Quasi-Affine Transformation in Higher Dimension

Valentin Blot and David Coeurjolly
Université de Lyon, CNRS
Ecole Normale Supérieure de Lyon
Université Lyon 1, LIRIS, UMR5205, F-69622, France

1 Introduction

In many computer vision and image processing applications, we are facing new constraints due to the image sizes both in dimension with $3-\mathrm{D}$ and $3-\mathrm{D}+\mathrm{t}$ medical acquisition devices, and in resolution with VHR (Very High Resolution) satellite images. This article deals with high performance image transformation using quasi-affine transforms (QATs for short), which can be viewed as a discrete version of general affine transformations. QAT can approximate rotations and scalings, and in some specific cases, QAT may also be one-to-one and onto mappings from \mathbb{Z}^{n} to \mathbb{Z}^{n}, leading to exact computations. A similar approach has been proposed in [1] with the notion of Generalized Affine Transform. The author demonstrated that any isometric transform (equivolume affine transform) in dimension n can be decomposed into $\left(n^{2}-1\right)$ fundamental skew transformations which parameters can be optimized to obtain a reversible transformation. Note that the bound has been improved to $(3 n-3)$ in [2]. This approach is a generalization of the decomposition of rotations in dimension 2 into three shears (see for example [3]). In this paper, we focus on QATs since they provide a wider class of transformation (contracting and dilating transformations are allowed). Furthermore, we investigate direct transformation algorithms without the need of intermediate computations.

In dimension 2, the QAT appeared in several articles 451678. To summarize the main results, the authors have proved several arithmetical results on QAT in 2-D leading to efficient transformation algorithms. More precisely, thanks to periodic properties of pavings induced by the reciprocal map, the image transformation can be obtained using a set of precomputed canonical pavings. In this paper, we focus on a theoretical analysis of n-dimensional QAT. The idea is to investigate fundamental results in order to be able to design efficient transformation algorithms in dimension 2 or 3 as detailed in 99. More precisely, we demonstrate the arithmetical and periodic structures embedded in n-dimensional QAT. Due to the space limitation, we only details the proofs of the main theorems (other proofs are available in the technical report [9]).

During the reviewing process of the paper, the article [10] was brought to our attention. Even if the framework differs, some results presented here can also be found in [10]. However, the closed formulas for the paving periodicity presented in Section 3.2 make our contribution complementary.

In Section 2, we first detail preliminary notations and properties. Then, Section 3 contains the main theoretical results leading to a generic n-D transformation algorithm sketched in Section 4.

2 Preliminaries

2.1 Notations

Before we introduce arithmetical properties of QAT in higher dimension, we first detail the notations considered in this paper. Let n denotes the dimension of the considered space, V_{i} denotes the $i^{t h}$ coordinate of vector V, and $M_{i, j}$ denotes the $(i, j)^{t h}$ coefficient of matrix M. We use the notation $\operatorname{gcd}(a, b, \ldots)$ for the greatest common divisor of an arbitrary number of arguments, and $\operatorname{lcm}(a, b, \ldots)$ for their least common multiple.

Let $\left[\frac{a}{b}\right]$ denotes the quotient of the euclidean division of a by b, that is the integer $q \in \mathbb{Z}$ such that $a=b q+r$ satisfying $0 \leq r<|b|$ regardless of the sign of $\left.{ }^{4}\right]$. We consider the following generalization to n-dimensional vectors:

$$
\left[\frac{V}{b}\right]=\left(\begin{array}{c}
{\left[\frac{V_{0}}{b}\right]} \tag{1}\\
\vdots \\
{\left[\frac{V_{n-1}}{b}\right]}
\end{array}\right) \text { and }\left\{\frac{V}{b}\right\}=\left(\begin{array}{c}
\left\{\frac{V_{0}}{b}\right\} \\
\vdots \\
\left\{\frac{V_{n-1}}{b}\right\}
\end{array}\right)
$$

2.2 Quasi-Affine Transformation Definitions

Defined in dimension 2 in 4/5/6/718, we consider a straightforward generalization to \mathbb{Z}^{n} spaces.

Definition 1 (QAT). A quasi-affine transformation is a triple $(\omega, M, \boldsymbol{V}) \in$ $\mathbb{Z} \times M_{n}(\mathbb{Z}) \times \mathbb{Z}^{n}$ (we assume that $\operatorname{det}(M) \neq 0$). The associated application is:

$$
\begin{aligned}
& \mathbb{Z}^{n} \longrightarrow \mathbb{Z}^{n} \\
& X \longmapsto\left[\frac{M X+V}{\omega}\right]
\end{aligned}
$$

And the associated affine application is:

$$
\begin{aligned}
& \mathbb{R}^{n} \longrightarrow \mathbb{R}^{n} \\
& X \longmapsto \frac{M X+V}{\omega}
\end{aligned}
$$

In other words, a QAT is the composition of the associated affine application and the integer part floor function.

