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a b s t r a c t

In many geometry processing applications, the estimation of differential geometric quantities such as

curvature or normal vector field is an essential step. In this paper, we investigate a new class of

estimators on digital shape boundaries based on integral invariants (Pottmann et al., 2007) [39]. More

precisely, we provide both proofs of multigrid convergence of principal curvature estimators and a

complete experimental evaluation of their performances.

� 2014 Elsevier Inc. All rights reserved.

1. Introduction

1.1. Context and objectives

In many shape processing applications, the estimation of

differential quantities on the shape boundary is usually an impor-

tant step. Their correct estimation makes easier further processing,

like quantitative evaluation, feature detection, shape matching or

visualization. This paper focuses on estimating the curvature

tensor on the boundary of digital shapes. Such digital structures

are subsets of the 3-dimensional digital space Z
3 and come gener-

ally from the digitization of some Euclidean shape. Of course, the

curvature tensor estimation should be as close as possible to the

curvature tensor of the underlying Euclidean shape before digitiza-

tion. Digital data form a special case of discrete data with specific

properties: (1) digital data cannot sample the boundary of the

Euclidean shape (i.e. they do not lie on the shape boundary), (2)

digital data is distributed around the true sample according to

arithmetic noise, which looks rather uniform over a range ½�h;h�
from a statistical point of view, where h is the digitization grid step.

Another way of stating these characteristics is to say that the Haus-

dorff distance between the Euclidean shape and its digitization is

some OðhÞ. Of course, the quality of the estimation should be

improved as the digitization step gets finer and finer. This property

is called themultigrid convergence [25,11]. It is similar in spirit with

the stability property in geometry processing: given a continuous

shape and a specific sampling of its boundary, the estimated mea-

sure should converge to the Euclidean one when the sampling

become denser (e.g. [2,35]).

Our objective is to design a curvature tensor estimator for dig-

ital data such that: (1) it is provably multigrid convergent, (2) it is

accurate in practice, (3) it is computable in an exact manner, (4) it

can be efficiently computed either locally or globally (evaluation at

a single surface point or extraction of the curvature tensor field),

(5) it is robust to further perturbations (like bad digitization

around the boundary, outliers).

1.2. Related works for meshes

Digital data being discrete in nature, it is interesting to look at

the curvature estimation techniques on triangulated meshes. In

computer graphics and geometry processing, there exists a vast

family of techniques to estimate either the mean or Gaussian cur-

vatures, or sometimes the full curvature tensor. Most of them are

local (i.e. limited to a 1-ring or 2-ring of neighbors) but exhibit

correct results for nice meshes. They generally fall into three

categories: fitting, discrete methods, curvature tensor estimation.

We may refer to [44,20] for comprehensive evaluations, and

Desbrun et al. [17] or Bobenko and Suris [5] for an entirely discrete

theory. Most of them have not theoretical convergence guarantees
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even without noise on the mesh. We may quote [37,42] as

approaches trying to tackle perturbation through averaging.

For Gaussian curvature estimated with Gauss-Bonnet approach

(angle defect), Xu [47] provides a stability theorem for triangulated

mesh whose vertices lie on the underlying smooth manifold, with

valence 6 and parallelogram condition (each 1-ring of neighbors is

projected as a parallelogram onto a plane). Assuming a sampling

with density d, he provides an additional convergence property

whenever the sampling is perturbated by some OðdaÞ, but a > 2

(inadequate for discrete data). Note that if the triangulated mesh

did not satisfy these requirements, such estimation did not

converge.

The integral measures of curvatures, based on normal cycle the-

ory [13,14] is another notable approach for estimating curvature

information on a triangulated mesh. The authors exhibit some con-

vergence results for triangulated meshes with vertices lying on the

underlying smooth Euclidean shape boundary. In this case, if the

mesh has Hausdorff distance to shape boundary below �, conver-
gence is obtained with speed/error Oð�Þ under some hypotheses.

Finally, in geometry processing, interesting mathematical tools

have been developed to design differential estimators on smooth

surfaces based on integral invariants [39,38]. They consist in mov-

ing a kernel along the shape surface and in computing integrals on

the intersection between the shape and the kernel. The authors

have demonstrated that some integral quantities provide interest-

ing curvature information when the kernel size tends to zero. They

also achieve stability depending on the kernel radius and on �, for
instance in the case of a mesh sampling. Our new estimators rely

on the same ideas.

1.3. Related works for point clouds

When having only discrete data (i.e. a cloud of points), the most

natural way to approach curvature(s) is to fit a polynomial surface

of degree two at least. Perhaps the best representative of these

techniques is the osculating jets of Cazals and Pouget [8]. The

authors provide Oðd2Þ convergence results when the data is a sur-

face sampling, assuming d is the density of points. There is no the-

oretical result in presence of noise, although the least-square

fitting of osculating jets is very robust to noise in practice.

Another family of techniques exploits the Voronoi diagram

[1,34,35]. The idea behind these approaches is, instead of fitting

the tangent space, to estimate at best the orthogonal space. The

convolved covariance measure introduced by Mérigot et al. [35]

is particularly appealing since this measure achieves robustness

even for arbitrary compact sets, essentially in Oð
ffiffiffi
�

p
Þ. It is in some

sense an integral measure of the covariance matrix of the normal

cone around the point of interest. However, convergence of curva-

ture(s) is subject to several parameters r and R which contribute

contradictorily to the Hausdorff error. In practice, this approach

gives results comparable to osculating jets for curvatures.

Recently, several authors have developed new interesting

approaches for estimating the normal vector field on noisy point

clouds, even in the presence of sharp features [32,6,48]. Further-

more, Boulch and Marlet [6] gives probabilistic convergence

results. Although they cannot be used ‘‘as is’’ for curvature compu-

tation, they could be used in parallel with curvature estimation

techniques to locate sharp features in a first pass, and to limit cur-

vature estimations to smooth zones.

1.4. Related works for digital data

In digital geometry, we usually consider multigrid convergence

as an essential criterion [11]. Hence, in dimension 2, parameter

free convergence results have been obtained for length [9] and nor-

mal vector estimation [16]. Based either on binomial convolution

principles [33,18], or polynomial fitting [40], convergence results

can also be obtained for higher order derivatives of digital curves.

Algorithms are parametrized by the size of the convolution or fit-

ting kernel support and convergence theorems hold when such

support size is an increasing function of the grid resolution and

some shape characteristics.

For curvature estimation along 2D curves, multigrid conver-

gence of parameter-free estimators is still challenging, although

accurate experimental results have been obtained with maximal

digital circular arcs [41] and with global optimization [23]. In 3D

digital space, several empirical methods exist for estimating curva-

tures, but none achieves multigrid convergence (e.g. see [31,19]). In

[10], we recently presented a digital estimator for mean curvature

for 2D and 3D digital objects, which achieves multigrid conver-

gence in Oðh1
3Þ.

1.5. Contributions

This paper completes [10] to propose a new curvature tensor

estimator for digital data, which casts carefully the Integral Invari-

ant (II) method of [39,38] into the digital world. This estimator is a

non-trivial extension of our mean digital curvature estimator [10],

since it involves the computation of digital moments and covari-

ance matrices, and requires results from matrix perturbation

theory.

The contributions of the paper can be sketched as follows. First,

we define digital versions of integral invariant estimators with

multigrid convergence results (Theorems 3 and 4). We provide

an explicit formula for the kernel size, which guarantees uniform

convergence in Oðh1
3Þ for smooth enough curves and surfaces (The-

orem 6). Furthermore, we demonstrate that these estimators have

simple, exact and efficient implementations (available in DGTAL

library [46]). We provide an extensive comparative evaluation of

these estimators (mean curvature, principal curvatures), which

shows that they compete with classical ones in terms of accuracy

(Section 4). Computation speed is also considered, and our method

is for instance ten times faster than the osculating jets. Finally, we

show empirical results illustrating the robustness to noise and out-

liers of our estimators.

