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Abstract

We present a fast and accurate approximation of the Euclidean thickness distribution

computation of a binary shape in arbitrary dimension. Thickness functions associate

a value representing the local thickness for each point of a binary shape. When con-

sidering with the Euclidean metric, a simple definition is to associate with each point

x, the radius of the largest ball inscribed in the shape containing x. Such thickness

distributions are widely used in many applications such as medical imaging or material

sciences and direct implementations could be time consuming. In this paper, we focus

on fast algorithms to extract such distribution on shapes in arbitrary dimension.

1. Introduction

In many shape analysis applications, the evaluation of the thickness of an object is

crucial. For example, thickness based morphometrical analyses of bones on 3D medical

imaging systems are relevant for many disease investigations such as osteoporosis [11,

10, 3]. Similar applications can be found in Material Sciences [14] or even in shape

description in morphological image processing [26, 19]. As discussed in [11], several

options exist to define a thickness measurement on shapes. A first candidate is based on

the distance transform of the shape which consists in labelling at each point of the shape

with the minimum distance to its boundary [21, 15]. In this approach, the thickness at a

point x can be defined by its distance transformation value that can be seen as the radii

of the largest ball centered at the point and contained in the shape (see Fig. 1). Such

distance information are relevant for local shape analyses but do not match with the

common sense dealing with mean thickness or thickness distribution for each point of

the shape. For instance, one can see that using this definition the mean thickness of an

Euclidean ball in the plane of radius r is exactly r
3 . The counter-intuitive bias can also

be observed in higher order statistics of the thickness distribution. Another option is to

define the thickness at a boundary point y in dimension 2 as the length of the Euclidean

segment perpendicular to the tangent at y lying inside the shape (see Fig. 1 and [13]).

If this definition makes sense on some pure analytical objects (balls, cylinders, plates,

. . . ), drawbacks are two-fold: First it requires an estimation of the tangent at each point

of the shape boundary, which can be sensitive to noise. Second, in some situations,
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it can lead to overestimation of the mean thickness. For instance, if one considers a

cylinder with length l and radius r, points on the cylinder surface have a thickness of r

whereas points on the cylinder caps would have a thickness of l which can be arbitrarily

large. Furthermore, such thickness measurement is only defined on boundary points

which can be problematic in some applications such as percolation path evaluation in

Material Sciences [28, 20]. An interesting definition has been proposed in [24] which

consists in computing a topological skeleton of the shape and define the mean thickness

as the average of distance transformation values on skeletal points. To more precise,

the author considers distance transform based a fuzzy metric [23] and includes in the

summation a constant quantity depending on the image resolution. Although the use

of fuzzy distance could be an interesting approach in some practical applications, such

approach suffers from the high instability of the topological skeleton in presence of

noise and this may have deep impact on the estimated quantity (see Sect. 4 for details).

Last but not least, such an approach does not provide thickness information at every

point contained in the shape which is important for shape filtering by thickness or the

construction of a thickness distribution.

Beside these definitions from geometry processing, many related notions exist in

the field of granulometric analysis of binary images in mathematical morphology [16,

26, 19]. In this context, the idea is to iterate on opening filters of the input binary

shape. At each step, the structuring element size is increased by a dilation process and

we count the number of remaining points. In some sense, this process can be viewed as

a sieving process with increasing hole size. Using such an analysis, we can construct

a function, called opening function, which assigns to each point of the input shape, a

kind of thickness information parametrized by the considered structuring element (see

details in Sect. 2.2). Existing algorithms in this field approximate the Euclidean metric

with kinds of fixed neighborhood metrics in which unit balls are squares or diamonds

for instance [29].

