-based metrics.

2. Preliminaries

2.1. Metric space and distance transformation

A metric space (E,F,d) is a set E together with a metric

d : E ×E → F on the set. When E is equal to Z
n and d

is an integer-valued metric, also called digital metric, i.e.

d : Zn ×Z
n → Z, we say that (Zn,Z,d) is a digital metric

space. A digital shape is a finite subset of Zn.

Definition 1 (Voronoi Map and Distance Transformation)

For a digital shape X ⊂ Z
n, the Voronoi map VX asso-

ciated with a digital metric space (Zn,Z,d) is the map

X →P(Zn\X) such that VX (a) = argminb∈Zn\X{d(a,b)}.

The distance transformation DTX is a map X → Z such

that DTX (a) = d(a,b) for b ∈Vx(a).

The Voronoi map VX corresponds to the intersection be-

tween the continuous Voronoi diagram for the metric d of

the pointset Zn\X and the lattice Zn. Note that VX (a) may

contain several equidistant points to a in Z
n \X . In the

following, we consider a restricted Voronoi map, denoted

ΠX , such that ΠX (a) = b with b ∈ VX (a) choosen arbi-

trarily. ΠX are not unique but provide the same distance

map DTX . In the following, we focus on the restricted

Voronoi map computation and we may omit the word re-

stricted for the sake of clarity. Interested readers may re-

fer to (Couprie et al., 2007; Hesselink, 2007) for separable

algorithms to compute the complete Voronoi map of Def-

inition 1.

Defining digital metrics spaces, notably in the context

of digital image processing, has been the object of many

works for the past fourty years. Note that (weighted, with

5
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Table 1: Computational cost summary for separable Voronoi map computation on Nn domains (m being the size of the chamfer norm and f the

number of row in a H-representation of the mask, see below).

Metric CLOSEST HIDDENBY Sep. Voronoi Map Reference

L2 O(n) O(n) Θ(n ·Nn) Hirata (1996)

L∞ O(n) O(n) Θ(n ·Nn) Meijster et al. (2000)

L1 O(n) O(n) Θ(n ·Nn) Meijster et al. (2000)

Lp (exact pred.) O(n · log p) O(n · log p · logN) O(n2 ·Nn · log p · logN) Lemma 1

Lp (inexact pred.) O(n) O(n · logN) O(n2 ·Nn · logN) Lemma 1

2D Chamfer norm O(logm) O(log2 m) O(log2 m ·N2) Coeurjolly (2014)

2D Neig. seq. norm O(logm) O(log2 m) O(log2 m ·N2) Normand et al. (2013a) with

Coeurjolly (2014)

nD Chamfer norm O(n+ log f ) O((n+ log f ) · logN) O(n ·Nn · logN · (n+ log f )) Lemma 4

wi ≥ 0) Lp metrics

dLp(a,b) =

(

n

∑
k=1

wk|ak −bk|
p

)
1
p

, (1)

define metric spaces (Zn,R,dLp) which are not dig-

ital. However, rounding up the distance function,

(Zn,Z,ddLpe) is a digital metric space (Klette and Rosen-

feld, 2004). However, it is not precise enough in many

situations, and other approaches have been designed.

Among them, the family of path-based metrics (cham-

fer norms, -weighted- neighbourhood sequences) aim at

defining digital metrics induced by norms. In the follow-

ing and for the sake of simplicity, we focus on chamfer

norms but similar results can be obtained for more generic

path-based metrics such as neighborhood sequences. El-

ements to support this claim are provided further in the

following section.

2.2. Chamfer norms

Definition 2 (Chamfer Mask) A weighted vector is a

pair (~v,w) with ~v ∈ Z
n and w ∈ N\{0}. A chamfer mask

M is a central-symmetric set of weighted vectors with no

null vectors and containing at least a basis of Zn.

In most situations, vectors of a chamfer mask exhibit

axial symmetries. As examples, see Figure 1(a) and (c),

where a subset of vectors (together with their weights)

defining chamfer masks by symmetries (called genera-

tors) are depicted.

From a chamfer mask, we can define a path between

two points a and b as a sequence of k points {ci} such that

c0 = a, ck−1 = b and ~cici+1 =~vi ∈M for i ∈ {0 . . .k−2}.

The length of this path is thus the sum of all weights as-

sociated with the vectors ~vi (i.e. ∑wi). As M contains a

basis of Zn, such path between a and b always exists and

we can define the chamfer distance between two points

a and b in Z
n as the length of the shortest path between

a and b. Since weights are positive integers (see Def. 2),

distance values are scaled by the weight of the first vec-

tor ((1,0 . . . ,0)T by convention). Hence, using masks de-

fined in Fig. 1, 1
3
· dM3−4

(a,b) and 1
5
· dM5−7−11

(a,b) are

approximations of dL2
(a,b).

For all positive weights, a chamfer mask defines a met-

ric. In many shape processing applications, we usually

consider a subset of chamfer masks, the chamfer norms,

with weights such that the induced metrics have con-

vex unit balls, and thus leading to homogeneous distance

functions. Chamfer norms can be characterized by a set of

linear constraints on the mask weights Borgefors (1986);

Strand (2008). In the following, we define the size of a

chamfer norm simply by the number of vectors of its as-

sociated chamfer mask.

Many authors have proposed algorithmic and/or ana-

lytic approaches to construct chamfer norms approximat-

ing the Euclidean metric. Following Thiel (2001) and

Fouard and Malandain (2005), we briefly recall here the

6
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classical construction of chamfer norms from Farey set

since it will be the base of the study proposed in Section

6.