2. Preliminaries

2.1. Shapes, digital shapes and multigrid convergence

Since we are interested in evaluating both theoretically and

experimentally the behavior of a given differential estimator on

digital object boundaries, we first have to formalize links between

Euclidean objects and digital ones with the help of a digitization

process. Let us consider a family X of smooth and compact subsets

of R
d. In Section 2.3 we will be more precise on the notion of

smoothness for shapes X 2 X. We denote DhðXÞ the digitization

of X in a d-dimensional grid of grid step h. More precisely, we con-

sider classical Gauss digitization defined as

DhðXÞ ¼
def 1

h
� X

� �
\ Z

d; ð1Þ

where 1
h
� X is the uniform scaling of X by factor 1

h
. Furthermore, the

set @X denotes the frontier of X (i.e. its topological boundary). If

z 2 Z
d, then Q z denotes the unit d-dimensional cube of Rd centered

on z. The h-frontier DhZ of a digital set Z � Z
d is defined as

DhZ ¼def @ðh � [z2ZQ zÞ. Therefore, the h-frontier of DhðXÞ is a ðd� 1Þ-
dimensional subset of R

d, which is close to @X. We will precise

the term ‘‘close’’ later in this section. Since this paper deals with

multigrid convergence, digital shapes will always come from the

digitization of continuous ones. To simplify notations, the h-frontier
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of the Gauss digitization at step h of a shape X will simply be

denoted by @hX ¼def DhDhðXÞ, and called later on h-boundary of X.

As discussed in various previous works (see for instance [11] for

a survey), the idea of multigrid convergence is that when we define

a quantity estimator on DhðXÞ, we check if the estimated quantity

converges (theoretically and/or experimentally) to the associated

one on X when h tends to zero. More formally,

Definition 1. Multigrid convergence for local geometric quantities

A local discrete geometric estimator bE of some geometric

quantity E is multigrid convergent for the family X if and only if, for

any X 2 X, there exists a grid step hX > 0 such that the estimate
bEðDhðXÞ; x̂;hÞ is defined for all x̂ 2 @hX with 0 < h < hX , and for any

x 2 @X,

8x̂ 2 @hX with kx̂� xk1 6 h;

bE DhðXÞ; x̂;hð Þ � EðX; xÞ
���

��� 6 sX;xðhÞ; ð2Þ

where sX;x : Rþ n f0g ! R
þ has null limit at 0. This function defines

the speed of convergence of bE toward E at point x of X. The conver-

gence is uniform for X when every sX;x is bounded from above by a

function sX independent of x 2 @X with null limit at 0.

When a geometrical quantity is global (e.g. area or volume), we

do not need an explicit mapping between @X and @hX, and Defini-

tion 1 can be rephrased to define multigrid convergence of global

geometric quantities [11]. A local discrete estimator however esti-

mates a geometric quantity at points on the h-frontier of a digital

set, otherwise said at any point on the interpixel representation

of the digital set boundary. This definition encompasses usual def-

initions where input points are pointels, linels or surfels.

In some proofs, a more precise mapping between points x 2 @X

and x̂ 2 @hX is required. For any shape X 2 R
d, the medial axis

MAð@XÞ of @X is the subset of R
d whose points have more than

one closest point to @X. The reach reach(X) of X is the infimum of

the distance between @X and its medial axis. Shapes with positive

reach have principal curvatures bounded by �1=reachðXÞ. The

(orthogonal) projection pX is the mapping from X nMAð@XÞ onto

@X that associates to each point its closest point in @X (cf. Fig. 1(b)).

This projection can be restricted to domain @hX in order to

define a mapping pX
h from the h-frontier @hX to the boundary @X.

This mapping was called back-projection in [29]. For any 2D shape

X with positive reach, for 0 < h 6 reachðXÞ, Lemma B.9 [29] indi-

cates that the map pX
h is well-defined and onto. It shows that the

Hausdorff distance of boundaries @hX and @X is no greater thanffiffi
2

p

2
h, hence they get closer and closer as the grid step is refined.

In d dimensions, it is possible to show1 that their Hausdorff dis-

tance is no greater than
ffiffi
d

p

2
h. Furthermore, it is a known fact that pX

is continuous over Rd nMAð@XÞ, hence over @hX with an adequate h.

2.2. Integral invariants theory

In geometry processing, integral invariants have been widely

investigated to define estimators of differential quantities (see

[39,38] for a complete overview). For short, the main idea is to

move a kernel on points x 2 @X and to compute integrals on the

intersection between X and the kernel. Even though different ker-

nels (e.g. Euclidean ball, Euclidean sphere) and different integration

functions can be considered, we focus here on volumetric integral

invariants defined as follows:

Definition 2. Given X 2 X and a radius R 2 R
þ�, the volumetric

integral VRðxÞ at x 2 @X is given by (see Fig. 1(a))

VRðxÞ ¼def
Z

BRðxÞ
vðpÞdp; ð3Þ

where BRðxÞ is the Euclidean ball with radius R and center x and vðpÞ
the characteristic function of X. In dimension 2, we simply denote

ARðxÞ such quantity.

Several authors have detailed connections between VRðxÞ and

curvature (resp. mean curvature) at x for shapes in R
2 (resp. R3)

[7,39,38].

If jðX; xÞ is the curvature of @X at x and HðX; xÞ is the mean cur-

vature of @X at x, we have:

Lemma 1 [38]. For a sufficiently smooth shape X in R
2; x 2 @X, we

have

ARðxÞ ¼
p
2
R2 � jðX; xÞ

3
R3 þ OðR4Þ: ð4Þ

For a sufficiently smooth shape X in R
3 and x 2 @X, we have

VRðxÞ ¼
2p
3

R3 � pHðX; xÞ
4

R4 þ OðR5Þ: ð5Þ

Such results are obtained by Taylor expansion at x of the surface

@X approximated by a parametric function y ¼ f ðxÞ in 2D and

z ¼ f ðx; yÞ in 3D. From Eqs. (4) and (5) and with a fixed radius R,

one can derive local estimators ~jR and eHR respectively:

~jRðX; xÞ ¼def 3p
2R

� 3ARðxÞ
R3

; eHRðX; xÞ ¼def 8

3R
� 4VRðxÞ

pR4
: ð6Þ

In this way, when R tends to zero, both estimated values will

converge to expected ones (respectively j and H). More formally:

~jRðX; xÞ ¼ jðX; xÞ þ OðRÞ; eHRðX; xÞ ¼ HðX; xÞ þ OðRÞ: ð7Þ
Similarly, directional information such as principal curvatures

and thus Gaussian curvature can be retrieved from integral compu-

tations. Indeed, instead of computing the measure of BRðxÞ \ X as in

Definition 2, we consider its covariance matrix. Given a non-empty

subset Y � R
d, the covariance matrix of Y is given by

JðYÞ ¼def
Z

Y

ðp� YÞðp� YÞTdp ¼
Z

Y

ppTdp� VolðYÞYYT ; ð8Þ

(a)

(b)

Fig. 1. Integral invariant computation (a) and notations (b) in dimension 2.