Definition 2. A QAT is said to be contracting if $\omega^{n}>|\operatorname{det}(M)|$, otherwise it is said to be dilating.

[^0]In other words, a QAT is contracting if and only if the associated affine application is contracting. Note that if $\omega^{n}=|\operatorname{det}(M)|$, the QAT is dilating, even if the associated affine application is an isometry.

Definition 3. The inverse of a $Q A T(\omega, M, V)$ is the $Q A T$:

$$
\begin{equation*}
\left(\operatorname{det}(M), \omega \operatorname{com}(M)^{t},-\operatorname{com}(M)^{t} V\right), \tag{2}
\end{equation*}
$$

where ${ }^{t}$ denotes the transposed matrix and $\operatorname{com}(M)$ the co-factor matrix of $M{ }^{2}$.
The associated affine application of the inverse of a QAT is therefore the inverse of the affine application associated to the QAT. However, due to the nested floor function, the composition $f \cdot f^{-1}$ is not the identity function in the general case.

3 QAT Properties in Higher Dimensions

Without loss of generality, we suppose that the QAT is contracting.

3.1 Pavings of a QAT

A key feature of a QAT in dimension 2 is the paving induced by the reciprocal map of a discrete point. In the following, we adapt the definitions in higher dimensions and prove that a QAT in \mathbb{Z}^{n} also carries a periodic paving.

Definition 4 (Paving). Let f be a $Q A T$. For $Y \in \mathbb{Z}^{n}$, we denote:

$$
\begin{equation*}
P_{Y}=\left\{X \in \mathbb{Z}^{n} \mid f(X)=Y\right\}=f^{-1}(Y) \tag{3}
\end{equation*}
$$

P_{Y} is called order 1 paving of index Y of f.
P_{Y} can be interpreted as a subset of \mathbb{Z}^{n} (maybe empty) that corresponds to the reciprocal map of Y by f. We easily show that the set of pavings of a QAT forms a paving of the considered space (see Fig. 1). In dimension 2, this definition exactly coincides with previous ones 46|7185.

Definition 5. P_{Y} is said arithmetically equivalent to P_{Z} (denoted $P_{Y} \equiv P_{Z}$) if:

$$
\begin{equation*}
\forall X \in P_{Y}, \exists X^{\prime} \in P_{Z},\left\{\frac{M X+V}{\omega}\right\}=\left\{\frac{M X^{\prime}+V}{\omega}\right\} \tag{4}
\end{equation*}
$$

Again, this definition is equivalent (as shown below) to those given in the literature.

Theorem 1. The equivalence relationship is symmetric, i.e.:

$$
\begin{equation*}
P_{Y} \equiv P_{Z} \Leftrightarrow P_{Z} \equiv P_{Y} \tag{5}
\end{equation*}
$$

Proof. The proof is given 9.

Fig. 1. Pavings of the QAT $\left(84,\left(\begin{array}{cc}12 & -11 \\ 18 & 36\end{array}\right),\binom{150}{-500}\right)$ with their indexes (in 2D, these are the couples: $Y=(x, y))$.

$P_{0,1}$		$P_{5,1}$		$P_{1,0}$	
X	$\left\{\frac{M X+V}{\omega}\right\}$	X	$\left\{\frac{M X+V}{\omega}\right\}$	X	$\left\{\frac{M X+V}{\omega}\right\}$
$\binom{3}{15}$	$\binom{21}{10}$	$\binom{27}{3}$	$\binom{21}{10}$	$\binom{6}{11}$	$\binom{17}{4}$
(5)	(56	(29)	(56	(8)	(52
(14)	(10)	(2)	(10)	(10)	(4)
$\binom{4}{15}$	$\binom{33}{28}$	$\binom{28}{3}$	$\binom{33}{38}$	$\binom{7}{11}$	$\binom{29}{29}$
(15)	(28)	(3)	28)	(11)	(22)
$\binom{6}{14}$	$\binom{68}{28}$	$\binom{30}{2}$	$\binom{68}{28}$	$\binom{9}{10}$	$\binom{64}{20}$
14)	(28)	$\left(\begin{array}{l}2 \\ \hline\end{array}\right.$	28)	(10)	${ }^{22}$
$\binom{3}{16}$	$\binom{10}{46}$	(27)	$\binom{10}{46}$		
$\binom{5}{15}$	$\binom{45}{46}$	$\binom{29}{3}$	$\binom{45}{46}$	$\binom{8}{11}$	$\binom{41}{40}$
(7	(80)	(31)	(80)	(10)	(76)
(14)	(46)	(2)	(46)	(10)	(40)
(4)	(22)	(28)	(22)	(7)	(18
(16)	(64)	(4	(64)	(12)	(58)
$\binom{6}{15}$	$\binom{57}{64}$	$\binom{30}{3}$	$\binom{57}{64}$	$\binom{9}{11}$	$\binom{53}{58}$
(15)	(64)	(3)	(64)	(11)	(58)
$\binom{5}{16}$	$\binom{34}{82}$	$\binom{29}{4}$	$\binom{34}{82}$	$\binom{8}{12}$	$\binom{30}{70}$
(16)	(82)	(4)	(82)	(12)	76
(7)	$\binom{69}{82}$	(31)	$\binom{69}{82}$	$\binom{10}{11}$	$\binom{65}{76}$