The Farey sequenceF n
m of dimension n and order m

is defined as follows :F n
m = {( x2

x1
, . . . , xn

x1
),gcdi∈1..n(xi) =

1,0 ≤ xn ≤ xn−1 ≤ ·· · ≤ x1 ≤ m}. Then a Farey sequence

F
n
m is in bijection with all the points (x1, . . . ,xn) in Z

n,

0 ≤ xn ≤ ·· · ≤ x1 ≤ m visible from the origin1. The vec-

tors ~vk of a chamfer norm in dimension n can be defined

using a subset of a particularF n
m: the weights wk are set

so that the rational ball BR (see Definition 3 below) is con-

vex. By construction, such chamfer masks have axis sym-

metric unit balls and thus define chamfer norms.

2.3. Distance computation for chamfer norms

To evaluate distances between two digital points for a

given chamfer norm, direct formulations have been pro-

posed with a simple geometrical interpretation (Thiel,

2001; Normand and Évenou, 2009), using the so-called

rational ball.

Definition 3 (Rational ball, minimal H-representation)

Given a Chamfer norm M, the rational ball associated

with M is the polytope

BR = conv

{

~vk

wk

; (~vk,wk) ∈M

}

. (2)

where conv denotes the convex hull of a set of points.

Rational balls for some 2D and 3D chamfer norms are

illustrated in Figure 1. As any convex polytope, the ratio-

nal ball BR can also be described as the intersection of f

linear constraints in dimension n, f being the number of

(n−1)−facets of BR. This is the H-representation of the

polytope which can be written in a matrix form:

BR =

{

x ∈ R
n; x =

m

∑
k=1

αk

(

~vk

wk

)

, αk ≥ 0 ,
m

∑
1

αk = 1

}

= {x ∈ R
n; Ax ≤ y} ,

where A is a f × n matrix and y a vector of n val-

ues, so-called the H-coefficients (Ziegler, 2012). The H-

representation of a polytope P is with minimal param-

eter if P = {x ∈ Z
n;Ax ≤ y } with A being such that

1A point p ∈ Z
n is visible from the origin in Z

n if there is no point

of Zn on (Op) between O and p.

∀k ∈ [1 . . . f ], ∃x ∈ P Akx = yk (Normand and Évenou,

2009).2 In other words, A is the minimal H-representation

of BR if each linear hyperplane of the H-representation of

BR contains at least one point in BR ∩Z
n.

From Normand and Évenou (2009), an important result

for distance computation can be summarized as follows:

Proposition 1 (Direct Distance Computation) Given a

chamfer norm M and (A,y) its minimal parameter H-

representation, then for any a ∈ Z
n, the chamfer distance

of the point a from the origin is

dM(O,a) = max
1≤k≤ f

{AkaT} . (3)

Coming back to general path-based digital metrics,

(weighted) neighborhood sequences have been proposed

to have a better approximation of the Euclidean met-

ric (Rosenfeld and Pfaltz, 1966; Mukherjee et al., 2000;

Strand, 2008; Normand et al., 2013a). The main idea is to

combine sequences of elementary chamfer norms. A key

result has been demonstrated by Normand et al. (2013a)

stating that for such distance functions, a minimal param-

eter polytope representation exists and that distances can

be obtained from an expression similar to (3):

d(O,a) = max
1≤k≤ f

{γk(AkaT )} , (4)

γk : N→ N being some integer sequence characterizing

the neighborhood sequence metric. As we will see in the

next sections, direct distance computation is key to design

an efficient distance transformation algorithm. Similarity

of Equations 3 and 4 makes the algorithms presented in

the following sections for chamfer norms easily general-

izable to neighborhood sequences.

To conclude this preliminary section, algorithms effi-

ciency is characterized by their asymptotic behavior using

the O(·) and Θ(·) notations3 as a function of the dimen-

sion, the number of vectors defining the chamfer norm

and the domain size.

2Ak being the kth row of A.
3In a computational model where arithmetic operations and scalar

comparisons are constant time with: f (x) = O(g(x)) ⇔ ∃C,x0 ∈
R
+ ,∀x > x0 , | f (x)| ≤ C · g(x), and f (x) = Θ(g(x)) ⇔ ∃C,C′,x0 ∈

R
+ ,∀x > x0 ,C ·g(x)≤ | f (x)| ≤C′ ·g(x).

7
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3

4

(a) (b)

5

7

11

(c) (d) (e)

Figure 1: Chamfer masks and rational balls: in dimension 2, generator vectors for the mask M3−4 (a), its rational ball (b). Generator vectors for

M5−7−11 (c) and its rational ball (d). In dimension 3, rational ball of a chamfer mask obtained using generator vectors (x,y,z) ∈ [[−3,3]]3 and

weights computed following Fouard and Malandain (2005).

3. Separable distance transformation

3.1. Voronoi map from separable approach and metric

conditions

Several authors have described optimal in time and

separable techniques to compute error-free Voronoi maps

or distance transformations for L2 and Lp metrics (Breu

et al., 1995; Hirata, 1996; Meijster et al., 2000; Maurer

et al., 2003). Separability means that computations are

performed dimension by dimension. In the following, we

consider the Voronoi Map approach as defined by Breu

et al. (1995). Given a digital set X defined on an hyper-

rectangular domain [1..N1]× . . .× [1..Nn], let us first de-

fine the image IX : [1..N1]× . . .× [1..Nn]→{0,1} such that

IX (a)= 1 for a∈ [1..N1]× . . .× [1..Nn] iff a∈X (IX (a)= 0

otherwise). The separable algorithm that computes the

Voronoi Map for IX is defined in Algorithm 1 and works

on the image spans for each dimension. An image span

S along dimension q is a vector of Nq points with same

coordinates except at their qth one. The qth coordinate of

a point a ∈ Z
n is denoted by aq. A given span S in di-

mension q is denoted by {si}i=1...Nq . In Algorithm 1 the

Voronoi map is first initialized by processing each span of

the input image along the first dimension in order to create

independent 1D Voronoi maps for the metric (lines 5−6).

Then, for each further dimension q, the partial Voronoi

map ΠX is updated using one dimensional independent

processes on each span along the qth dimension (line 8).