1 The proof follows the same lines as Lemma B.9 [29].
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where Y is the centroid of Y and VolðYÞ its volume. For non-negative

integers p; q and s, we recall the definition of ðp; q; sÞ-moments

mp;q;sðYÞ of Y:

mp;q;sðYÞ ¼def
ZZZ

Y

xpyqzsdxdydz: ð9Þ

Note that the volume VolðYÞ is the 0-momentm0;0;0ðYÞ, and that

the centroid Y is the vector of 1-moments normalized by the 0-

moment, i.e. ðm1;0;0ðYÞ;m0;1;0ðYÞ;m0;0;1ðYÞÞT=m0;0;0ðYÞ. For simplic-

ity, let us denote by A the Euclidean set BRðxÞ \ X. The covariance

matrix of A is then rewritten as2:

JðAÞ¼
m2;0;0ðAÞ m1;1;0ðAÞ m1;0;1ðAÞ
m1;1;0ðAÞ m0;2;0ðAÞ m0;1;1ðAÞ
m1;0;1ðAÞ m0;1;1ðAÞ m0;0;2ðAÞ

2
64

3
75� 1

m0;0;0ðAÞ

m1;0;0ðAÞ
m0;1;0ðAÞ
m0;0;1ðAÞ

2
64

3
75�

m1;0;0ðAÞ
m0;1;0ðAÞ
m0;0;1ðAÞ

2
64

3
75

T

:

ð10Þ

In [39], the authors have demonstrated that eigenvalues and

eigenvectors of JðAÞ provide principal curvature and principal

direction information:

Lemma 2 [39, Theorem 2]. Given a shape X 2 X, the eigenvalues

k1; k2; k3 of JðAÞ, where A ¼ BRðxÞ \ X and x 2 @X, have the following

Taylor expansion:

k1 ¼ 2p
15

R5 � p
48

3j1ðX; xÞ þ j2ðX; xÞ
� �

R6 þ OðR7Þ; ð11Þ

k2 ¼ 2p
15

R5 � p
48

j1ðX; xÞ þ 3j2ðX; xÞ
� �

R6 þ OðR7Þ; ð12Þ

k3 ¼ 19p
480

R5 � 9p
512

j1ðX; xÞ þ j2ðX; xÞ
� �

R6 þ OðR7Þ; ð13Þ

where j1ðX; xÞ and j2ðX; xÞ denotes the principal curvatures of @X at

x.3

Hence, similarly to Eq. (6), one can define local estimators ~j1
R, ~j

2
R

and finally the Gaussian curvature eK R ¼def ~j1
R � ~j2

R as functions of

fkig1;2;3 and R. From Lemma 2, all these estimators converge in

the continuous setting when R tends to 0.

When dealing with digital shapes DhðXÞ, implementation of

these estimators becomes straightforward: choose a radius R,

center a Euclidean (or digital) ball at chosen points of @hX (e.g. cen-

troids of linels or surfels), compute the quantities (area, volume,

covariance matrix) and finally estimate curvature information
~j; eH; ~j1, ~j2 or eK . However, several issues are hidden in this

approach: What are meaningful values for R according to the shape

size and geometry? Do points of @hX converge to points x 2 @X for

which Lemmas 1 and 2 are valid? Does counting the number of

pixels (resp. voxels) converge to ARðxÞ (resp. VRðxÞ)? Does the dig-

ital covariance matrix converge to the expected one? The rest of

the paper addresses all these questions.

2.3. Multigrid convergence of 2D and mean curvature estimator in

digital space

In [10], we have demonstrated that digital versions of estima-

tors defined in Eq. (6) lead to efficient and multigrid convergent

estimators for digitizations of smooth 2D shapes. In this section,

we briefly describe the overall structure of this proof since similar

arguments will be used in Section 3 to demonstrate that our digital

principal curvature estimators do converge uniformly.

First, we used existing results on digital area or volume estima-

tion by counting grid points. Hence, for 2D shapes X 2 X and 3D

shapes X 0 2 X, we have

dAreaðDhðXÞ; hÞ ¼def h
2
CardðDhðXÞÞ ¼ AreaðXÞ þ OðhbÞ; ð14Þ

dVolðDhðX0Þ;hÞ ¼def h3
CardðDhðX 0ÞÞ ¼ VolðX0Þ þ OðhcÞ;

for b ¼ c ¼ 1 in the general case and b ¼ c > 1 with further con-

straints on X (e.g. C3 with non-zero curvature) [27,21,26].

Then, we focused on the convergence of the area estimation on

Euclidean shapes defined by BRðxÞ \ X at x 2 @X in dimension 2. We

defined a digital curvature estimator ĵRðDhðXÞ; x; hÞ by applying the

area estimation by counting on BRðxÞ \ X and Eq. (6), see [10, Eq.

(11)]. We first demonstrated that ĵRðDhðXÞ; x;hÞ converges to

jðX; xÞ (note that curvatures are evaluated at the same point

x 2 @X):

Theorem 1 (Convergence of ĵR along @X, [10]). Let X be some convex

shape of R2, with at least C2-boundary and bounded curvature. Then

there exists positive constants h0;K1 and K2 such that

8h < h0;R ¼ kmh
am ; 8x 2 @X;

ĵRðDhðXÞ; x;hÞ � jðX; xÞj j 6 Kh
am ; ð15Þ

where am ¼ b

2þb
; km ¼ ðð1þ bÞK1=K2Þ

1
2þb; K ¼ K2km þ 3K1=k

1þb

m , with

b as above. In the general case, am ¼ 1
3
.

Then, we showed that moving the digital estimation from

x 2 @X to x̂ 2 @hX does not change the convergence results:

Theorem 2 (Uniform convergence ĵR along @hX, [10]). Let X be some

convex shape of R2, with at least C3-boundary and bounded curvature.

Then, there exists positive constants h0 and k, for any h 6 h0, setting

R ¼ kh
1
3, we have

8x 2 @X; 8x̂ 2 @hX;

kx̂� xk1 6 h ) ĵRðDhðXÞ; x̂;hÞ � jðX; xÞj j 6 Kh
1
3:

In [10], we also presented similar results and convergence

speed for mean curvature estimation in 3D from digital volume

estimation.

To demonstrate that principal curvature estimators can be

defined from digital version of integral invariants, we use exactly

the same process:

1. We first demonstrate that digital estimations of covariance

matrix are multigrid convergent (Sections 3.1 and 3.2).

2. Then, we give explicit error bounds on both the geometrical

moments and the covariance matrix when we change the refer-

ence point from x 2 @X to x̂ 2 @hX (Sections 3.3 and 3.4).

3. Finally, we gather all these results to demonstrate that principal

curvature estimators are uniformly multigrid convergent for all

x̂ 2 @hX (Section 3.5).

3. Multigrid convergence of principal curvature estimators in

digital space

In this section, we derive digital principal curvature and princi-

pal direction estimators by digital approximation of local covari-

ance matrices. Convergence results rely on the fact that digital

moments converge in the same manner as volumes [26]. In the

whole section, the considered family of shapes X is composed of

compact subsets of R3 with positive reach, the boundary of which

is C3 and can be decomposed into a finite number of monotonous

(convex/concave) pieces. Compactness is required so that the

boundary belongs to the shape. C3-smoothness is required in the

2 � denotes the usual tensor product in vector spaces.
3 There is a typographic error in k1 in the paper [39].
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truncated Taylor expansion of Pottmann et al. [39,38] relating

covariance matrix and curvatures. Positive reach guarantees that

two pieces of boundaries are not too close to each other, and this

fact is also required in the previous truncated Taylor expansion

(although this is not stated in their paper). The finite decomposi-

tion into monotonous pieces induces that integrals as limits of

sums converge at speed at least OðhÞ.