When dealing with the Euclidean metric, the Euclidean opening function or thick-

ness distribution [11] can be simply defined as follows: we assign to each grid point

x of a shape X the radius of the largest ball B contained in X with x ∈ X . We are

thus facing a geometrical problem in which the discrete medial axis of a binary shape

plays a crucial role (see [7] for an overview on Digital Euclidean Medial Axis). When

we consider large binary images in 3D the straightforward implementation of the Eu-

clidean thickness computation leads to expensive computational costs. In this paper,

we investigate fast approximation algorithms defined in arbitrary dimensions based

on a discrete version of the well-known Power Diagram (or Laguerre Diagram) from

Computational Geometry [1]. Figure 3 sketches the important steps of the proposed

technique. Since such a discrete power diagram mapping can be obtained in optimal

time in arbitrary dimension [7], the proposed thickness distribution computation algo-

rithm can also be generalized to handle binary objects as subset of Zd. Furthermore,

we demonstrate that the proposed approach is still consistent with the mathematical

morphology framework.

The paper is organised as follows: First, we introduce the fundamental notions

that will be used to construct the algorithm (Sect. 2.2). In Sect. 3 we define the fast

approximation algorithms which are evaluated and discussed in Sect. 4. A preliminary

version of this paper has been presented in [6].
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Figure 1: Illustration of different thickness definitions in dimension 2: distance transformation based thick-

ness (τDT (x) = DT (x)), thickness as the length of inner segment (see text for details, τnormal(y) = ‖l‖)

and Euclidean thickness as the radius of the maximal ball containing the point (τ(z) = r ).

2. Preliminaries

2.1. Notations

In the following and without loss of generality, we consider a binary object X in

dimension d defined by a mapping from [0, . . . , n − 1]d ⊂ Z
d to values {0, 1}. Grid

points with value 0 are considered as background points whereas grid points with value

1 define the object points (set X).

As discussed in the introduction, we are interested in a definition of thickness as

a function τ : X → R
+ which maps each object point x ∈ X to a thickness value.

Whatever the thickness definition we consider, relevant measurements and statistics can

be extracted. Indeed, if we consider x as uniformly distributed random variable with

realization in X and its associated thickness measurement, we can define a discrete

thickness distribution function F :

F (t) =
|Xt|

|X|
, Xt = {x ∈ X|τ(x) ≤ t} (1)

from which we can derive several quantities such as the mean thickness of a shape τ̄ , the

standard deviation or even high order statistics using central moments defined on the

density function (see Fig. 6 for an illustration of F (t) on a binary shape). In [11], the

authors discuss about the use of such high order information for shape classification.

Beside these high order parameters, [10] and [3] discussed about the interest of the

mean thickness value to extract morphological parameters on bone structures.

2.2. Granulometries

The notion of granulometry and granulometric functions was first introduced by

Matheron in 1967 [16] in order to study images of porous materials. First of all, a

3

Lowres version



generic definition of granulometry can be formalized as follows [26].

Definition 1. Let Φ = (φλ)λ≥0 be a family of image transformations. Φ is a granu-

lometry if and only if for all λ, µ ≥ 0:

(i) φλ is increasing;

(ii) φλ is anti-extensive (φλ(X) ⊆ X);

(iii) φλφµ = φmax(λ,µ).

From the granulometry, the opening function can be defined as follows: The gran-

ulometry function or opening function GX
Φ of a binary image X for granulometry Φ

maps each pixel x ∈ X to the size of the smallest λ such that x 6∈ φλ(X). In the con-

text of the paper, such opening function GX
Φ can be interpreted as a thickness function.

Beside granulometries generated by a structuring element widely used in Mathemat-

ical Morphology, [17, 29, 26, 19] we consider in the following a thickness function

based on the Euclidean metric using perfect increasing disks as structuring elements.

We will demonstrate that this function still have the properties of granulometric func-

tions. Designing a thickness measurement which is consistent with these properties

is fundamental in order to be able to use this operator in mathematical morphology

pipelines and to obtain properties on the result [19].