Algorithm 2 describes the function VORONOIMAPSPAN.

This function is the core of the separable algorithm as it

defines the 1D processes to perform on each row, column

and higher dimensional image span. In this process, met-

ric information are embedded in the following key predi-

cates (see Fig. 2):

1. CLOSEST(a,b,c): given three points a,b,c ∈ Z
n this

predicate returns true if d(a,b)< d(a,c);

2. HIDDENBY(a,b,c,S): given a 1D image span S

parallel to the qth coordinate axis, and three points

a,b,c ∈ Z
n such that aq < bq < cq, this predicates

returns true if there is no s ∈ S such that

d(b,s)< d(a,s) and d(b,s)< d(c,s) . (5)

Algorithm 1: VORONOIMAP(BINARY MAP IX )

1 ΠX = empty image, same size as IX ;

2 for q in {1 . . .n} do

3 for (x1, ..xq−1,xq+1, ..xn) in

[1..N1]× ..[1..Nq−1]× [1..Nq+1]..× [1..Nn] do

4 S = {si}i∈[1..Nq ] where si = (x1..xq−1, i,xq+1..xn);

// all the coordinates are fixed in S

except the qth one

5 if q == 1 then

// ΠX is initialized span by span

6 ΠX = ΠX ∪ VORONOIMAPSPAN(IX , q, S);

7 else

// ΠX is updated along span S

8 ΠX = VORONOIMAPSPAN(ΠX , q, S);

9 return ΠX

In other words, HIDDENBY returns true if and only if

the Voronoi cells of sites a and c hide the Voronoi cell of

b along S.

8
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Algorithm 2: VORONOIMAPSPAN(MAP MX , DIMEN-

SION q , 1D SPAN S)

Data: q is an integer in {1 . . .n};

S is a 1D span along dimension q, with points {s1, . . . ,sNq}
sorted by their qth coordinate;

MX is either a binary map if q = 1 or a partial Voronoi Map.

Result: Partial Voronoi map ΠX updated along S.

1 if q == 1 ; // Special case for the first dimension

2 then

3 ΠX = empty image, same size as MX ;

4 k = 0;

5 foreach point s in S do

6 if MX (s) == 0 then // if s ∈ Z
n\X

7 LS[k] = s;

// LS =list of the sites visible on S

8 k++;

9 else

10 ΠX =MX ;

11 LS[0] =MX (s
1);

12 LS[1] =MX (s
2);

13 k = 2 , l = 3;

// Update the list LS

14 while l ≤ Nq do

15 w =MX (s
l);

16 while k ≥ 2 and HIDDENBY(LS[k−1],LS[k],w,S) do

// LS[k] is no longer visible, unstack

17 k−− ;

18 k++ ; l ++;

19 LS[k] = w;

20 foreach point s in S by increasing qth coordinate do

21 while (k < |LS|) and CLOSEST(s, LS[k+1], LS[k]) do

// s is closer to LS[k+1], look further

22 k++ ;

23 ΠX [s] = LS[k];

24 return ΠX

Remark. Note that by construction, for a given span S

along dimension q, points a, b, c given as parameters to

the HIDDENBY predicate necessarily verify aq , bq , cq.

Indeed, these points are defined as the (partial) Voronoi

map images of three points si, s j, sk (i , j , k) of S, there-

fore having their qth coordinate equal to i, j, and k respec-

tively (see lines 11,12,15 of Algorithm 2, and Figure 3

for an illustration).

For L1, L2 and L∞ metrics, CLOSEST and HIDDENBY

predicates can be computed in O(n) in dimension n (Breu

et al., 1995; Maurer et al., 2003). Hence, Algorithm 2 is

in O(n ·Nq) for the dimension q, leading to an overall

a

b

c

S(a)

a

b

c

S(b)

b

c

a

S(c)

Figure 2: Geometrical predicates for Voronoi map construction

Coeurjolly (2014): HIDDENBY(a,b,c,S) returns true in (a) and

false in (b) (straight segments correspond to Voronoi diagram

edges). (c) illustrates the CLOSEST(a,b,c) predicate for a ∈ S.

computational time for the Voronoi Map (Algorihtm 1)

and Distance Transformation computations in Θ(n2 ·Nn)
(if we assume that ∀q ∈ [1 . . .n],Nq = N). Note that for Lp

metrics, we can derive a Θ(n ·Nn) algorithm as suggested

in Hirata (1996); Meijster et al. (2000) using the following

observation: when evaluating the CLOSEST predicates in

line 21 of Algorithm 2, we compare distances along the

1-D span of dimension q. If we store the partial power p

of the distance to the closest site a for each grid point y

for previous dimensions (i.e the sum ∑
q−1
i=1 (ai − yi)

p), such

distance comparisons can be obtained in O(1). Similar

argments can be used for the HIDDENBY predicates of

line 16, leading to the overall computational cost in Θ(n ·
Nn).

sjMX(s
j)

si

MX(s
i)

S

Figure 3: For two points si and s j (in purple) on a span S along dimen-

sion q (in red), the partial Voronoi map images MX (s
i) and MX (s

j) (in

black) respectively have i and j as qth coordinate.

Hirata (1996) or Maurer et al. (2003) discussed about

conditions on the metric d to ensure that Algorithm 2 is

correct. The key property can be informally described as

follows: given two points a,b∈Z
n such that aq < bq and a

9
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straight line l along the qth direction and if we denote by

vl(a) (resp. vl(b)) the intersection between the Voronoi

cell of a (resp. b) and l, then vl(a) and vl(b) are sim-

ply connected Euclidean segments and vl(a) appears be-

fore vl(b) on l (so called monotonicity property by Mau-

rer et al. (2003) and is related to quadrangle inequality

by Hirata 1996). These contributions are summed up in

Definition 4 and Proposition 2.