Table 1. Pavings of index $(0,1),(5,1)$ and $(1,0)$ of the QAT $\left(84,\left(\begin{array}{cc}12 & -11 \\ 18 & 36\end{array}\right),\binom{150}{-500}\right)$

Figure 1 illustrates arithmetically equivalent pavings: the pavings of index $(0,1)$ and $(5,1)$ are arithmetically equivalent (see Table 1).

Definition 6. P_{Y} and P_{Z} are said geometrically equivalent if:

$$
\begin{equation*}
\exists \boldsymbol{v} \in \mathbb{Z}^{n}, P_{Y}=T_{\boldsymbol{v}} P_{Z}, \tag{6}
\end{equation*}
$$

where $T_{\boldsymbol{v}}$ denotes the translation of vector \boldsymbol{v}.
In Figure 1 , the pavings of indexes $(0,1)$ and $(1,0)$ are geometrically equivalent. In image processing purposes, when we want to transform a n-dimensional image by a QAT, geometrically equivalent pavings will allow us to design fast transformation algorithms.

Theorem 2. If $P_{Y} \equiv P_{Z}$, then P_{Y} and P_{Z} are geometrically equivalent. Since $P_{Y} \equiv P_{Z}$, there exists $X \in P_{Y}$ and $X^{\prime} \in P_{Z}$ such that:

$$
\left\{\frac{M X+V}{\omega}\right\}=\left\{\frac{M X^{\prime}+V}{\omega}\right\} .
$$

Then $\boldsymbol{v}=X-X^{\prime}$ is the translation vector:

$$
P_{Y}=T_{\boldsymbol{v}} P_{Z}
$$

In dimension 2 , this theorem is also proved in [7].
Proof. The proof is given in 9 .
In a computational point of view, if a paving P_{Y} has been already computed, and if we know that $P_{Y} \equiv P_{Z}$, then P_{Z} can be obtained by translation of P_{Y}. In Figure 1, the pavings of index $(0,1)$ and $(5,1)$ are arithmetically equivalent (see Table 11), therefore they are geometrically equivalent (as we can check on the figure). Note that the inverse implication is false: in Figure 1, the pavings of index $(0,1)$ and $(1,0)$ are geometrically equivalent but they are not arithmetically equivalent (see Table 1).

3.2 Paving Periodicity

Definition 7. $\forall 0 \leq i<n$, We define the set \mathcal{A}_{i} as follows:

$$
\begin{aligned}
\mathcal{A}_{i}=\left\{\alpha \in \mathbb{N}^{*} \mid \exists\left(\beta_{j}\right)_{0 \leq j<i} \in \mathbb{Z}^{i},\right. & \forall\left(y_{0}, \ldots, y_{n-1}\right) \in \mathbb{Z}^{n} \\
& \left.P_{y_{0}, \ldots, y_{i}+\alpha, \ldots, y_{n-1}} \equiv P_{y_{0}+\beta_{0}, \ldots, y_{i-1}+\beta_{i-1}, y_{i}, \ldots, y_{n-1}}\right\}
\end{aligned}
$$

Theorem 3 (Perdiodicity). The set of QAT pavings is n-periodic, in other words

$$
\forall 0 \leq i<n, \mathcal{A}_{i} \neq \emptyset
$$

[^1]Proof. The proof is given in Sect. A.1.
If we consider $\alpha=|\operatorname{det}(M)|$ as in Sect. A.1, we have demonstrated the periodic structure of QAT pavings since $P_{Y} \equiv P_{Y+\alpha e_{i}}$ for each i. We investigate now the quantities α_{i} which are minimal for each dimension i,