3.1. Convergence of digital moments

Following the same principles as the area and volume estima-

tors by counting, we define the digital ðp; q; sÞ-moments m̂p;q;sðZ;hÞ
of a subset Z of Z3 at step h as

m̂p;q;sðZ;hÞ ¼def h3þpþqþs
Mp;q;sðZÞ; ð16Þ

where Mp;q;sðZÞ ¼def Pði;j;kÞ2Z i
p
j
q
k
s
. To shorten expressions, we denote

by r the sum pþ qþ s, which will always be an integer in f0;1;2g.
There exist multigrid convergent results for digital moments

that are similar to the multigrid convergence of the area and the

volume estimator (see Eq. (14)). Since their speed of convergence

depends on the order r of the moment, we may thus write for

some constant lr P 1 [26]:

m̂p;q;sðDhðYÞ; hÞ ¼ mp;q;sðYÞ þ OðhlrÞ: ð17Þ
The involved constants li are at least 1 in the general case, and

some authors have established better bounds in places where the

Gaussian curvature does not vanish (e.g. see [28] where

l0 ¼ 38
25
� �, or [36], Theorem 1, where l0 ¼ 66

43
� �).

We wish to apply this formula to the set A ¼ BRðxÞ \ X, whose

size decreases with h. Big ‘‘O’’ notation in Eq. (17) hides the fact

that the involved constant depends on the shape size, scale and

maximal curvature. Hence, we need to normalize our moment esti-

mation so that the error is no more influenced by the scale:

m̂p;q;s DhðAÞ;hð Þ ¼ h
3þr

Mp;q;s

1

h
� BRðxÞ \ X

� �
\ Z

3

� �

¼ h
3þr

Mp;q;s

R

h
� B1

1

R
� x

� �
\ 1

R
� X

� �
\ Z

3

� �

¼ R3þr h

R

� �3þr
Mp;q;s Dh=R B1

1

R
� x

� �
\ 1

R
� X

� �� �

¼ R3þrm̂p;q;s Dh=R B1

1

R
� x

� �
\ 1

R
� X

� �
;
h

R

� �
:

ð18Þ
The shape B1

1
R
� x

� �
\ 1

R
� X tends toward a half-ball of radius 1 as

R decreases. Therefore, we may apply Eq. (17) on Eq. (18)

and consider that the involved constant does not depend on

R or h. Note that we use below the obvious relation

mp;q;sðR � YÞ ¼ R3þrmp;q;sðYÞ.

m̂p;q;s DhðAÞ;hð Þ ¼ R3þrmp;q;s B1
1

R
� x

� �
\ 1

R
� X

� �

þ R3þrO
h

R

� �lr

¼ mp;q;sðBRðxÞ \ XÞ þ OðR3þr�lrh
lr Þ

¼ mp;q;sðAÞ þ O R3þr�lrh
lr

� 	
: ð19Þ

Eq. (19) is a multigrid convergence result for digital moments of

subsets BRðxÞ \ X valid for R decreasing as h decreases.

3.2. Digital approximation of covariance matrix around a point x

For any digital subset Z � Z
3, we define its digital covariance

matrix bJðZ;hÞ at step h as:

bJðZ;hÞ ¼def
m̂2;0;0ðZ;hÞ m̂1;1;0ðZ;hÞ m̂1;0;1ðZ;hÞ
m̂1;1;0ðZ;hÞ m̂0;2;0ðZ;hÞ m̂0;1;1ðZ;hÞ
m̂1;0;1ðZ;hÞ m̂0;1;1ðZ;hÞ m̂0;0;2ðZ;hÞ

2
64

3
75� 1

m̂0;0;0ðZ;hÞ

m̂1;0;0ðZ;hÞ
m̂0;1;0ðZ;hÞ
m̂0;0;1ðZ;hÞ

2
64

3
75�

m̂1;0;0ðZ;hÞ
m̂0;1;0ðZ;hÞ
m̂0;0;1ðZ;hÞ

2
64

3
75

T

:

ð20Þ

We now establish the multigrid convergence of the digital

covariance matrix toward the covariance matrix. In this case, we

know the exact position of the point x at which both digital and

continuous covariance matrices are computed. The following theo-

rem only takes into account the integral approximation error.

Theorem 3 (Multigrid convergence of digital covariance matrix). Let

X 2 X. Then, there exists some constant hX , such that for any grid step

0 < h < hX , for arbitrary x 2 R
3, for arbitrary RP h, with non-empty

AðR; xÞ ¼def BRðxÞ \ X, we have:

kbJðDhðAðR; xÞÞ; hÞ � JðAðR; xÞÞk 6
X2

i¼0

OðR5�lih
li Þ:

The constants hidden in the big O do not depend on the shape size

or geometry. k � k denotes the spectral norm on matrices.

Proof. To simplify expressions, we set A ¼def AðR; xÞ;
Ah ¼def DhðAðR; xÞÞ. We begin by translating the sets A and Ah

towards the origin w.r.t. x. We must use a vector that takes into

account the digitization, hence we shift Ah by the vector x
h
, the inte-

ger vector closest to x
h
, and we shift Awith the vector h x

h
. We further

set eAh ¼def DhðAÞ � x
h
and eA ¼def A� h x

h
. Following these definitions,

bJðDhðAðR; xÞÞ;hÞ ¼ bJ Ah; hð Þ ¼ bJ eAh þ
x

h
;h

� 	
: ð21Þ

Using the translation invariance for covariance matrix4 which

implies that for any finite subset Z � Z
3, for any integral vector

v 2 Z
3, for any h > 0; bJhðZ þ vÞ ¼ bJhðZÞ, we have

bJ eAh þ
x

h
;h

� 	
¼ bJ eAh; h
� 	

: ð22Þ

Writing down the definition of digital covariance matrix (see

Eq. (20)), we have:

bJ eAh;h
� 	

¼
m̂2;0;0

eAh;h
� 	

.
.

.

2
64

3
75� 1

m̂0;0;0
eAh;h
� 	

m̂1;0;0ðeAh;hÞ
.
.
.

2
4

3
5�

m̂1;0;0ðeAh;hÞ
.
.
.

2
4

3
5

T

: ð23Þ

We remark that eAh ¼ DhðAÞ � x
h
¼ Dh A� h x

h

� �
¼ DhðeAÞ. Conse-

quently, we apply convergence result of Eq. (19) onto set eA and

insert them into Eq. (23) to get

bJðeAh;hÞ¼
m2;0;0ðeAÞþOðR5�l2h

l2 Þ
.
.

.

2
4

3
5� 1

m0;0;0ðeAÞþOðR3�l0h
l0 Þ

ðm1;0;0ðeAÞþOðR4�l1h
l1 ÞÞ

2

.
.

.

2
4

3
5:

ð24Þ

Note that constants in big O are independent of X thanks to the

normalization. In Eq. (24), we recognize easily JðeAÞ plus other

terms. We bound the other terms from above with two facts: (i)

the radius R is greater than h, (ii) since eA is non-empty and close

to the origin, we apply Eqs. (A.2) and (A.4) of Lemma 4 for set
eA � BRðtÞ with t ¼ x� h x

h
, noticing that ktk1 6 h

2
. We obtain

bJðeAh; hÞ ¼ JðeAÞ þ OðR5�l2h
l2 Þ þ OðR5�l0h

l0 Þ þ OðR5�l1h
l1 Þ:

We conclude since J eA
� 	

¼ J A� h x
h

� �
¼ JðAÞ (Translation invariance

for covariance matrix). h

3.3. Influence of a positioning error on moments

In general, we do not know the exact position of x but only some

approximation x̂ taken on the digital boundary @hX. We therefore

4 For any finite subset Y � R
3 , for any vector v 2 R

3; JðY þ vÞ ¼ JðYÞ.
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examine the perturbation of the moments when they are evaluated

at a shifted position xþ t.