Definition 4 (Axis symmetric ball norm) A metric d in-

duced by a norm whose unit ball is symmetric with respect

to grid axes is called axis symmetric ball norm.

Proposition 2 (Metric conditions (Hirata, 1996))

Algorithm 1 exactly computes the Voronoi Map ΠX of a

binary input image IX for any axis symmetric ball norm.

Proposition 2 implies that most chamfer norms and

neighborhood sequence based norms can also be consid-

ered in separable Algorithm 1 (see Fig. 4). However, note

that Algorithm 2, and as a by-product Algorithm 1, are

exact only if the distance comparison predicate is exact,

i.e. if we can compare distances, through the CLOSEST

and HIDDENBY predicates, without error.

Furthermore, computational efficiency of the algorithm

requires the design of efficient algorithmic tools to im-

plement these predicates, and this the purpose of the next

sections.

3.2. Generic predicates and complexity analysis for axis

symmetric ball norms

We first detail the overall computational cost of Algo-

rithms 2 and 1. We assume in the following that ∀q ∈
[1 . . .n], Nq = N.

Lemma 1 (Maurer et al. 2003; Coeurjolly 2014)

Let (Zn,F,d) be a metric space induced by a norm

with axis symmetric unit ball. If C denotes the com-

putational cost of CLOSEST predicate and H is the

computational cost of the HIDDENBY predicate, then

Algorithm 2 is in O(N · (C+H)), leading to a complexity

of O(n ·Nn · (C+H)) for Algorithm 1.

For a given axis symmetric ball norm d, generic Algo-

rithms 3, 4 and 5 were defined in Coeurjolly (2014). Note

that these algorithms are valid for any dimension n. The

Figure 4: Distance transformation from a single source for different met-

rics satisfying Definition 4 and thus Proposition 2: (from left to right) L1,

L2, L4, L80, M3−4 and M5−7−11.

computational cost of the CLOSEST predicate is simply

the one of a distance evaluation. As a first approach, Al-

gorithms 4 and 5 show that the HIDDENBY predicate can

be obtained by a binary search on the 1D image span S to

localize the abscissa of Voronoi edges of sites {a,b} and

{b,c}.

Algorithm 3: Generic CLOSEST(a,b,c ∈ Z
n).

1 return d(a,b)< d(a,c);

The complexity H of Algorithm 5 can be expressed as

a function of the complexity C of Algorithm 3, leading to

the general result below:

Lemma 2 (Coeurjolly 2014) Let M be a chamfer norm

with axis symmetric unit ball in dimension n whose ra-

tional ball has f facets, Algorithm 1 can be implemented

with a computational complexity of O(n ·Nn ·C · logN),
where Nn is the size of the image.

4. Distance transformation for Lp metrics

As a direct consequence of Lemma 1, we briefly derive

computational costs for Lp metrics. For such metrics, as

discussed in Section 3.1, the CLOSEST and HIDDENBY
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Lowres version



Algorithm 4: Generic VORONOIEDGE(a,b,si,s j ∈ Z
n)

with i < j, aq < bq.

1 if ( j− i = 1) then

2 if i = 1 and CLOSEST(si,b,a) then

3 return −∞;

4 if i = Nq and CLOSEST(si,a,b) then

5 return ∞;

6 return i;

7 mid = i+( j− i)/2;

8 if CLOSEST(smid ,a,b) then

// smid closer to a

9 return VORONOIEDGE(a,b,smid ,s j)

10 else

// smid closer to b

11 return VORONOIEDGE(a,b,si,smid )

Algorithm 5: Generic HIDDENBY(a,b,c ∈ Z
n;S in the qth

direction) with aq < bq < cq.

1 vab = VORONOIEDGE (a,b,s1,sNq );

2 vbc = VORONOIEDGE (b,c,s1,sNq );
3 return (vab > vbc);

predicates are in O(n) for p = {1,2,∞} with exact integer

only computations (Maurer et al., 2003; Meijster et al.,

2000). We thus have distance transformation algorithms

in Θ(n2 ·Nn). Let us now show that Algorithm 3 and 5

lead to a faster algorithm for any p ≥ 1.

For p ∈ R, p ≥ 1, we can use approximations of the

evaluation of distances on IEEE 754 double and then con-

sider the Generic HIDDENBY predicate in O(n · logN)
(Alg. 5). As predicates being based on floating point com-

putations, numerical issues may occur but we have an

O(n2 · Nn · logN) distance transformation algorithm (Lp

inexact predicates in Table 1). If p ∈ Z, p ≥ 3, we use ex-

act integer number based computations of distances stor-

ing sum of power p quantities (which can be computed

in O(n · log p) thanks to exponentiation by squaring). The

HIDDENBY predicate is also based on Algorithm 5, lead-

ing to an O(n2 ·Nn · log p · logN) distance transformation

algorithm (Lp exact predicates in Table 1).

5. Distance transformation in higher dimension for

chamfer norms

In this section, we consider digital metrics given by

chamfer norms and propose an efficient algorithm to com-

pute the separable distance transformation for such met-

rics in nD. In Coeurjolly (2014), the structure of the ra-

tional ball of a chamfer mask in dimension 2 was used to

obtain an O(logm) algorithm for the CLOSEST predicate,

and an O(log2 m) one for the HIDDENBY predicate, lead-

ing to an overall O(log2 m ·N2) algorithm for the separa-

ble distance transformation (see Table 1). The following

sections extend these results to higher dimensions.

5.1. Definitions and general principle

Let us consider a general chamfer norm in arbitrary

dimension n with m weighted chamfer vectors. As ex-

plained in Section 2, these vectors define a rational ball

BR (see Definition 3), the center of which can be any point

p. We define a wedge (p, fk) as the conical hull of p

(called the apex) and the vertices of a given facet fk of

BR (k ∈ {1.. f} if BR has f facets). Thus, to each wedge

is associated a row Ak of the matrix of the minimal H-

representation of BR. Note that Ak can also be seen as a -

non-unitary - normal vector to the facet fk, as quoted by

Normand and Évenou (2009). In the following, given a

point a and a point p, we denote by (a,Fa(p)) the wedge

of apex a containing point p, Fa(p) being one facet of BR

(see Figure 5).