2.3. Euclidean Medial Axis and Euclidean Thickness Function

In Digital geometry, distance transformation and discrete medial axis extraction

are classical problems from decades [21, 4, 27, 23, 15]. Using an exact Euclidean

metric, optimal in time algorithms exist to compute without error such a distance trans-

formation whatever the dimension is [22, 5, 12, 18]. The interest for considering the

Euclidean metric has been widely discussed in the literature. For short, exact Euclidean

metric allows us to reduce the anisotropy of the digital grid and to fill the gap between

digital tools and structures from computation geometry such as Voronoi Diagram and

Power Diagram (see below). As demonstrated in Sect. 4, the isotropy of the Euclidean

metric has a deep impact of the quality if the thickness measurement (see for example

Fig. 11 experiment). Among the wide set of measurements that can be computed from

the distance transformation, the extraction of the discrete medial axis of a shape X is

probably the most important one. Indeed, the Discrete Medial Axis can be defined as

the set of maximal balls of X: A ball B ⊂ X is maximal in X if there is no ball

B′ ⊂ X such that B ⊂ B′. In [7], we have presented an algorithm to extract the set of

Euclidean maximal balls in linear time in arbitrary fixed dimension. More precisely, if

X ⊂ [0..n]d, the discrete medial axis MA(X) of X is obtained in O(nd) (see Fig. 2-a

in 2-D). We focus here on a thickness function based on the Euclidean metric defined

as:

τ(x) = max({r | ∀B(c, r) ⊂ X,x ∈ B(c, r) ∩X}) , (2)

where B(c, r) denotes an Euclidean open ball with center c ∈ X and radius r. In

other words, we want to assign to each point x in X , the maximal radius among the

set of balls inscribed in X that contains x. From this function, we can define a set

of transformations Φ = {φλ} such that φλ(X) = Xrmax−λ which is a granulometry

4
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(with rmax being the maximal ball radius). As discussed in [11], Eq. (2) can be

optimized since it is sufficient to only consider MA balls {Bi(xi, ri)}. Indeed, Eq. (2)

is equivalent to

τ(x) = max({ri | ∀i, x ∈ Bi(ci, ri) ∩X, Bi ∈MA(X)}) . (3)

If we define the height function hi(x) as follows

hi(x) =

{

r2i if r2i − ‖ci − x‖2 > 0
0 otherwise

. (4)

Eq. (3) is thus equivalent to

τ(x) =
√

max
Bi(ci,ri)∈MA(x)

(hi(x)) . (5)

Figures 2-c and 2-e illustrate these objects as circles and surfaces {(x, hi(x))} with

x ∈ R
2. On a computational point of view, the overall computational cost of the algo-

rithm derived from Eq. (3) or Eq. (5) is O(nd+
∑

Bi∈MA(X) |Bi∩X|). Indeed, O(nd)
is required to obtain the MA, then we have to scan all MA ball grid points and store the

maximal radius at each point (see Fig. 3-b). As illustrated in Sect. 4, such a brute-force

algorithm is very expensive since many balls of the MA may overlap and thus their

associated grid points would be scanned several times. In the following section, we

investigate fast approximation algorithms to compute such distribution function with

the help of discrete power diagram mapping.

3. Thickness Distribution Computation Algorithm

3.1. Power Diagram as a Thickness Function

In [7], we have also demonstrated links between the MA extraction and the com-

putation of a Power diagram [1]. Note that using other medial axis definitions such

as Chamfer based ones [4], or local distance transform value maxima in a fixed size

neighborhood [23], the power diagram construction would have been much more com-

plex to extract. First, let us consider a set of N sites S = {ci}1...N such that each

point ci is associated with a radius ri. The power σi(x) of a point x in R
d according

to the site ci is given by σi(x) = ‖x − ci‖
2 − r2i . If σi(x) < 0, x belongs to the disk

of center ci and radius ri. If σi(x) > 0, x is outside the ball. The power diagram is

a kind of Voronoi diagram based on the metric σ. Hence, the power diagram VS is a

decomposition of the space into open cells F = {fi}1...N associated with each site ci
such that fi = {x ∈ R

d | ∀j ∈ {1 . . . N}, j 6= i, σi(x) < σj(x)}. Note that cell fi
associated with site ci may be empty, otherwise, fi is a convex polytope (see Figure

3-c in dimension 2) [1].