Lemma 3. For any measurable subset X � R
3 and any vector t with

norm t ¼def ktk2 6 R, we have for 0 6 pþ qþ s ¼def r 6 2:

mp;q;s BRðxþ tÞ \ Xð Þ ¼ mp;q;s BRðxÞ \ Xð Þ þ
Xr

i¼0

O kxkitR2þr�i
� 	

: ð25Þ

The proof is detailed in Appendix A.2.

3.4. Influence of a positioning error on covariance matrix

We now establish the multigrid convergence of the digital

covariance matrix toward the covariance matrix even when the

exact point x is unknown.

Theorem 4 (Multigrid convergence of digital covariance matrix with

position error). Let X 2 X. Then, there exists some constant hX , such

that for any grid step 0 < h < hX , for arbitrary RP h, for any x 2 @X

and any x̂ 2 @hX; kx� x̂k1 6 h, we have:

kbJ DhðAðR; x̂ÞÞ; hð Þ � JðAðR; xÞÞk 6 O kx� x̂kR4
� 	

þ
X2

i¼0

O R5�lih
li

� 	
;

with AðR; yÞ ¼def BRðyÞ \ X. The constants hidden in the big O do not

depend on the shape size or geometry.

Proof. The fact that kx� x̂k1 6 h 6 R induces that AðR; xÞ and

AðR; x̂Þ are both non-empty. We cut the difference of two matrices

into two parts:

kbJðDhðAðR; x̂ÞÞ; hÞ � JðAðR; xÞÞk 6 kbJðDhðAðR; x̂ÞÞ;hÞ � JðAðR; x̂ÞÞk
þ kJðAðR; x̂ÞÞ � JðAðR; xÞÞk:

For the first error term, we apply directly Theorem 3 at point x̂.

For the second term, we set t ¼def x̂� x; t ¼def ktk. Then we use the

invariance of the covariance matrix with respect to translation to

shift the problem toward the origin:

kJðAðR; x̂ÞÞ � JðAðR; xÞÞk ¼ kJðAðR; xþ tÞÞ � JðAðR; xÞÞk
¼ kJðAðR; xþ tÞ � xÞ � JðAðR; xÞ � xÞk
¼ kJððBRðxþ tÞ � xÞ \ ðX � xÞÞ � JððBRðxÞ

� xÞ \ ðX � xÞÞk
¼ kJðBRðtÞ \ ðX � xÞÞ � JðBRð0Þ \ ðX � xÞÞk
¼ kJðBRðtÞ \ X 0Þ � JðBRð0Þ \ X 0Þk;

with X0 ¼def X � x. We will apply Lemma 3 for the different moments

in the covariance matrix J. We denote by Y t the set BRðtÞ \ X 0 and by

Y0 the set BRð0Þ \ X0.

kJðY tÞ � JðY0Þk

¼
m2;0;0ðY tÞ �m2;0;0ðY0Þ

.
.

.

2
4

3
5� 1

m0;0;0ðY tÞ

m1;0;0ðY tÞ

.

.

.

2
4

3
5









�
m1;0;0ðY tÞ

.

.

.

2
4

3
5

T

þ 1

m0;0;0ðY0Þ

m1;0;0ðY0Þ

.

.

.

2
4

3
5�

m1;0;0ðY0Þ

.

.

.

2
4

3
5

T








:

Matrix JðY tÞ � JðY0Þ contains differences of geometrical

moments of order two (e.g. m2;0;0ðY tÞ �m2;0;0ðY0Þ) and quantities

in the form of D ¼def m1;0;0ðYt Þ2
m0;0;0ðYt Þ �

m1;0;0ðY0Þ2
m0;0;0ðY0Þ (component ð1;1Þ in

JðY tÞ � JðY0Þ matrix). From Lemma 3, every error on second-order

moments is in OðtR4Þ. To bound D quantities, we first observe that

j m0;0;0ðY tÞ �m0;0;0ðY0Þ j¼ pR2ðt þ Oðt2Þ þ OðtR2ÞÞ using Theorem 7

in [38]. Hence,

D ¼ m1;0;0ðY tÞ2

m0;0;0ðY0Þ þ OðtR2Þ
�m1;0;0ðY0Þ2

m0;0;0ðY0Þ

¼ OðtR2Þm1;0;0ðY tÞ2

m0;0;0ðY0Þ2
þm1;0;0ðY tÞ2 �m1;0;0ðY0Þ2

m0;0;0ðY0Þ
:

Since a
bþOðxÞ ¼ a

b
þ a

b2
OðxÞ, using Lemma 3 and

a2 � b
2 ¼ ða� bÞðaþ bÞ,

Fig. 2. Illustrations of 2D and 3D shapes considered in the experimental evaluation (please refer to Table 1 for equations and parameters): Ellipse (a), flower (b), accelerated

flower (c), sphere (d), rounded cube (e) and Goursat’s surface (f).

Table 1

Equations, parameters and domains of Euclidean shapes considered in the experimental evaluation (t 2 ½0;2p� for parametric curves). Please refer to Fig. 2 for illustrations.

Shape Equation (parametric in 2D, implicit in 3D) Parameters Domain kmin kmax

Ellipse ðxðtÞ; yðtÞÞ ¼ ðqðtÞ � cosðtÞ;qðtÞ � sinðtÞÞ with qðtÞ ¼ bffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�ða2�b2Þ=a2 �cosðtþ/Þ

p ða; bÞ ¼ ð20;7Þ ½�20;20�2 0:0175 0:408

Flower ðxðtÞ; yðtÞÞ ¼ ðqðtÞ � cosðtÞ;qðtÞ � sinðtÞÞ with qðtÞ ¼ r1 þ r2 � cosðp � tÞ ðr1; r2; pÞ ¼ ð20;7;6Þ ½�20;20�2 �1:4142 0:3827

AccFlower ðxðtÞ; yðtÞÞ ¼ ðqðtÞ � cosðtÞ;qðtÞ � sinðtÞÞ with qðtÞ ¼ r1 þ r2 � cosðp � t3Þ ðr1; r2; pÞ ¼ ð20;5;3Þ ½�20;20�2 �10:4475 3:14815

Sphere x2 þ y2 þ z2 � a2 ¼ 0 a ¼ 9 ½�10;10�3 0:1111 0:1111

Rounded cube x4 þ y4 þ z4 � a4 ¼ 0 a ¼ 9 ½�10;10�3 0 0:2822

Goursat’s surface ax4 þ ay4 þ az4 þ bx2 þ by2 þ bz2 þ c ¼ 0 ða; b; cÞ ¼ ð0:03;�2;�8Þ ½�10;10�3 �0:1501 0:4532
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D ¼ OðtR4Þ þ ðm1;0;0ðY tÞ þm1;0;0ðY0ÞÞ
m1;0;0ðY tÞ �m1;0;0ðY0Þ

m0;0;0ðY0Þ

¼ OðtR4Þ þ ðOðtR3Þ þ OðR4ÞÞm1;0;0ðY tÞ �m1;0;0ðY0Þ
m0;0;0ðY0Þ

ðLemma 4; Eq: ðA:2ÞÞ

We use Lemma 3 and the fact that since t < R,m0;0;0ðY0Þ ¼ OðR3Þ, we

have:

D ¼ OðtR4Þ þ ðOðtR3Þ þ OðR4ÞÞ OðtR3Þ
m0;0;0ðY0Þ

¼ OðtR4Þ:

The same bound is found for all terms of the matrix. Putting

everything together gives the result. h

3.5. Convergence for x̂ 2 @hX

Following the truncated Taylor expansion of Lemma 2, we

define estimators of curvatures from the diagonalization of the dig-

ital covariance matrix.