Using similar notations, Thiel (2001) and Strand (2008)

demonstrated that distance evaluation between a point a

and a point p can be obtained in two steps: first, compute

the wedge (a,Fa(p) = fk); then

dM(a, p) = Ak.(p−a)T . (6)

Thus, implementing the CLOSEST predicate comes down

to computing the wedge a given point belongs to. In 2D, it

was shown in Coeurjolly (2014) that a binary search over

the chamfer vectors was enough. The nD case is discussed

in section 5.2.

Let us now see how to optimize the HIDDENBY

predicate, which comes down to optimizing the

VORONOIEDGE function. Given two points a and b

(aq < bq) and a 1D image span S along the qth dimension,

we have to find the point e of S (e ∈ Z
n) with abscissa eq

11
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such that all the points of S of abscissa lower than eq are

in the Voronoi cell of a while all the points with a greater

abscissa are in the Voronoi cell of b. To compute eq let

us define l(S) as the one-dimensional flat that contains all

the points of S and consider the Euclidean point ξ ∈ l(S)
satisfying:

dM(a,ξ ) = dM(b,ξ ) . (7)

In other words, we are looking for the point in l(S) which

is equidistant to a and b. To compute ξ , we first sup-

pose that we know the two wedges (a,Fa(ξ ) = fk) and

(b,Fb(ξ ) = fl) (see Fig. 6−(b)). In this situation, ξ is

the solution of

Ak · (ξ −a)T = Al · (ξ −b)T . (8)

Note that since ξ ∈ l(S), we have one linear equation with

only one unknown, ξq. As a consequence, if we know the

two wedges point ξ belongs to, we have its qth coordi-

nate ξq in O(1). As A is the minimal representation of

BR, it has rational components and thus ξ has integer co-

ordinates execpt ξq which is rational. Finally, the integer

point e ∈ S is given such that eq = bξqc.

The next section is dedicated to the CLOSEST predicate

while in section 5.3 we detail how to efficiently compute

the wedges (a,Fa(ξ ) = fk) and (b,Fb(ξ ) = fl), summa-

rized in Algorithm 7 (see also Fig. 6−(b)).

5.2. CLOSEST predicate and first results

To begin with, let us discuss about the combinatorics

of the chamfer norm rational ball. If m denotes the num-

ber of weighted vectors of M, its rational ball BR has

O(mb n
2 c) i−facets (for all 0 ≤ i ≤ n) (de Berg et al., 2000).

If f denotes the number of (n−1)−facets of BR, then we

have:

Lemma 3 Let M be a chamfer norm whose rational ball

BR has f (n − 1)−facets in dimension n, then distance

computation and thus CLOSEST predicate are in (amor-

tized) O(n+ log f ) with O

(

f
b n

2
c

(log f )b
n
2
c−δ

)

space and pre-

processing time4.

4δ is an arbitrarily small positive constant.

The proof is given in Appendix A.

Algorithm 4 being valid in any dimension, we can

merge this result with Lemma 2 to straightforwardly ob-

tain the result below:

Lemma 4 Let M be a chamfer norm whose rational ball

BR has f (n−1)−facets in dimension n, separable exact

Voronoi Map ΠX can be obtained in O(n ·Nn · logN · (n+

log f )), thanks to a preprocessing in O

(

f
b n

2
c

(log f )b
n
2
c−δ

)

.

However, we show below that we can still expect faster

VORONOIEDGE function even in higher dimension.

5.3. Improved HIDDENBY predicate

In dimension 2, it was shown in Coeurjolly (2014) that

it was possible to reduce the complexity from a loga-

rithmic factor on the size N of the image to a logarith-

mic factor on the size m of the mask using binary search

over chamfer vectors. This process cannot be extended

straighforwardly in higher dimensions since chamfer vec-

tors cannot be ordered to perform a binary search any-

more. However, it is interesting to notice that, whatever

the dimension n, vectors from a given point a to any point

of a span S lie in the smallest affine subspace containing

a and the one-dimensional flat l(S).

l(S)
s1

sN

a

(a,Fa(sN))

F
a(s1)

Figure 5: Vectors si − a lie in a 2-flat defined by l(S) and a, in light

green. The distance dM between a point on S and a is computed via a

ray shooting that returns the n−1-facet of BR traversed by the ray si−a :

wedge (a,Fa(sN)) and facet Fa(s1) are depicted in light red.

In the general case where a does not lie on S, this is

actually always a 2-flat, denoted by P , and the intersec-

tion of this 2-flat with the rational ball BR is a polygon
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(see Fig. 5). The vertices of this polygon could be used to

define a set of vectors on which a binary search could be

performed as in the 2D case Coeurjolly (2014). However,

since a 2-flat is actually the intersection of n− 2 hyper-

planes, computing this polygon comes down to intersect-

ing a n-polytope with n−2 hyperplanes. By duality, each

of these operations is equivalent to a convex hull compu-

tation, with a complexity of O( f bn/2c) (Chazelle, 1993;

Bajaj and Pascucci, 1996). As a consequence, in order to

make the approach efficient, we must avoid to compute

explicitly this intersection.

This is achieved by rewriting the

VORONOIEDGEWEDGE function as presented in

Algorithm 6. As before, let e ∈ Z
n be the point on S such

that all the points of S of abscissa lower than eq are in the

Voronoi of a while all the points with a greater abscissa

are in the Voronoi cell of b. Given a, the goal of this

function is to find the wedge of BR (of apex a) e belongs

to.