Definition 8. $\forall 0 \leq i<n$, let us consider $\alpha_{i}=\min \left(\mathcal{A}_{i}\right)$. We define $\left\{\beta_{j}^{i}\right\}_{0 \leq j<i} \in$ \mathbb{Z}^{i} and $U_{i} \in \mathbb{Z}^{n}$ such that

$$
\forall\left(y_{0}, \ldots, y_{n-1}\right) \in \mathbb{Z}^{n}, P_{y_{0}, \ldots, y_{i}+\alpha_{i}, \ldots, y_{n-1}}=T_{\boldsymbol{U}_{i}} P_{y_{0}+\beta_{0}^{i}, \ldots, y_{i-1}+\beta_{i-1}^{i}, y_{i}, \ldots, y_{n-1}}
$$

Thanks to Theorem 2 and using notations of Def. 8, let $X \in P_{y_{0}, \ldots, y_{i}+\alpha_{i}, \ldots, y_{n-1}}$ and $X^{\prime} \in P_{y_{0}+\beta_{0}^{i}, \ldots, y_{i-1}+\beta_{i-1}^{i}, y_{i}, \ldots, y_{n-1}}$, such that $\left\{\frac{M X+V}{\omega}\right\}=\left\{\frac{M X^{\prime}+V}{\omega}\right\}$. Then, we have $U_{i}=X-X^{\prime}$.

The quantities $\alpha_{i}, \beta_{j}^{i}$ and U_{i} can be computed in dimension 2 and 3 (see [9]) by using greatest common divisors and Euclide's algorithm. The computation of α_{2} in 3D already involves a consequent number of intermediate variables, that is why these computations seem to be hard to generalize in arbitrary dimension. Therefore, we will suppose here that quantities $\alpha_{i}, \beta_{j}^{i}$ and U_{i} are given.

To paraphrase above results, α_{i} and its associated U_{i} and $\left\{\beta_{j}^{i}\right\}$ allows us to reduce the $i^{\text {th }}$ component of Y while preserving the geometrically equivalence relationship. If we repeat this reduction process to each component from $n-1$ down-to 0 , we construct a point Y^{0} such that P_{Y} and $P_{Y^{0}}$ are geometrically equivalent. The following theorem formalizes this principle and defines the initial period paving $P_{Y^{0}}$.

Theorem 4. $\forall\left(y_{0}, \ldots, y_{n-1}\right) \in \mathbb{Z}^{n}$, we have $P_{y_{0}, \ldots, y_{n-1}}=T_{W} P_{y_{0}^{0}, \ldots, y_{n-1}^{0}}$ with

$$
\begin{aligned}
& W=\sum_{i=0}^{n-1} w_{i} U_{i} \\
& \text { and } \forall n>i \geq 0,\left\{\begin{array}{l}
w_{i}=\left[\frac{y_{i}+\sum_{j=i+1}^{n-1} w_{j} \beta_{i}^{j}}{\alpha_{i}}\right] \\
y_{i}^{0}=\left\{\frac{y_{i}+\sum_{j=i+1}^{n-1} w_{j} \beta_{i}^{j}}{\alpha_{i}}\right\}
\end{array}\right.
\end{aligned}
$$

Proof. The proof is given in Sect. A. 2
Therefore, if we already computed the pavings $P_{y_{0}^{0}, \ldots, y_{n-1}^{0}}$ for $0 \leq y_{i}^{0}<\alpha_{i}$, we can obtain any paving by translation of one of these pavings.

3.3 Super-paving of a QAT

We now describe how to compute these initial period pavings based on the notion of super-paving (see Fig. 2 .

Definition 9. A super-paving of a $Q A T$ is the set \mathcal{P} such that

$$
\mathcal{P}=\bigcup_{0 \leq Y^{0}<\left(\alpha_{0}, \ldots, \alpha_{n-1}\right)} P_{Y^{0}}
$$

In other words, the super-paving is the union of all pavings of the initial period. In dimension 2, this definition coincides with definitions given in 7688 .
Theorem 5. \mathcal{P} is the paving $P_{(0, \ldots, 0)}$ of the $Q A T$ defined by:

$$
\left(\omega \operatorname{lcm}_{0 \leq i<n}\left(\alpha_{i}\right),\left(\begin{array}{ccc}
\theta_{0} & \cdots & 0 \tag{7}\\
\vdots & \ddots & \vdots \\
0 & \cdots & \theta_{n-1}
\end{array}\right) M,\left(\begin{array}{ccc}
\theta_{0} & \cdots & 0 \\
\vdots & \ddots & \vdots \\
0 & \cdots & \theta_{n-1}
\end{array}\right) V\right)
$$

with $\forall 0 \leq i<n$,

$$
\theta_{i}=\frac{\operatorname{lcm}_{0 \leq j<n}\left(\alpha_{j}\right)}{\alpha_{i}}
$$

Proof. The proof is given in [9.