Definition 3. Let Z be a digital shape, x some point of R3 and h > 0

a grid step. For RP h, we define the integral principal curvature

estimators ĵ1
R and ĵ2

R of Z at point y 2 R
3 and step h as

ĵ1
RðZ; y;hÞ ¼

6

pR6
ðk̂2 � 3k̂1Þ þ

8

5R
; ð26Þ

ĵ2
RðZ; y;hÞ ¼

6

pR6
ðk̂1 � 3k̂2Þ þ

8

5R
; ð27Þ

where k̂1 and k̂2 are the two greatest eigenvalues of
bJðBR=h

1
h
� y

� �
\ Z;hÞÞ.

We recall the following result of matrix perturbation theory

[3,43,4]:

Theorem 5 (Lidskii-Weyl inequality). If kiðBÞ denotes the ordered

eigenvalues of some symmetric matrix B and kiðBþ EÞ the ordered

eigenvalues of some symmetric matrix Bþ E, then maxi j kiðBÞ�
kiðBþ EÞ j6 kEk.

Fig. 3. Comparison with different a values for R ¼ kh
a
in II on an ellipse (a), a flower (b) and an accelerated flower (c). Comparison of l1 and l2 curvature error with BC [18],

MDSS [12,16] and MDCA [41] on an ellipse (d and g), a flower (e and h) and an accelerated flower (f and i).

D. Coeurjolly et al. / Computer Vision and Image Understanding 129 (2014) 27–41 33

Lowres version



We prove below that our integral principal curvature estimators

are multigrid convergent toward the principal curvatures along the

shape.

Theorem 6 (Uniform convergence of principal curvature estimators

ĵ1
R and ĵ2

R along @hX). Let X 2 X. For i 2 f1;2g, recall that jiðX; xÞ is
the i-th principal curvature of @X at boundary point x. Then, there exist

positive constants hX ; k;K such that, for any h 6 hX , setting R ¼ kh
1
3,

we have

8x 2 @X; 8x̂ 2 @hX;

kx̂� xk1 6 h ) j ĵi
RðDhðXÞ; x̂;hÞ � jiðX; xÞ j6 Kh

1
3:

Proof. We prove the result for the first principal curvature, the

proof for the second one is similar. According to Definition 3, k̂1
and k̂2 are the two greatest eigenvalues of bJ BR=h

1
h
� x̂

� �
\ Z;h

� �
with

Z ¼ DhðXÞÞ. We derive easily:

bJ BR=h

1

h
� x̂

� �
\DhðXÞ;h

� �
¼bJ BR=h

1

h
� x̂

� �
\ 1

h
�X

� �
\Z

3;h

� �

¼bJ 1

h
� ðBRðx̂Þ\XÞ\Z

3;h

� �
¼bJ DhðBRðx̂Þ\XÞ;hð Þ¼bJ DhðAðR; x̂ÞÞ;hð Þ:

Theorem 4 indicates that bJðDhðAðR; x̂ÞÞ;hÞ and JðAðR; xÞÞ are

close to each other with a norm difference bounded by

Oðkx� x̂kR4Þ þP2
i¼0OðR5�lih

li Þ. Since both matrices are symmetric

by definition, Theorem 5 implies that k̂1 and k̂2 are close to the

eigenvalues k1ðJðAðR; xÞÞÞ and k2ðJðAðR; xÞÞÞ with the same bound.5

We thus write:

ĵ1
RðDhðXÞ; x̂;hÞ ¼

6

pR6
ðk̂2 � 3k̂1Þ þ

8

5R

¼ 6

pR6
k2 � 3k1 þ Oðkx� x̂kR4Þ þ

X2

i¼0

OðR5�lih
li Þ

 !
þ 8

5R
:

Fig. 4. Comparison with different a values for R ¼ kh
a
in II (mean curvature and principal curvatures) on a sphere (a, d and g), a rounded cube (b, e and h) and Goursat’s

surface (c, f and i).

5 Note that since error bounds tend to zero as h tends to zero, the ordering of the

eigenvalues in both matrices is the same for a sufficiently small h.
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We then substitute the truncated Taylor expansion of Lemma 2 into

the latter equation and we bound kx� x̂k by h. After some calcula-

tions, we get:

ĵ1
RðDhðXÞ; x̂; hÞ ¼ j1ðX; xÞ þ OðRÞ þ Oðh=R2Þ

þ
X2

i¼0

Oðhli=R1þli Þ: ð28Þ

Setting R ¼ kh
a
, we optimize the value a to minimize all errors.

Since li P 1 for the shape X, the optimal value is a ¼ 1
3
. The bound

follows. h

It is worth to note that the preceding error bound could be

improved at neighborhoods where the Gaussian curvature does

not vanish: the constants li are then closer to 1:5. However, there

is the issue of estimating more precisely the position of x̂ with

respect to x. In the best known case [30], uniform convergence

with bound	 Oðh0:434Þ can be expected for radius Rwith a size pro-

portional to h
0:434

.

In Theorem 6, we focused on multigrid convergence of principal

curvature quantities. However, similar results can be obtained for

principal curvature directions as well [15].

4. Experimental evaluation

We present an experimental evaluation of curvature estimators

in 2D and 3D (mean and principal curvatures). We have imple-

mented our Integral Invariant estimators (II) in the open-source

library DGTAL [46]. DGTAL allows us to construct parametric or

implicit shapes in dimension 2 and 3 for any grid step h. Further-

more, DGTAL allows comparison with former approaches available

in dimension 2: curvature from Most-centered Maximal Segment

with length information (MDSS) [12,16], curvature from Most-cen-

tered Digital Circular Arc (MDCA) [41] and Binomial based convolu-

tion (BC) [18]; and in dimension 3: curvature from polynomial

surface approximation (Jet Fitting) [8] using a binding between

DGTAL and CGAL [45]. Jet Fitting approach requires a point set on

which the polynomial fitting is performed. In our multigrid setting,

Fig. 5. Comparison of l1 mean and principal curvatures error with Jet Fitting [8] on a sphere (a, d and g), a rounded cube (b, e and h) and Goursat’s surface (c, f and i).
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the radius of the spherical kernel used to construct the local point-

set around a given surface element is the same as the radius of the

integral invariant kernel (R ¼ kh
a
).

As described in Section 2, brute-force implementation is trivial.

We first need to construct a kernel from a Euclidean ball with

radius given by R ¼ kh
a
as described in theorem statements. Then,

the digital object boundary is tracked and the kernel is centered on

each surface elements. For 2D and 3D mean curvature estimators,

the volumetric integral of the intersection between the kernel and

the object is computed; for 3D principal curvature estimators, the

covariance matrix of this intersection is computed and then eigen-

values and eigenvectors are deduced from it by diagonalization.

With this approach, we achieve a computational cost of

OððR=hÞdÞ per surface element (i.e. the size of the kernel at grid step

h). However, we can take advantage of the digital surface structure

to considerably speed up this algorithm: if we consider a surface

tracker for which surface elements are processed by proximity

(the current surface element is a neighbor of the previous one

through a translation vector ~d), the area/volume estimation can

be done incrementally. Indeed, they are countable additive:

dAreaðDhðXÞ \ BRðxþ~dÞ; hÞ ¼ dAreaðDhðXÞ \ BRðxÞ; hÞ þ dAreaðDhðXÞ

\ ðBRðxþ~dÞ n BRðxÞÞ; hÞ � dAreaðDhðXÞ
\ ðBRðxÞ n BRðxþ~dÞÞ; hÞ:

Similarly we have for moments:

m̂p;q;sðDhðXÞ \ BRðxþ~dÞ;hÞ ¼ m̂p;q;sðDhðXÞ \ BRðxÞ;hÞ
þ m̂p;q;sðDhðXÞ \ ðBRðxþ~dÞ n BRðxÞÞ; hÞ
� m̂p;q;sðDhðXÞ \ ðBRðxÞ n BRðxþ~dÞÞ; hÞ:

Then, if we precompute all kernels DhðBRð0�~dÞ n BRð0ÞÞ for

some~d displacements (based on surface element umbrella config-

urations, 8 in 2D and 26 in 3D for k~dk1 ¼ h), the computational

cost per surface element can be reduced to OððR=hÞd�1Þ. Finally, in
the ideal case of a Hamiltonian traversal of the surface, only the

first surfel has to be computed using kernel BRðx̂Þ and every subse-

quent neighboring surfel is processed using sub-kernels

DhðBRð0�~dÞ n BRð0ÞÞ.