The algorithm computes two points si and s j such that

si belongs to the Voronoi cell of a (if aq < bq, b other-

wise), s j to the Voronoi cell of b (if aq < bq, a other-

wise) and either j− i = 1 or Fa(si) =Fa(s j). Similarly to

generic Algorithm 4, this is done by performing a binary

search over the points of S, with a key difference on exit

conditions: now, the algorithm does not wait until point e

is found, but exits as soon as the two points si and s j be-

long to the same wedge (line 1). Indeed, by convexity of a

wedge, this implies that any point on S between si and s j -

and in particular e - also belongs to the same wedge. Cor-

rectness of the algorithm is ensured by maintaining two

invariants : (i) si is lower than s j on span S (si
q < s j

q) ;

(ii) if aq < bq, si is in a’s Voronoi cell, s j in b’s Voronoi

cell, and conversely if bq < aq.

Figure 6 illustrates the first step of the binary search

in (a), and the situation at the end of the search in (b)

(projection in plane P).

It remains now to use Algorithm 6 to compute point

e. Algorithm 7 implements the VORONOIEDGEND func-

tion as the nD counterpart of the VORONOIEDGE function

of Coeurjolly (2014). First, lines 1 to 11 are dedicated to

checking whether the bisector of a and b crosses span S or

not. If it does not, algorithm exits with an error code (lines

5 or 11). Otherwise, wedges (a,Fa(e)) (b,Fb(e)) are

computed lines 12-13 calling the VORONOIEDGEWED-

GEND function (see Figure 6(b) for an illustration).

Algorithm 6: VORONOIEDGEWEDGEND(a,b ∈ Z
n; i, j ∈

Z, i < j; span S along the qth direction; faces fki
= Fa(si),

fk j
= F

a(s j) )

1 if fki
= fk j

or j− i = 1 then

2 return fki
;

3 else

4 mid = i+( j− i)/2;

// Check whether smid is closest to a or to b

// O(n+ log f ) evaluation of distances w.r.t.

a and b

5 Compute fk = F
a(smid); d(a,smid) = Ak · (s

mid −a)T ;

6 Compute fl = F
b(smid); d(b,smid) = Al · (s

mid −b)T ;

7 if d(a,smid)< d(b,smid) then

8 if aq < bq then

9 return VORONOIEDGEWED-

GEND(a,b,mid, j,S, fk, fk j
)

10 else

11 return VORONOIEDGEWED-

GEND(a,b, i,mid,S, fki
, fk)

12 else

13 if aq < bq then

14 return VORONOIEDGEWED-

GEND(a,b, i,mid,S, fki
, fk)

15 else

16 return VORONOIEDGEWED-

GEND(a,b,mid, j,S, fk, fk j
)

Proposition 3 Let M be a chamfer norm in dimen-

sion n whose rational ball BR has f (n − 1)−facets.

Let W be the computational time complexity of the

VORONOIEDGEWEDGEND function. Then, the separa-

ble exact Voronoi Map can be obtained in (amortized)

O(n ·Nn · (n+ log f +W )) with a O

(

f
b n

2
c

(log f )b
n
2
c−δ

)

space

and preprocessing time. More precisely, the worst-case

complexity W being O((n+ log f ) · logN), this leads to

a global (amortized) complexity of O(n ·Nn · logN · (n+
log f )) (same preprocessing).

The proof is given in Appendix B.

Note that in the worst-case, this approach does not im-

prove the result presented in Lemma 4 (using the generic

VORONOIEDGE of Algorithm 4). However, in Section 6,

we give some experimental insights on a finer analysis of

the complexity W under distribution hypothesis.
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S

a

F
a(s1)

s
N

s
1

F
a(sN)

s
mid

(a)

S

a

F
a(si) = F

a(sj) = fk

sj

si

b

si
′

sj
′

F
b(si

′

) = F
b(sj

′

) = fl
}

e ?

(b)

Figure 6: View of the 2-flat P: (a) Binary search initialization to com-

pute the wedge (a,Fa(e)). (b) After completion of two binary searches,

both wedges (a, fk = F
a(e)) and (a, fl = F

b(e)) are known.

6. Experimental analysis

6.1. Insights on the complexity in dimension n

The complexity W of Algorithm 7 depends on the num-

ber of recursion steps done until points si and s j are in the

same wedge. Wedges being defined by the n− 1 dimen-

sional faces of BR, this complexity depends on the distri-

bution of the chamfer vectors defining BR.

Let us denote by P the intersection between the (n−
1)-faces of BR and the 2-flat P (see the red polygon on

Fig. 5). Note that P goes through the center of BR. If

we assume that the vectors defining BR are uniformely

distributed on the unit sphere S
n and that the faces of P

are also uniformely distributed on BR ∩P , then we can

expect that W =O((n+ log f ) · log |P|). Even if studying

precisely these questions is out of scope of this work, in

the following we give insights on both the relevance of

these assumptions and the behaviour of |P| in the context

of chamfer norms.

Algorithm 7: VORONOIEDGEND(a,b ∈ Z
n, span S).

// Check that the bisector of a and b crosses

span S

1 Compute fk1
= Fa(s1), fl1 = Fb(s1);

2 d(a,s1) = Ak1
· (s1 −a)T ; d(b,s1) = Al1 · (s

1 −b)T ;

3 if (aq < bq and d(b,s1)< d(a,s1)) ; // or (bq < aq and

d(a,s1)< d(b,s1))
4 then

5 Bisector does not cross S. return −1.

6 else

7 Compute fkN
= F

a(sN), flN = F
b(sN);

8 d(a,sN) = AkN
· (sN −a)T ; d(b,sN) = AlN · (sN −b)T ;

9 if (aq < bq and d(a,sN)< d(b,sN)) ; // or (bq < aq

and d(b,sN)< d(a,sN))
10 then

11 Bisector does not cross S. return −1.

// Compute e

12 fk =VORONOIEDGEWEDGEND(a,b,1,N,S, fk1
, fkN

);
13 fl =VORONOIEDGEWEDGEND(b,a,1,N,S, fl1 , flN );
14 Compute abscissa ξq of the point ξ ∈ S such that

Ak · (ξ −a)T = Al · (ξ −b)T ;

15 returnbξqc;

6.1.1. Some observations on the distribution hypothesis

To study the distribution of chamfer vectors, we con-

sider chamfer masks where vectors are defined from a

subset of Farey sequences, as presented in Section 2 (see

also Thiel (2001) and Fouard and Malandain (2005)).