Fig. 2. Super-paving decomposition of the QAT defined in Fig. 1. Arrows illustrate a basis of the periodic structure, numbers on white background are the y_{i}, and numbers on black background are the w_{i}.

Hence, we can associate a canonical paving to each point of the super-paving. More precisely, the super-paving allows us to compute the equivalence classes for the arithmetical equivalence relationship between two pavings.

3.4 Paving Construction

In this section, we focus on an arithmetic paving construction algorithm. Hence, using the results of the previous section, such a construction algorithm will be used to compute canonical pavings in the super-paving.

Definition 10. The matrix T is the Hermite Normal Form of the QAT matrix M if:

- T is upper triangular, with coefficients $\left\{T_{i j}\right\}$ such that $T_{i i}>0$;
$-\exists H \in G L_{n}(\mathbb{Z}), M H=T$.
If M is nonsingular integer matrix, the Hermite Normal Form exists. Note also that if $H \in M_{n}(\mathbb{Z})$, then $H \in G L_{n}(\mathbb{Z}) \Leftrightarrow|\operatorname{det}(H)|=1$.

For example, given $\left(\begin{array}{cc}12 & -11 \\ 18 & 36\end{array}\right)$, we have: $\left(\begin{array}{cc}12 & -11 \\ 18 & 36\end{array}\right)\left(\begin{array}{cc}2 & 1 \\ -1 & 0\end{array}\right)=\left(\begin{array}{cc}35 & 12 \\ 0 & 18\end{array}\right)$.
Using the Hermite Normal Form, we can design a fast paving computation algorithm formalized in the following theorem:

Theorem 6. $\forall Y \in \mathbb{Z}^{n}$, let $M H=T$ be the Hermite Normal Form of the $Q A T$ matrix M, then

$$
\begin{equation*}
P_{Y}=\left\{H X \mid \forall n>i \geq 0, A_{i}\left(X_{i+1}, \ldots, X_{n-1}\right) \leq X_{i}<B_{i}\left(X_{i+1}, \ldots, X_{n-1}\right)\right\} \tag{8}
\end{equation*}
$$

With

$$
\begin{aligned}
& A_{i}\left(X_{i+1}, \ldots, X_{n-1}\right)=-\left[\frac{-\omega Y_{i}+\sum_{j=i+1}^{n-1} T_{i, j} X_{j}+V_{i}}{T_{i, i}}\right] \\
& B_{i}\left(X_{i+1}, \ldots, X_{n-1}\right)=-\left[\frac{-\omega\left(Y_{i}+1\right)+\sum_{j=i+1}^{n-1} T_{i, j} X_{j}+V_{i}}{T_{i, i}}\right] .
\end{aligned}
$$

In [7/8], a similar result can be obtained in dimension 2. However, the Hermite Normal Form formalization allows us to prove the result in higher dimension. To prove Theorem 6, let us first consider the following technical lemma:

Lemma 1. Let $a, b, q, x \in \mathbb{Z}$ with $q>0$, then

$$
a \leq q x<b \Leftrightarrow-\left[\frac{-a}{q}\right] \leq x<-\left[\frac{-b}{q}\right] .
$$

Proof. The proof is detailed in 9 .
We can now prove the Theorem 6 (cf Sect. A.3). The implementation of the construction algorithm is straightforward: we just have to consider n nested loop such that the loop with level i goes from A_{i} to B_{i} quantities. See [9 for details in dimension 2 and 3 .