As discussed above, a Power Diagram Mapping ΠX(x) of MA balls can be ob-

tained during the MA extraction without changing the overall computational cost. The

mapping assign to each discrete point x ∈ X the ball Bi(ci, ri) such that x belongs to

cell fi (see Fig. 2-b). If x belongs to a cell boundary, we arbitrarily choose to associate

5

Lowres version



(a) (b) (c)

(d) (e)

Figure 2: Discrete medial axis (a) and discrete power diagram of a 2D shape (b, one gray value color per

power cell). Given a subset of three maximal balls i ∈ {1, 2, 3} (c), illustration of {x, σ′

i
(x)} (d) and

{x, hi(x)} (e) surfaces.
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x with one of the balls of its adjacent cells. In the following, the index i is used to

identify a ball Bi(ci, ri) or a power diagram face fi.

If we consider now a power function σ′ such that σ′
i(p) = −σi(p), we do not

change the power diagram cells geometry and we can interpret the diagram construc-

tion as the upper envelope of a set of elliptic paraboloids in 2D (see Fig. 2-d).

Let us consider the power diagram of balls in MA(X) (i.e. in the following, N =
|MA(X)|). For x ∈ X , we define the function τΠ such that τΠ(x) = ri if ΠX(x) = i.

More formally,

τΠ(x) = argmax
ri

{σ′
i(x)} with Bi(ci, ri) ∈MA(X) . (6)

In other words, we associate with each point x of the object, the radius of the ball

associated with the discrete power diagram cell i containing x. From this definition,

we have

Lemma 1. Given an object X in dimension d, τΠ induces a granulometry function and

τΠ(x) ≤ τ(x) for each x ∈ X .

Proof. From τΠ(x), we can construct a set of transformations Φ = {φλ} such that

φλ(X) = Xrmax−λ = {x ∈ X |τΠ(x) ≤ rmax − λ} with λ ∈ [0, rmax] (rmax is

the maximal ball radius in MA(X)). Hence it is clear that functions φλ satisfy the

statements (i), (ii), (iii) of granulometry functions in Definition 1. To prove that τΠ
underestimates the thickness, let us consider a ball Bi(ci, ri). From Eq.(4) and σ′

definition, we have σ′
i(x) ≤ hi(x) for all x ∈ X . Since τΠ(x) and τ(x) are defined at

a point x as the ball radius ri maximizing respectively the quantities {σ′
j(x)}1...N and

{hj(x)}1...N , we have τΠ(x) ≤ τ(x).

Beside the properties presented in Lemma 1, we can see that τΠ(x) is an intuitive

local thickness measurement on classical shapes as defined in [11]. Indeed, if we con-

sider regular objects (spheres, cylinders or plates), the estimated mean thickness using

τΠ(x) matches with the intuition we have of the thickness of such objects. Further-

more, τΠ(x) = τ(x) if x is in general position, i.e. far from plates and cylinders edges

or extremities. As detailed above, an implementation of the τΠ map computation can

be designed in O(nd) for objects in dimension d. As illustrated in Fig. 3-c, the dif-

ferences between τΠ(x) and τ(x) are located on balls intersections (see further error

analysis in Sect. 4). Even if τΠ underestimates the thickness, the geometrical structure

provided by the power diagram mapping will allow us to design a quasi-linear and fast

thickness approximation algorithm. In the following section, we present an algorithm

which starts from an initial τΠ mapping and which optimize the cell boundaries to have

a better approximation of the thickness values.

3.2. Fast Quasi-linear Approximation

The main idea of this algorithm is to start from the τΠ mapping and then to deform

the power diagram boundaries between two balls taking into account the relative order

between their radii (cf Fig. 3-d). Let us define the active border of a discrete power

diagram cell.
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(a) (b)

(c) (d)

Figure 3: Overview of the proposed method: (a) an input set of maximal balls, (b) its Euclidean thickness

function, (c) a first approximation based on the power diagram of balls, and (d) the approximation based on

active border propagation.
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Definition 2. Given a Power diagram mapping ΠX , the active borderN (i) of a cell fi
of ΠX is such that

N (i) = {x ∈ X | ΠX(x) = i and ∃y ∈ N(x), such that ΠX(y) = j (j 6= i) (7)

and rj < ri} (8)

where N(x) denotes the set of direct neighbors1 of x in X .