Studying the distribution of such sets of vectors is a field

of research in itself, and we simply mention below several

results relevant to our context.

First, it is well-known from Marklof (2013); Marklof

and Strömbergsson (2015) that n-dimensional lattice

points visible from the origin have a constant density in

R
n. Moreover, Boca et al. (2000) studied in the 2D case

the distribution of the angles of straight lines from the

origin through visible points. More precisely, they study

the proportion of differences between consecutive angles

which are larger than the average: they show that this pro-

portion is smaller than what is expected for a random dis-

tribution, and give an explicit formulation of the reparti-

tion function. Similar results in higher dimension remain

an open question.

These results tend to support the hypothesis of a uni-

form distribution of the vectors of BR, but the question of

the distribution of the faces of the polygon P has not been

investigated to our knowledge.
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6.1.2. Experimental behaviour of |P|

In this part, we investigate the number of faces of P

when BR is a rational ball defined from Farey Sequences.

The results are presented in Figure 7 and we detail below

how the rational balls are generated, how the 2-flats P are

selected, and how the intersection between BR and P is

performed.

In the four subfigures of Figure 7, rational balls are de-

fined from Farey sequences:

• In (b-d), the vectors of BR are all normalized vectors

of a Farey sequence of order m (the higher the order,

the greater the number of vertices - and (n−1)-faces

- of BR). The order of the Farey sequences ranges

from 1 to 10 in (b-c), from 1 to 6 in (d);

• in (a), BR is computed thanks to the algorithm pre-

sented by Fouard and Malandain (2005).5 Given a

(odd) mask size m, and a maximal error ε , the al-

gorithm computes a subset of vectors of Fm−1
2

and

weights such that the rational ball BR is convex and

the error with respect to the optimal theoretical error

expected (wrt the Euclidean distance) for this mask

size is below ε .

Once the sets of vectors defined, we use Qhull (Barber

et al., 1996) to compute both the rational ball itself and its

intersection with a 2-flat P that goes through the center

of BR. This intersection is performed by randomly pick-

ing the coefficients of n−2 (n−1)-hyperplanes contain-

ing the center of BR, and iteratively adding each (n− 1)-
hyperplane. The vertices of P are the points lying on all

(n−1)-hyperplanes.6

For each rational ball, a certain number of cuts is per-

formed: from 1000 in dimension 3 to only 6 in dimension

5 for rational balls obtained from Farey sequences of or-

der 5 and 6 (due to precision issues in Qhull). 95% con-

fidence intervals are depicted for each point (i.e. for each

rational ball) as error bars, but most of the time too small

to be visible on the graphs. Note that this remark sug-

gests that the size of |P| does not depend on the position

5Code is available on the TC18 website www.tc18.org/code_

data_set/code.php
6Python code used to generate Farey sequences and to compute these

graphs is available on http://www.gipsa-lab.fr/~isabelle.

sivignon/recherches_en.html.

of P , thus supporting the uniform distribution hypothesis

discussed in the previous section.

Analysing these results, we see that |P| seems to behave

as f α , with α < 0 and decreasing when the dimension in-

creases. This suggests that, in practice, the complexity W

of Algorithm 7 is expected to be O((n + log f ) · log f ).
Similarly to dimension 2 (Coeurjolly, 2014), this ap-

proach is expected to lower down the worst case complex-

ity of the computation of the distance transformation for

chamfer norms in dimension n from a logarithmic factor

on the size N of the image, to a logarithmic factor on the

size f of the rational ball.

6.2. Distance transformation in dimension 2

We evaluate the performance of the separable ap-

proach to compute restricted Voronoi diagrams and dis-

tance transformation for chamfer norms in dimension 2.

First, we observe that using Algorithm 1 with the nD

VORONOIEDGE (Alg. 7), we obtain an overall complexity

in O(logm · logN ·N2) which is close to the O(log2 m ·N2)
complexity of the ad-hoc 2D version of the problem

(Coeurjolly, 2014). These complexities have to be com-

pared with the O(m ·N2) complexity of the classical raster

scan approach for chamfer norms (Borgefors, 1986). In

Fig. 8-(a), we first illustrate some restricted Voronoi map

results on small domains.

In Fig.8-(b − c), we have considered a 2D domain

20482 with 2048 random sites. First, we observe that

fixing N, the log2 m term is clearly visible in the com-

putational cost of the Voronoi map (single thread curve).

Bumps in the single thread curve may be due to mem-

ory cache issues. Please note that if we consider classi-

cal chamfer norm DT from raster scan (and sub-masks),

the computational cost is in O(m ·N2) and thus has a lin-

ear behavior (green curves in Fig. 8-(b− c)). Since we

have a separable algorithm, we can trivially implement

it in a multi-thread environment (here using OpenMP).

Hence, on a bi-processor and quad-core (hyper-threading)

Intel(R) Xeon(R) cpu (16 threads can run in parallel),

we observe a speed-up by a factor 10 (orange curves in

Fig. 8-(b− c)). In Fig. 9, we present a shape process-

ing experiment: when considering a chamfer norm mask

with m = 100, both the raster scan and our separable ap-

proaches produce the same distance transformation (Fig.