4 A Generic QAT Algorithm

In Algorithm 1, we give the generic algorithm applying a contracting QAT f to an image \mathcal{A} (see Fig. 3). The principle is that we give to each pixel Y of image \mathcal{B} the average color of the paving P_{Y} in image \mathcal{A}. If f is a dilating QAT, we obtain the very similar Algorithm 2 which principle is that firstly we replace f

```
Algorithm 1: Generic QAT algorithm for a contracting QAT
    Input: a contracting QAT \(f:=(\omega, M, \boldsymbol{V})\), an image \(\mathcal{A}: \mathbb{Z}^{n} \rightarrow \mathbb{Z}\)
    Output: a transformed image \(\mathcal{B}: \mathbb{Z}^{n} \rightarrow \mathbb{Z}\)
    Compute the Hermite Normal Form of the matrix \(M\);
    Determine the minimal periodicities \(\left\{\alpha_{i}\right\}\) and vectors \(\left\{\boldsymbol{U}_{i}\right\}\);
    Use Theorems 5 and 6 to compute the canonical pavings in the super-paving \(\mathcal{P}\);
    foreach \(Y \in \mathcal{B}\) do
        Find \(Y^{0}\) and \(W\) such that \(P_{Y}=T_{W} P_{Y^{0}}\) by using Theorem 4
        sum \(\leftarrow 0\);
        foreach \(Z \in P_{Y^{0}}\) do
            \(c \leftarrow \mathcal{A}\left(T_{W} Z\right)\); // we read the color in the initial image
            sum \(\leftarrow\) sum \(+c\);
        \(\mathcal{B}(Y) \leftarrow \operatorname{sum} /\left|P_{Y^{0}}\right| ; \quad / /\) we set the color
```

```
Algorithm 2: Generic QAT algorithm for a dilating QAT
    Input: a dilating QAT \(f:=(\omega, M, \boldsymbol{V})\), an image \(\mathcal{A}: \mathbb{Z}^{n} \rightarrow \mathbb{Z}\)
    Output: a transformed image \(\mathcal{B}: \mathbb{Z}^{n} \rightarrow \mathbb{Z}\)
    Replace \(f\) with \(f^{-1}\);
    Compute the Hermite Normal Form of the matrix \(M\);
    Determine the minimal periodicities \(\left\{\alpha_{i}\right\}\) and vectors \(\left\{\boldsymbol{U}_{i}\right\}\);
    Use Theorems 5 and 6 to compute the canonical pavings in the super-paving \(\mathcal{P}\);
    foreach \(Y \in \mathcal{A}\) do
        Find \(Y^{0}\) and \(W\) such that \(P_{Y}=T_{W} P_{Y^{0}}\) by using Theorem 4 .
        \(c \leftarrow \mathcal{A}(Y) ; \quad\) // we read the color in the initial image
        foreach \(Z \in P_{Y^{0}}\) do
            \(\mathcal{B}\left(T_{W} Z\right) \leftarrow c ; \quad\) // we set the color
```

with f^{-1}, and then we give the color of each pixel Y of image \mathcal{A} to each pixel of P_{Y} in image \mathcal{B}. In both algorithms, some elements cannot be computed in arbitrary dimension n. Indeed, even if there exist algorithms to compute the Hermite Normal Form of an arbitrary square integer matrix 11, there is no generic algorithm to obtain the minimal periodicities $\left\{\alpha_{i}\right\}$.

In [9, we detail the computation of the minimal periodicities in dimension 2 and 3. We also demonstrate with a complete experimental analysis that algorithms 1 and 2 outperform classical techniques to transform an image by affine functions.

5 Conclusion and Future Works

In this paper, we have demonstrated that in higher dimension, Quasi-Affine Transformations contain arithmetical properties leading to the fact that the induced pavings are n-periodic. Furthermore, thanks to the Hermite Normal Form of the QAT matrix, we have presented efficient algorithms to construct a

Fig. 3. Illustration in dimension 2 of the QAT algorithm when f is contracting (a) and dilating (b). In both cases, we use the canonical pavings contained in the super-paving to speed-up the transformation.
given paving and to compute a set of canonical pavings. From all these theoretical results, fast transformation algorithms have been designed in [9]. However, several future works exist. First, as detailed in Sections 3.1 and 3.3 , the superpaving of a QAT contains a set of arithmetically distinct pavings. However, two arithmetical distinct pavings may be geometrically equivalent. Hence, a subset of the super-paving may be enough to design a fast algorithm. In dimension 2 , in [46778], the authors have investigated another structure, so-called generative strip, which removes some arithmetical distinct pavings whose geometry are identical. Even if the generalization in higher dimension of this object is not trivial, it may be interesting to investigate theoretical techniques to reduce the canonical paving set. Finally, a generic algorithm to compute the minimal periodicities is challenging.