The first statement of this definition (Eq. (7)) characterizes points belonging to the

discrete boundary of the set {fi ∩ Z
d}1...N . The second statement (Eq. (8)) filters the

boundary points to only consider those for which the thickness propagation detailed

below makes sense.

In the following, such sets will be considered as queues with Pop element and

Push element methods.

The fast approximation algorithm can be sketched as follows (see Alg. 1 for de-

tails): we first scan the grid points to create active border queues. At this point, we also

create a mapping τΠ′(x) = τΠ(x) that will contain the new thickness values. Then, we

process active borders by decreasing associated radii and use a breadth-first approach

to inflate active border of a cell i. More precisely, when a grid point x belonging to the

listN (i) is processed, for each neighbor y ∈ N(x), we push y toN (i) if the following

conditions are fulfilled: y must belong to the ball Bi, y must belong to a cell j 6= i

and rj < ri. If y is added to N (i), we mark this point as processed and we update its

associated thickness τΠ′(y) = τΠ′(x).

Lemma 2. Given an object X in dimension d, Alg. 1 computes the thickness function

τΠ′ in O(nd + N · logN) with N the number of balls in MA(X). Furthermore, τΠ′

induces a granulometry function and τΠ(x) ≤ τΠ′(x) ≤ τ(x).

Proof. Whatever the dimension of the shape is, the computational cost of Alg. 1 is

quasi-linear since it runs in O(nd + N · logN) with N the number of balls in the

MA(X) (N ≪ nd). Indeed, as discussed above, both MA(X) and τΠ are obtained

in O(nd). Then we have to sort the balls which can be done in O(N · logN). It

is clear that the overall size of the active border queues ({N (i)}i=1...N ) is bounded

by the size of X . In fact, since {N (i)}i=1...N contains only boundary points of ΠX

cells, its size is generally of an order on magnitude lower than |X|. To conclude the

complexity analysis, we can see that if a point x in N (i) is popped from N (i), and

since we process the queues by decreasing radii, the point will never be considered

anymore (thanks to the constraint rj < ri in the inner if test).

Using similar arguments as in the proof of Lemma 1, τΠ′ induces a granulometry

function. Furthermore, since we initialize the values of τΠ′ by τΠ, and since Alg. 1

only changes the value τΠ′(x) at x if it increases (inner if test), it is clear that τΠ(x) ≤
τΠ′(x). Furthermore, since the set of balls remains the same, we still have τΠ′(x) ≤
τ(x).

1In arbitrary dimension d, x ∈ X is a direct neighbor of y ∈ X iff ‖x− y‖1 = 1 for the l1 norm.
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Algorithm 1: Euclidean Thickness Function Approximation.

Input: a digital object X in dimension d

Output: the map τΠ′

Compute MA(X) and ΠX ;

τΠ′ ← τΠ;

Initialize the N (i) empty queues;

foreach grid point x ∈ X do

if x is an active border then
Push element(x, N (ΠX(x))

Sort the balls in MA(X) by decreasing radii;

foreach ball with index i in the sorted list do

while N (i) is not empty do
x← Pop element(N (i));
foreach y ∈ N(x) do

if ΠX(x) = i 6= ΠX(y) = j and y ∈ Bi(xi, ri) and rj < ri then
τΠ′(y) = ri;

Remove the element y from N (j);
Push element(y, N (i));

The thickness τΠ′ is still an approximation of τ (and thus τΠ′(x) ≤ τ(x)) as illus-

trated in the example depicted in Fig. 4: Let us consider three balls in Z
2 and focus

on the index of balls which generates the thickness value τ , τΠ and τΠ′ on the row of

grid points contained in the round rectangle. Power diagram boundaries are depicted

with dashed line in Fig. 4-left. On the right, we have depicted the 1D representation

of the σ′
i(x) functions (parabolas in this case). If we apply Alg. 1, we start from ball

a and its active border set N (a) contains the point with abscissa 5. During the 1D

propagation, the ball a will rewrite the values assigned to pixels with abscissa 6 and

7. Hence, when processing ball b, no active border points in N (b) must be processed

on this row and b cannot propagate to c its radii leading to an incorrect result at x = 8
since τΠ′(x) < τ(x).