9−(c)) but the raster scan approach has been obtained

in 520ms whereas our separable approach only requires
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25ms (note that since the domain is small –128× 127–,

the OpenMP scheduler has only considered a single core

for the separable Voronoi map computation).

Implementation of all separable algorithms are publicly

available in the DGtal library ( dgt ).

7. Conclusion and Discussion

In this article, we have proposed generic algorithms to

efficiently solve the restricted Voronoi map and distance

transformation problems for a large class of metrics in any

dimension. Focusing on chamfer norms, geometrical in-

terpretation of this generic approach allows us to design

an algorithm with logarithmic factors in the chamfer mask

size compared to a linear one for previous approaches.

Thanks to separability, parallel implementation of the dis-

tance transformation leads to efficient distance computa-

tion for path based metrics.

For the L2 metric, (additively) weighted Voronoi maps,

also known as power maps, can be used to solve the re-

verse distance transformation and medial axis extraction

problem using similar separable techniques (Coeurjolly

and Montanvert, 2007). A challenging future work would

be to extend these results for path-based norms such as

chamfer norms.
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Sweden.

Remy, E., Thiel, E., 2002. Medial axis for chamfer dis-

tances: computing look-up tables and neighbourhoods

in 2D or 3D. Pattern Recognition Letters 23, 649–661.

Rosenfeld, A., Pfaltz, J., 1968. Distance functions on dig-

ital pictures. Pattern Recognition 1, 33–61.

Rosenfeld, A., Pfaltz, J.L., 1966. Sequential operations

in digital picture processing. Journal of the ACM 13,

471–494.

Saha, P.K., Borgefors, G., di Baja, G.S., 2016. A survey

on skeletonization algorithms and their applications.

Pattern Recognition Letters 76, 3–12.

17

Lowres version

http://doi.acm.org/10.1145/1322432.1322434
http://doi.acm.org/10.1145/1322432.1322434
http://www.ncbi.nlm.nih.gov/pubmed/16805266
http://www.ncbi.nlm.nih.gov/pubmed/16805266
http://dx.doi.org/10.1109/TVCG.2006.56
https://doi.org/10.5201/ipol.2014.68
https://doi.org/10.5201/ipol.2014.68
http://dx.doi.org/10.5201/ipol.2014.68


Strand, R., 2008. Distance Functions and Image Process-

ing on Point-Lattices With Focus on the 3D Face- and

Body-centered Cubic Grids. Phd thesis. Uppsala Uni-

versitet.
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Appendix A. Proof of Lemma 3

Similarly to the 2D case, the distance dM(O,a) for

a ∈ Z
n is given by first solving a ray-shooting problem

on convex polytopes which consists in first computing the

(n − 1)-facet of BR pierced by the ray (O,a) (see Fig.

5). Once the facet is obtained, the associated Ak row is

used to evaluate dM(O,a) = Ak · aT in O(n). Following

Matousek and Schwarzkopf (1993) Theorem 10, such a

ray-shooting query on convex polytopes can be solved in

O(log f ) thanks to a preprocessing in O

(

f
b n

2
c

(log f )b
n
2
c−δ

)

. In

the case when the ray hits a facet of dimension strictly

lower than n− 1, the algorithm returns one of the adja-

cents (n−1)-facets. Propositions 3 and 4 from Normand

and Évenou (2009) ensure that the choice of any (n−1)-
facet leads to the same distance evaluation. Please note

also that the preprocessing time is roughly equivalent to

the convex hull computation in higher dimension which is

in O( f b
n
2 c). Hence, preprocessing for ray-shooting can be

done while computing the rational ball BR using Eq. (2).�

Appendix B. Proof of Proposition 3

Following Lemma 1, the generic separable algorithms

computes the Voronoi map in O(n ·Nn · (C+H). Lemma

3 states that C = O(n + log f ) with a O

(

f
b n

2
c

(log f )b
n
2
c−δ

)

space and preprocessing time. Remains to evaluate H,

i.e. the complexity of the VORONOIEDGEND function.

In Algorithm 7, the first eleven lines are in O(C) since

only distance computations are involved. Lines 12 and

13 are calls to the VORONOIEDGEWEDGEND function,

with a complexity in O(W ). In the worst case, we have

W = O((n+ log f ) · logN) thanks to the test j− i = 1 on

line 1 of Algorithm 6. Last, the system to solve in line

14 has only one unkwown ξq since ξ belongs to the one-

dimensional span S, with a complexity of O(1).�
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Figure 7: Number of faces of P with respect to the number of (n−1)-faces of BR in different settings. In (a), BR is a rational ball as computed by

Fouard and Malandain (2005) in dimension 3. In (b-c), BR is defined from a Farey sequence of given order and dimension, taking all the fractions :

(b) dimension 3, for orders between 1 and 10, (c) dimension 4 for order between 1 and 10, (d) dimension 5 for orders between 1 and 6. Each point

is the mean of a certain number of random cuts (1000 in dimension 3, 500 in dimension 4, 400 in dimension 5 for orders up to 4, and 6 in dimension

5 for orders 5 and 6.).
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Figure 8: (a) Voronoi map (first and third columns) and distance transformation (second and fourth columns) for the chamfer norm of mask

M5−7−11, and the Lp metrics L2 and L80. The digital shape X considered is the whole [0,256]2 domain except two random points in the first two

columns, and 10 random points in the last two ones.(b) Experimental evaluation of the subquadratic algorithm when increasing the mask size on

a [0,2048]2 image and following the chamfer norm construction of Fouard and Malandain (2005) (zoom in (c)). We compare the efficiency of

Algorithm 1 in single thread and multi-thread settings, with the classical raster scan approach of Borgefors (1986) (only single thread).

20

Lowres version



(a) (b) (c)

Figure 9: Example of distance transformation based shape processing: (a) initial shape (128×127 domain), (b) its Voronoi map using a chamfer

norm mask with 100 vectors, (c) its associated distance map.
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