References

1. Shizawa, M.: Discrete invertible affine transformations. In: 10th International Conference on Pattern Recognition, Atlantic City, IEEE (June 1990) 134-139 Vol.II.
2. Condat, L., Van De Ville, D., Forster-Heinlein, B.: Reversible, fast, and highquality grid conversions. IEEE Transactions on Image Processing 17(5) (May 2008) 679-693
3. Andres, E.: The quasi-shear rotation. In Miguet, S., Montanvert, A., Ubéda, S., eds.: Proceedings of the 6th International Workshop on Discrete Geometry for Computer Imagery, DGCI'96 (Lyon, France, November 13-15, 1996). Volume 1176 of LNCS. Springer-Verlag, Berlin-Heidelberg-New York-London-Paris-Tokyo-Hong Kong-Barcelona-Budapest-Milan-Santa Clara-Singapore (1996) 307-314
4. Nehlig, P., Ghazanfarpour, D.: Affine Texture Mapping and Antialiasing Using Integer Arithmetic. Computer Graphics Forum 11(3) (1992) 227-236
5. Jacob, M.: Transformation of digital images by discrete affine applications. Computers \& Graphics 19(3) (1995) 373-389
6. Nehlig, P.: Applications quasi affines: pavages par images réciproques. Theoretical Computer Science 156(1-2) (1996) 1-38
7. Jacob, M.: Applications quasi-affines. PhD thesis, Université Louis Pasteur, Strasbourg, France (1993)
8. Jacob-Da Col, M.: Applications quasi-affines et pavages du plan discret. Theoretical Computer Science 259(1-2) (2001) 245-269 english version: http://dpt-info. u-strasbg.fr/~jacob/articles/paving.pdf.
9. Blot, V., Coeurjolly, D.: Quasi-affine transform in higher dimension. Technical Report RR-LIRIS-2009-010, Laboratoire LIRIS (April 2009) http://liris.cnrs. fr/publis?id=3853
10. Col, M.A.J.D., Tellier, P.: Quasi-linear transformations and discrete tilings. Theor. Comput. Sci 410(21-23) (2009) 2126-2134
11. Storjohann, A., Labahn, G.: Asymptotically fast computation of hermite normal forms of integer matrices. In: ISSAC '96: Proceedings of the 1996 international symposium on Symbolic and algebraic computation, New York, NY, USA, ACM (1996) 259-266

A Appendix: Proofs

A. 1 Theorem 3

Proof. Given $0 \leq i<n$, let us suppose that $\forall 0 \leq j<i, \beta_{j}=0$ and $\alpha=|\operatorname{det}(M)|$. Let $Y \in \mathbb{Z}^{n}, X \in P_{Y}$, and

$$
X^{\prime}=X+\frac{\operatorname{det}(M)}{|\operatorname{det}(M)|} \omega \operatorname{com}(M)^{t} e_{i}
$$

with e_{i} being the i-th vector of the canonical basis of \mathbb{R}^{n}. We prove that $\mathcal{A}_{i} \neq \emptyset$ since $P_{Y} \equiv P_{Y+\alpha e_{i}}$:

$$
\begin{aligned}
M X^{\prime}+V & =M X+V+M \frac{\operatorname{det}(M)}{|\operatorname{det}(M)|} \omega \operatorname{com}(M)^{t} e_{i}=\omega Y+\left\{\frac{M X+V}{\omega}\right\}+\omega \frac{\operatorname{det}(M)}{|\operatorname{det}(M)|} M \operatorname{com}(M)^{t} e_{i} \\
& =\omega Y+\left\{\frac{M X+V}{\omega}\right\}+\omega \frac{\operatorname{det}(M)}{|\operatorname{det}(M)|} \operatorname{det}(M) e_{i} \\
& =\omega Y+\left\{\frac{M X+V}{\omega}\right\}+\omega|\operatorname{det}(M)| e_{i}=\omega\left(Y+\alpha e_{i}\right)+\left\{\frac{M X+V}{\omega}\right\}
\end{aligned}
$$

Hence, $\left\{\frac{M X^{\prime}+V}{\omega}\right\}=\left\{\frac{M X+V}{\omega}\right\}$ and thus $X^{\prime} \in P_{Y+\alpha e_{i}}$. Finally, $P_{Y+\alpha e_{i}} \equiv P_{Y}$ which proves that $\alpha \in \mathcal{A}_{i}$.

A. 2 Theorem 4

Proof. Let us denote $\mathcal{T}(j)$ the proposition

$$
P_{y_{0}, \ldots, y_{n-1}}=T_{\sum_{i=j}^{n-1} w_{i} U_{i}} P_{y_{0}+\sum_{i=j}^{n-1} w_{i} \beta_{0}^{i}, \ldots, y_{j-1}+\sum_{i=j}^{n-1} w_{i} \beta_{j-1}^{i}, y_{j}^{0}, \ldots, y_{n-1}^{0}} .
$$

We consider the following induction: given $n>p \geq 0$, we suppose $\mathcal{T}(p+1)$ and prove $\mathcal{T}(p)$. As a consequence of Def. 8 ,

$$
\forall\left(z_{1}, \ldots, z_{n-1}\right) \in \mathbb{Z}^{n}, P_{z_{0}, \ldots, z_{p}+\alpha_{p}, \ldots, z_{n-1}}=T_{U_{p}} P_{z_{0}+\beta_{0}^{p}, \ldots, z_{p-1}+\beta_{p-1}^{p}, z_{p}, \ldots, z_{n-1}}
$$