Fig. 6. Comparison of l2 mean and principal curvatures error with Jet Fitting [8] on a sphere (a, d and g), a rounded cube (b, e and h) and Goursat’s surface (c, f and i).
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In our experimental evaluation, we need to compare the esti-

mated curvature values with expected Euclidean ones on paramet-

ric curves and surfaces on which such curvature information is

known. We have chosen three 2D shapes to perform our evalua-

tion: an ellipse (Fig. 2(a)) which matches the theorem’s hypotheses

(convex C3 shape), a flower (Fig. 2(b)) and an accelerated flower

(Fig. 2(c)) which do not satisfy the hypotheses exactly (C3 but

non-convex shapes). In 3D, we chose a sphere (Fig. 2(d)), a rounded

cube (Fig. 2(e)) and Goursat’s surface (Fig. 2(f)). As in 2D, the

sphere and the rounded cube match the theorem’s hypotheses,

and we have a non-convex shape with Goursat’s surface. Equa-

tions, parameters and shape domains of these Euclidean objects

are given in Table 1. In order to quantitatively interpret error

measurements given in the graphs, we detail expected minimum

and maximal curvature values in this table. To compensate sub-

pixel/subvoxel digitization effects when digitizing a continuous

object, we evaluate the estimators on digitization of 10 random

translations of the continuous objects (continuous objects are

translated by a vector randomly selected in ½�1;1�2 or ½�1;1�3).
Estimated quantities are compared to expected Euclidean ones

for each pair of digital/continuous contour points (x̂ 2 @hX and

x 2 @X). In our experiments, we consider two different metrics on

point-wise errors to get a global error measurement. First l1 metric

is used to quantify worst-case error since it reflects the uniform

convergence of Theorems 2 and 6. In other experiments, we also

consider l2 error to get an average error analysis.

(a) (b) (c) (d)

Fig. 7. Ellipse with b ¼ 0:5 (a) and a zoom of his boundary in red (b). Rounded cube with b ¼ 0:5 (c) and his boundary (d). Comparison of 2D estimators on different level of

noise on an ellipse (e). Comparison of 3D estimators for mean (f) and principal curvatures (g and h) on different level of noise on a rounded cube.
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From Theorems 2 and 6, theory indicates that the best candi-

date for a is am ¼def 1
3
to ensure a multigrid convergence in Oðh1

3Þ.
We first need to confirm this setting considering a values in
1
2
; 2
5
; 1
3
; 2
7
; 1
4

� �
. Fig. 3(a, b and c) presents results for the worst-case

(l1) distance between the true expected curvature values and the

estimated ones. For multigrid ellipses, we observe experimental

convergence for several a values (except for a ¼ 1
2
). As suggested

by Theorem 2, for a ¼ am ¼def 1
3
the behavior of the l1 error is exper-

imentally in Oðh1
3Þ. The theorem is defined in the general case, but

the big O error can be improved with some further hypothesis on

the shape. This could explain why better convergence speeds seem

to be obtained when a ¼ 2
7
and 1

4
. For non-convex shapes (flower

and accelerated flower), we still observe the convergence. Interest-

ingly, values a greater than 1
3
(and thus larger digital kernel size)

seems to lead to slightly better estimations. The theoretical ratio-

nale behind this observation should be explored in future works.

We performed the same analysis in 3D for the mean and prin-

cipal curvature estimators. Section 3 in [10] and Theorem 6 theo-

retically prove that a ¼ 1
3
leads to an l1 error at least in Oðh1

3Þ.
Fig. 4 gives results of l1 error for various a values. We observe that

for both convex and non-convex shapes, a ¼ 1
3
provides expected

convergence speed in mean and principal curvatures estimation.

As in 2D, better convergence speed can be obtained with a ¼ 2
7

and 1
4
.

In Fig. 3(d, e and f) we compare the proposed 2D curvature esti-

mator (II with a ¼ 1
3
) with BC, MDSS, MDCA estimators for the l2

(mean error) and l1 error metrics. In these noise-free shapes, l1
convergence speeds of MDCA is close to II. We observe a conver-

gence for BC, but with lower convergence speeds. Note that MDSS

exhibits no experimental convergence here. We observe for ellip-

ses that BC provides better l2 results than II for high h values, but

the behavior of both curves show that II will be better when h is

refined. For flower and accelerated flower, we have the same

behavior for l2 than for l1 error.

In all graphs, we had to stop the computations for BC and MDCA

for the following reasons: in our implementation of BC, the mask

size becomes too large for small h values which induces memory

usage issues. For MDCA, circular arc recognition in DGTAL is driven

by a geometrical predicate based on a determinant computation of

squared point coordinates. Hence, small h values lead to numerical

capacity issues and thus instability (which could be solved consid-

ering arbitrary precision integer numbers but would lead to effi-

ciency issues). The proposed integral invariant estimator does not

suffer from these kinds of issues. Note that for the finest experi-

ment h ¼ 0:00017, digital shapes are defined in a digital domain

235,2952. At this scale, the digital ellipse has 648,910 contour

elements.

Fig. 5 illustrates the comparison with Jet Fitting on mean and

principal curvatures with l1 error metric on a sphere (a, d and g),

a rounded cube (b, e and h) and Goursat’s surface (c, f and i). We

notice Jet Fitting performs better on a sphere for mean and princi-

pal curvatures than our estimators. On a rounded cube or Goursat’s

surface and for the mean curvature, Jet Fitting has similar conver-

gence speed than II. However, II has slightly lower l1 errors. For

principal curvatures, we observe that our estimator significantly

outperforms principal curvatures from Jet Fitting. If we look at

mean errors (l2 metrics) in Fig. 6, similar behaviors can be

observed. Note that for the finest experiment h ¼ 0:04, digital

shapes are defined in a digital domain 5003. At this scale, the dig-

ital rounded cube object has 1,125,222 surface elements.

We have also evaluated the behavior of our estimators on noisy

data. Given a digital binary object, our noise model consists in

swapping the grid point value at p with probability defined by a

power law b1þdtðpÞ for some user-specified b 2 ½0;1� (dtðpÞ corre-

sponds to the distance of p to the boundary of the original digital

shape). Such noise model, so-called Kanungo noise [22], is

particularly well-adapted to evaluate the stability of digital geom-

etry algorithms [24]. In Fig. 7(a and d), examples of noisified

objects are given. Our experimental setting can be described as fol-

lows: for both the flower in 2D and the rounded cube in 3D

(h ¼ 0:1 for both), we slightly increase the noise parameter from

0 to 1 and we plot the l1 error. In dimension two (Fig. 7(e)), we

observe that estimators based on geometrical object recognition

(MDSS and MDCA) are highly sensitive to contour perturbations.

Both BC and II are extremely robust to small noise but for b greater

than 0.5, II significantly outperforms BC. In dimension 3, we

observe that both II and Jet Fitting approaches lead to quite stable

results. Indeed, some computations in the Jet Fitting approach rely

on a point-set PCA (Principal Component Analysis) which also pro-

vides robust statistics.