As illustrated in Fig. 8, experiments confirm that errors between τΠ′ and τ are

located on thin lenses and lunes of the ball arrangement.

4. Experiments and Discussion

In this section we provide a complete experimental evaluation of the proposed al-

gorithms in dimension 3. Table 1 details the overall results on a set of digital objects

presented in Fig. 5. We have computed the elapsed time for each algorithm and the

speed-up of the proposed approximation algorithm. To focus on the core of the thick-

ness computation algorithms, we have decomposed the computational cost into two

parts: the initialization step which is roughly similar for each method and the main

loop. During the initialisation step, we basically compute the medial axis and discrete
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Figure 4: Illustration of a 2D configuration in which Alg. 1 introduces thickness underestimation.

power diagram. For the τ function, the main loop consists in processing all balls one

by one and labeling the ball points with the maximum radius (Eq. (3)). For the τΠ
mapping, the main loop consists in scanning the discrete power diagram mapping ΠX

and associating the corresponding radii to the grid points. Finally, the main loop for

τΠ′ computation corresponds to Alg. 1 without computations of MA(X) and ΠX .

Table 2 indicates the Mean Square Error between the τ thickness map and both

τΠ and τΠ′ (see Fig. 8 for an illustration of the error location). In our experiment

we have considered a comparison with a skeleton based approach similar to Saha’s

one [24]: we first construct a one-dimensional topological skeleton with extremities

(see for example [2] or [25]) and compute the mean thickness as the average of Eu-

clidean distance transform values on the skeleton grid points. Compared to Saha’s

original approach, we have considered here an exact Euclidean DT instead of a fuzzy

one which enhances isotropy and may improves the results (in the following, we de-

notexs TopoThickness such algorithm). In fact, the mean thickness computation

is more affected by the high instability of the skeleton than the DT information itself.

In the original approach, the authors also consider a correction of the thickness mea-

sure by adding a quantity (0.38 · ρ where ρ is the grid resolution) proportional to voxel

resolution if such information is available from the acquisition device depending the

application. Such correction could also be used in our framework to “correct” τ , τΠ and

τΠ′ in a similar way (simply adding the same quantity). In our experiment and without

loss of generality, we have chosen to consider un-corrected versions of all thickness

estimators and mean thickness values.

Examples of the τΠ′ thickness mapping can be found in Fig. 7. Differences between

τ , τΠ and τΠ′ can be observed in the thickness distribution F (t) as defined in Eq. (1)

(Fig. 6).

To summarize the experimental evaluation, we can first observe that τΠ is the fastest

thickness approximation algorithm. Indeed, once the map ΠX is computed, the com-

putational cost of the main loop is low. Then, we can see that the additional cost we

have in τΠ′ algorithm with the management of queues and border propagation is low.

Indeed, with the τΠ approximation, we are between 1.2 and 12.23 times faster than the

naive algorithm τ . If we add the border propagation step, we are still between 1.06 and

9.88 times faster than τ . It means that both the size of the input object and the ball

overlapping discussed at the end of Sect. 2.3 are real bottlenecks for τ computation

11
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(a) (b)

(c) (d)

Figure 5: Objects used in the experiments: (a) Snow (Courtesy of GAME-CNRM/CEN and ESRF) (b)
catenoid, (c) Dodge and (d) Al.

Table 1: Experimental results in dimension 3.