Hence, $\forall k \in \mathbb{Z}$, we have

$$
\begin{gather*}
P_{z_{0}, \ldots, z_{p}+k \alpha_{p}, \ldots, z_{n-1}}=T_{k U_{p}} P_{z_{0}+k \beta_{0}^{p}, \ldots, z_{p-1}+k \beta_{p-1}^{p}, z_{p}, \ldots, z_{n-1}} \\
\text { With }\left\{\begin{array}{l}
k=w_{p} \\
\forall 0 \leq j<p, z_{j}=y_{j}+\sum_{i=p+1}^{n-1} w_{i} \beta_{j}^{i} \quad, \text { we obtain } \\
\forall p \leq j<n, z_{j}=y_{j}^{0}
\end{array}\right. \\
\begin{array}{r}
P_{y_{0}+\sum_{i=p+1}^{n-1} w_{i} \beta_{0}^{i}, \ldots, y_{p-1}+\sum_{i=p+1}^{n-1} w_{i} \beta_{p-1}^{i}, y_{p}^{0}+w_{p} \alpha_{p}, y_{p+1}^{0}, \ldots, y_{n-1}^{0}}=T_{w_{p} U_{p}} P_{y_{0}+\sum_{i=p}^{n-1} w_{i} \beta_{0}^{i}, \ldots, y_{p-1}+\sum_{i=p}^{n-1} w_{i} \beta_{p-1}^{i}, y_{p}^{0}, \ldots, y_{n-1}^{0}}
\end{array}
\end{gather*}
$$

Since $\mathcal{T}(p+1)$ is true, and since $y_{p}+\sum_{j=p+1}^{n-1} w_{j} \beta_{p}^{j}=y_{p}^{0}+\alpha_{p} w_{p}$, we have $P_{y_{0}, \ldots, y_{n-1}}=T_{\sum_{i=p+1}^{n-1} w_{i} U_{i}} P_{y_{0}+\sum_{i=p+1}^{n-1} w_{i} \beta_{0}^{i}, \ldots, y_{p-1}+\sum_{i=p+1}^{n-1} w_{i} \beta_{p-1}^{i}, y_{p}^{0}+\alpha_{p} w_{p}, y_{p+1}^{0}, \ldots, y_{n-1}^{0}}$

We can identify the left side of Eq. (9) to the right part of the right side of 10 , summing up the translation vectors leads to $\mathcal{T}(p)$. Since $\mathcal{T}(n): P_{y_{0}, \ldots, y_{n-1}}=$ $T_{0} P_{y_{0}, \ldots, y_{n-1}}$ is trivial, we prove $\mathcal{T}(0)$ and thus the theorem.

A. 3 Theorem 6

Proof. Let $X, Y, Z \in \mathbb{Z}^{n}$ such that $X=H^{-1} Z$,

$$
\begin{aligned}
Z \in P_{Y} & \Leftrightarrow\left[\frac{M Z+V}{\omega}\right]=Y \\
& \Leftrightarrow\left[\frac{T X+V}{\omega}\right]=Y \\
& \Leftrightarrow \forall 0 \leq i<n, \omega y_{i} \leq \sum_{j=i}^{n-1} T_{i, j} X_{j}+V_{i}<\omega\left(y_{i}+1\right) \\
& \Leftrightarrow \forall 0 \leq i<n, \omega y_{i}-\sum_{j=i+1}^{n-1} T_{i, j} X_{j}-V_{i} \leq T_{i, i} X_{i}<\omega\left(y_{i}+1\right)-\sum_{j=i+1}^{n-1} T_{i, j} X_{j}-V_{i} .
\end{aligned}
$$

Thanks to Lemma 1, $Z \in P_{Y}$ is equivalent to

$$
\forall 0 \leq i<n, A_{i}\left(X_{i+1}, \ldots, X_{n-1}\right) \leq X_{i}<B_{i}\left(X_{i+1}, \ldots, X_{n-1}\right)
$$

\square

[^0]: ${ }^{1}\left\{\frac{a}{b}\right\}$ denotes the corresponding remainder $\left\{\frac{a}{b}\right\}=a-b\left[\frac{a}{b}\right]$.

[^1]: ${ }^{2}$ Remind that $M \operatorname{com}(M)^{t}=\operatorname{com}(M)^{t} M=\operatorname{det}(M) I_{n}$.