In Fig. 8, we detail timings in logscale of various estimators on

the flower object in 2D and the rounded cube in 3D. As expected,

approaches based on object recognition in dimension 2 (MDSS

and MDCA) provide faster computations. We also observe that II

is a bit slower but has an asymptotic behavior much more favor-

able that BC. In dimension 3 (Fig. 8(b)), we observe that Jet fitting

(a)

(b)

Fig. 8. Timings in milliseconds for 2D estimators on a flower (a) and 3D estimators

on a rounded cube (b). Results have been obtained on a Intel Xeon 2.27 GHz desktop

machine.
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and II behaviors are similar and that II is 10 times faster than our

implementation of Jet fitting.

Finally, Fig. 9 shows mean curvature and principal directions

mapped on various shapes (rounded cube, Goursat’s surface, Leo-

pold surface) and on an object (Stanford bunny). From these exper-

iments, we can see that principal directions are nicely captured by

covariance matrix eigenvectors.

5. Conclusion

In this paper, we have used integral invariant results from dif-

ferential geometry to design simple and efficient digital curvature

estimators in dimension 2 and 3. Digital geometry is a perfect

domain for such differential tools: volume, area or geometrical

moments computations are digital by nature, interesting connec-

tions to fundamental results on Gauss digitization exist, fast com-

putations are induced by the specific geometry of digital surfaces.

For curvature estimation in dimension 2 as well as principal curva-

ture estimations in dimension 3, we have proven a theoretical uni-

form convergence in O h
1
3

� 	
for C3 smooth object boundaries.

Experimental evaluation has not only confirmed this bound but

has also shown that these estimators can be computed efficiently

in practice with low computational costs. Our digital Integral

Invariant estimators and all other estimators used in the experi-

mental evaluation section are publicly available in DGTAL [46]. Con-

vergence speed are obtained with a weak constraint on the

distance between x̂ and x (which just needs to be lower that h

for the l1 metric). Using a specific projection as discussed in [29],

better convergence speed is expected at least for dimension 2.
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Appendix A. Technical lemmas

A.1. Technical lemmas related to covariance matrices and continuous

moments

We gather here a few technical facts and results related to

covariance matrices, digital and continuous ðp; q; sÞ-moments.

Lemma 4. Let BRðtÞ be the ball of radius R and center t. Then, for any

non-empty Y � BRðtÞ,

m0;0;0ðYÞ ¼ OðR3Þ; ðA:1Þ

mp;q;sðYÞ ¼ OðR3ðktk1 þ RÞÞ; ðpþ qþ s ¼ 1Þ ðA:2Þ

mp;q;sðYÞ ¼ OðR3ðktk21 þ Rktk1 þ R2ÞÞ; ðpþ qþ s ¼ 2Þ ðA:3Þ

and

mp;q;sðYÞ=m0;0;0ðYÞ ¼ OðRþ tÞ; ðpþ qþ s ¼ 1Þ: ðA:4Þ

Proof. Eq. (A.1) is immediate since 0-order moment is the volume

of Y, hence it cannot exceed the volume of the ball which is 4
3
pR3.

For Eq. (A.2), we make the change of variable ðx0; y0; z0Þ ¼ ðx; y; zÞ � t

in the following expression:

m1;0;0ðYÞ ¼
ZZZ

Y

xdxdydz ¼
ZZZ

Y�t

ðx0 þ txÞdx0dy0dz0

¼ txVolðYÞ þm1;0;0ðY � tÞ:

In the first term, VolðYÞ is bounded by the volume of any ball of

radius R. By the additivity of integrals, the second term is

maximized by the ð1;0;0Þ-moment of the half-ball Bþ
R ð0Þ centered

on 0 and lying in the positive x orthants. Now, using spherical

coordinates, we get

Fig. 9. Illustration of 3D curvature estimation. Mean curvature on rounded cube (a), Goursat’s surface (b), Leopold surface (c) and a bunny (d). First principal direction and

second principal direction Goursat’s surface (e and f) and Stanford bunny (g and h).
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m1;0;0ðBþ
R ð0ÞÞ ¼

Z R

0

Z p
2

�p
2

Z p
2

�p
2

ðq cos/ cos hÞðq2 cos/Þdhd/dq

¼ q4

4

 �R

0

sin h½ �
p
2

�p
2

1

2
½/þ sinð/Þ cosð/Þ�

p
2

�p
2
¼ p

4
R4; ðA:5Þ

which concludes for Eq. (A.2) (other cases pþ qþ s ¼ 1 are similar).

Other equations are proved in a similar way. h

A.2. Proof of Lemma 3

Proof. By decomposing X according to the two shifted balls (see

Fig. A.10), we get:

mp;q;sðBRðxþ tÞ \ XÞ �mp;q;sðBRðxÞ \ XÞ
¼ mp;q;sððBRðxþ tÞ n BRðxÞÞ \ XÞ �mp;q;sððBRðxÞ n BRðxþ tÞÞ \ XÞ:

We denote by DðtÞ the difference on the right term of preceding

equation. The two sets on the right form the symmetric difference

(symbol 
) of the two shifted balls. We will use the following fact:

;– Y1 � Y2 � R
3 ) j sup

Y�Y1

mp;q;sðYÞ j6j sup
Y�Y2

mp;q;sðYÞ j : ðA:6Þ

By additivity of integrals, we have immediately:

j DðtÞ j ¼j mp;q;sððBRðxþ tÞ 
 BRðxÞÞ \ XÞ j
6 sup

Y�ðBRðxþtÞ
BRðxÞÞ\X
j mp;q;sðYÞ j

6 sup
Y�BRðxþtÞ
BRðxÞ

j mp;q;sðYÞ j

6 sup
Y�BRþtðxÞ�BR�t ðxÞ

j mp;q;sðYÞ j :

In the last row, we cover the symmetric difference of two

shifted balls by the difference of two balls of same center, a kind

of spherical shell or annulus in 2D (see Fig. A.10). Although it is a

rough upper bound, it induces the same order of perturbation.

We denote this set BRþtðxÞ � BR�tðxÞ by HR;tðxÞ.
For zeroth order moment, we use simply the volume of the ball:

sup
Y�HR;tðxÞ

j m0;0;0ðYÞ j¼ m0;0;0ðHR;tðxÞÞ ¼
4p
3

ð6R2t þ 2t3Þ

¼ OðtR2Þ: ðA:7Þ

For first order moments, we translate the shape to the origin,

then we use the previous result plus the fact that the centered

ð1;0;0Þ-moment is maximized by the corresponding moment for

the x-positive half-ball6:

sup
Y�HR;tðxÞ

j m1;0;0ðYÞ j 6 sup
Y�HR;tð0Þ

j m1;0;0ðYÞ j þ j xx jj m0;0;0ðYÞ j

¼ m1;0;0ðBþ
Rþtð0Þ � Bþ

R�tð0ÞÞ þ Oðj xx j tR2Þ
¼ 2pðR3t þ Rt3Þ þ Oðj xx j tR2Þ
¼ OðtR3Þ þ OðkxktR2Þ: ðA:8Þ

For second order moments, we translate the shape to the origin,

then we use the two previous results plus the fact that the ð2;0;0Þ-
moment is maximized by the corresponding moment for the ball:

sup
Y�HR;tðxÞ

j m2;0;0ðYÞ j 6 sup
Y�HR;tð0Þ

j m2;0;0ðYÞ j þ2 j xx jj m1;0;0ðYÞ

þ x2x j m0;0;0ðYÞ j¼ m2;0;0ðHR;tð0ÞÞ þ kxkðOðtR3Þ þ OðkxktR2ÞÞ
þ x2xOðtR2Þ ¼ OðtR4Þ þ OðkxktR3Þ þ Oðkxk2tR2Þ: ðA:9Þ

Other moments are proved similarly. h
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