Object |X| |MA(X)| Time (in sec.) Speed-up

(w.r.t. τ )

τ τΠ τΠ′

Init. Loop Total Init. Loop Total Init. Loop Total τΠ τΠ′

Snow 1113 32165 0.4 2.35 2.76 0.22 2.08 2.3 0.22 2.4 2.61 1.2 1.06

cat. 2003 22994 1.56 9.86 11.42 1.5 1.91 3.41 1.6 2.46 4.07 3.34 2.81

Dodge 3503 84856 7.57 40.9 48.48 6.83 1.44 8.27 7 3.2 10.21 5.86 4.75

Al 4503 96947 18.63 196.5 215.1 16.55 1.03 17.58 17.06 4.72 21.78 12.23 9.88
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Table 2: Mean Square Error of τΠ and τΠ′ thickness function with respect to the τ values.

Object Mean Square Error (w.r.t. τ ) Mean Thickness Values

τΠ τΠ′ τ̄ τ̄Π τ̄Π′ TopoThickness

(|Skel|)
Snow 5.25 0.34 12.192 10.501 11.955 6.78 (3800)

cat. 75.62 1.44 36.0931 29.8142 35.4918 12.77 (1966)

Dodge 58.74 1.46 39.8798 34.8921 39.4218 10.26 (13247)

Al 65.1 3.1 51.094 45.005 50.4822 20.44 (6029)

Figure 6: Thickness distribution F (t) of the object Al: in ordinate, we have considered the radii values (t)

and in abscissa we have the cumulative distribution which corresponds to |Xt|.

which can be avoided in the τΠ′ optimisation. For example, if we consider the Snow

object, the overall geometry is closed to a network of tubular structures which limits

the number of overlapping balls and thus reduces the differences between τ and τΠ′ .

From Table 2 and with the help of a mean square error analysis, we can see that

the active border propagation step in τΠ′ considerably increases the accuracy of the

approximation (cf Fig. 8). Furthermore, the accuracy can also be observed when com-

puting statistics (mean thickness in Table 2 and distribution function F (t) in Fig. 6) on

the thickness distribution.

In Fig. 9, we have considered the object Al with increasing resolutions (n ∈
{50, 100, 150, . . . , 450}) in order to see how the performance behave while scaling the

size of the input data. If we perform a least-square fitting analysis in log-scale space,

we can observe that the behavior of the τ computation time curve is in O(n4) whereas

the behavior the τXΠ′ curve stays in O(n3). Again, the ball overlapping bottleneck can

be avoided by τΠ′ while preserving good thickness measurements.

We have also designed an experiment to evaluate the stability of the mean thick-

ness value with respect to noise. In Table 3, we have considered an Euclidean digital

ball of radius 20 and several copies of this ball with different noise parameter. Hence,
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(a) (b)

(c) (d)

(e)

Figure 7: Results of the τΠ′ thickness mappings with the help of volume slices: (a) result for the Cat

object, (b) result for the Dodge object, (c) result for the Al object and (d− e) for object Snow (with slices

and volumetric rendering).
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(a) (b)

Figure 8: Thickness error locations on object Al: thickness differences between τΠ and τ (a) and τΠ′ and

τ (b).

expected mean thickness value is 20. In this experiment, we have considered a topo-

logical equivalent noise model to be consistent with comparison with [24]: given a

noise parameter p, a voxel of the object is removed with probability p only if the voxel

removal does not change the object topology (i.e. the voxel is simple [25, 2], see Fig.

10). In Table 3, we can observe that all mean thickness values based on Eq. (2)

(τ̄ , τ̄Π and τ̄Π′ ) are stable: Even if the Euclidean medial axis is highly distorted by the

noise on the boundary, (Fig. 10-(i)), both the power cell boundary propagation and the

fact that the mean thickness is computed from all point thickness values in the shape,

reduce the impact of the noise on τ̄ , τ̄Π and τ̄Π′ measurments. Furthermore and as

discussed earlier, both τ̄Π and τ̄Π′ underestimate τ̄ . Since noise on the object boundary

induces many branches from grid points near the surface toward the object interior in

the topological skeleton considered in TopoThickness (Fig. 10-(i)) and since the

mean value is given by averaging skeletal point values, the error on the mean thickness

computation is important (DT values decrease when sampled close to the boundary).

Finally, Fig. 11 presents stability evaluation with respect to rotations around the z-

axis of a binary object. Since we use an exact Euclidean metric, distance transformation

information are stable according to such rotations. Hence, τ̄ , τ̄Π and τ̄Π′ measurements

have small variations (e.g. only 2.5% of maximal variation for τ̄Π′ ). However, due

to instability of the topological skeleton, TopoThickness thickness measurements

underestimate the quantities and have larger variations (31%).

5. Conclusion

In this paper, we have investigated algorithms for fast and accurate approxima-

tion of the Euclidean thickness distribution of binary shapes in Z
d. To summarize the

contributions, we have first fill the gap between mathematical morphology and medial
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Figure 9: Thickness function computation behavior on the object Al both with normal in log-scale axis. In

the log-scale graph, we have depicted two linear least-square fittings in log-scale with a model of order 4 for

τ and of order 3 for τΠ′ . The dashed-line illustrates the high error in the linear approximation when we try

to fit a order 3 model to τ computation time data.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j)

Figure 10: Objects used for the noise stability analysis: the original shape (a) and noisy versions from (b)
to (d) with parameters 0.2, 0.3 and 0.6. Figures (e) to (h) display a slice containing the ball center for each

object. Based on object (b), figure (i) (resp. (j)) illustrates the effect of boundary noise on the topological

skeleton (resp. the medial axis extracction).

Table 3: Stability with respect to noise on a ball of radius 20.

Orig. Noise parameter

0.1 0.2 0.3 0.4 0.5 0.6

τ̄ 20 15.86 15.53 15.38 15.3 15.28 15.28

τ̄Π 20 14.75 14.7 14.77 14.82 14.92 14.97

τ̄Π′ 20 15.52 15.27 15.2 15.16 15.17 15.2

TopoThickness

(|Skel|)
20

(1)

8.11

(174)

7.85

(374)

6.73

(698)

6.01

(988)

5.67

(1511)

5.28

(1932)
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Figure 11: Stability of thickness measurements on object Al (2003) according to rotations in degree around

the zaxis.

ball based thickness computation algorithms. Then, we have demonstrated that using

a digital version of a well-known structure from Computational Geometry (the Power

diagram), we can obtain a first approximation of the thickness function in linear time

with respect to input size. Finally, we have proposed an algorithm which improves

the first approximation with a active border propagation mechanism maintaining the

computational efficiency. Hence, the proposed algorithm has a computational cost in

O(nd + |MA(X)| log |MA(X)|) (with |MA(X)| ≪ |X| in the general case), for

digital shapes in dimension d embedded in a [0, . . . , n − 1]d domains. This should be

compared to the straightforward algorithm which is in O(nd+
∑

Bi∈MA(X) |Bi ∩X|)
and we have demonstrated in the experiments that its efficiency could be one order of

magnitude higher that the proposed algorithm in our data set. Furthermore, we have

demonstrated that this thickness function is still consistent with the granulometry func-

tion theory from Mathematical Morphology.

As illustrated in the experiments, our main application of this work is to perform

shape measurements on microtomographic snow images (object Snow and [9, 8]).

More precisely, we plan to include this thickness measurement in a global percola-

tion path evaluation framework. A very specific aspect of this application is that we

have to handle high resolution images (up to 20483). In this context, our fast algorithm

is very relevant but an important future work would be to have parallel implementa-

tion. A good point is that very efficient parallel implementation of both the medial axis

extraction and the power diagram mapping computation exist. The remaining bottle-

neck would be to implement the boundary propagation in an efficient way too. Beside

this project on high resolution images, an interesting future work would be to consider

fuzzy quantities in the process such as fuzzy distance transform [23] but also fuzzy
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maximal balls which are crucial for our thickness definition. We thus expect to design

fuzzy thickness measurements in images where segmenting the object of interest is

problematic.
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