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In many geometry processing applications, the estimation of differential geometric quantities such as
curvature or normal vector field is an essential step. In this paper, we investigate a new class of
estimators on digital shape boundaries based on integral invariants (Pottmann et al., 2007) [39]. More
precisely, we provide both proofs of multigrid convergence of principal curvature estimators and a
complete experimental evaluation of their performances.

� 2014 Elsevier Inc. All rights reserved.
1. Introduction some OðhÞ. Of course, the quality of the estimation should be
1.1. Context and objectives

In many shape processing applications, the estimation of
differential quantities on the shape boundary is usually an impor-
tant step. Their correct estimation makes easier further processing,
like quantitative evaluation, feature detection, shape matching or
visualization. This paper focuses on estimating the curvature
tensor on the boundary of digital shapes. Such digital structures
are subsets of the 3-dimensional digital space Z3 and come gener-
ally from the digitization of some Euclidean shape. Of course, the
curvature tensor estimation should be as close as possible to the
curvature tensor of the underlying Euclidean shape before digitiza-
tion. Digital data form a special case of discrete data with specific
properties: (1) digital data cannot sample the boundary of the
Euclidean shape (i.e. they do not lie on the shape boundary), (2)
digital data is distributed around the true sample according to
arithmetic noise, which looks rather uniform over a range ½�h;h�
from a statistical point of view, where h is the digitization grid step.
Another way of stating these characteristics is to say that the Haus-
dorff distance between the Euclidean shape and its digitization is
improved as the digitization step gets finer and finer. This property
is called the multigrid convergence [25,11]. It is similar in spirit with
the stability property in geometry processing: given a continuous
shape and a specific sampling of its boundary, the estimated mea-
sure should converge to the Euclidean one when the sampling
become denser (e.g. [2,35]).

Our objective is to design a curvature tensor estimator for dig-
ital data such that: (1) it is provably multigrid convergent, (2) it is
accurate in practice, (3) it is computable in an exact manner, (4) it
can be efficiently computed either locally or globally (evaluation at
a single surface point or extraction of the curvature tensor field),
(5) it is robust to further perturbations (like bad digitization
around the boundary, outliers).
1.2. Related works for meshes

Digital data being discrete in nature, it is interesting to look at
the curvature estimation techniques on triangulated meshes. In
computer graphics and geometry processing, there exists a vast
family of techniques to estimate either the mean or Gaussian cur-
vatures, or sometimes the full curvature tensor. Most of them are
local (i.e. limited to a 1-ring or 2-ring of neighbors) but exhibit
correct results for nice meshes. They generally fall into three
categories: fitting, discrete methods, curvature tensor estimation.
We may refer to [44,20] for comprehensive evaluations, and
Desbrun et al. [17] or Bobenko and Suris [5] for an entirely discrete
theory. Most of them have not theoretical convergence guarantees
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even without noise on the mesh. We may quote [37,42] as
approaches trying to tackle perturbation through averaging.

For Gaussian curvature estimated with Gauss-Bonnet approach
(angle defect), Xu [47] provides a stability theorem for triangulated
mesh whose vertices lie on the underlying smooth manifold, with
valence 6 and parallelogram condition (each 1-ring of neighbors is
projected as a parallelogram onto a plane). Assuming a sampling
with density d, he provides an additional convergence property
whenever the sampling is perturbated by some OðdaÞ, but a > 2
(inadequate for discrete data). Note that if the triangulated mesh
did not satisfy these requirements, such estimation did not
converge.

The integral measures of curvatures, based on normal cycle the-
ory [13,14] is another notable approach for estimating curvature
information on a triangulated mesh. The authors exhibit some con-
vergence results for triangulated meshes with vertices lying on the
underlying smooth Euclidean shape boundary. In this case, if the
mesh has Hausdorff distance to shape boundary below �, conver-
gence is obtained with speed/error Oð�Þ under some hypotheses.

Finally, in geometry processing, interesting mathematical tools
have been developed to design differential estimators on smooth
surfaces based on integral invariants [39,38]. They consist in mov-
ing a kernel along the shape surface and in computing integrals on
the intersection between the shape and the kernel. The authors
have demonstrated that some integral quantities provide interest-
ing curvature information when the kernel size tends to zero. They
also achieve stability depending on the kernel radius and on �, for
instance in the case of a mesh sampling. Our new estimators rely
on the same ideas.

1.3. Related works for point clouds

When having only discrete data (i.e. a cloud of points), the most
natural way to approach curvature(s) is to fit a polynomial surface
of degree two at least. Perhaps the best representative of these
techniques is the osculating jets of Cazals and Pouget [8]. The
authors provide Oðd2Þ convergence results when the data is a sur-
face sampling, assuming d is the density of points. There is no the-
oretical result in presence of noise, although the least-square
fitting of osculating jets is very robust to noise in practice.

Another family of techniques exploits the Voronoi diagram
[1,34,35]. The idea behind these approaches is, instead of fitting
the tangent space, to estimate at best the orthogonal space. The
convolved covariance measure introduced by Mérigot et al. [35]
is particularly appealing since this measure achieves robustness
even for arbitrary compact sets, essentially in Oð

ffiffiffi
�
p
Þ. It is in some

sense an integral measure of the covariance matrix of the normal
cone around the point of interest. However, convergence of curva-
ture(s) is subject to several parameters r and R which contribute
contradictorily to the Hausdorff error. In practice, this approach
gives results comparable to osculating jets for curvatures.

Recently, several authors have developed new interesting
approaches for estimating the normal vector field on noisy point
clouds, even in the presence of sharp features [32,6,48]. Further-
more, Boulch and Marlet [6] gives probabilistic convergence
results. Although they cannot be used ‘‘as is’’ for curvature compu-
tation, they could be used in parallel with curvature estimation
techniques to locate sharp features in a first pass, and to limit cur-
vature estimations to smooth zones.

1.4. Related works for digital data

In digital geometry, we usually consider multigrid convergence
as an essential criterion [11]. Hence, in dimension 2, parameter
free convergence results have been obtained for length [9] and nor-
mal vector estimation [16]. Based either on binomial convolution
principles [33,18], or polynomial fitting [40], convergence results
can also be obtained for higher order derivatives of digital curves.
Algorithms are parametrized by the size of the convolution or fit-
ting kernel support and convergence theorems hold when such
support size is an increasing function of the grid resolution and
some shape characteristics.

For curvature estimation along 2D curves, multigrid conver-
gence of parameter-free estimators is still challenging, although
accurate experimental results have been obtained with maximal
digital circular arcs [41] and with global optimization [23]. In 3D
digital space, several empirical methods exist for estimating curva-
tures, but none achieves multigrid convergence (e.g. see [31,19]). In
[10], we recently presented a digital estimator for mean curvature
for 2D and 3D digital objects, which achieves multigrid conver-
gence in Oðh

1
3Þ.

1.5. Contributions

This paper completes [10] to propose a new curvature tensor
estimator for digital data, which casts carefully the Integral Invari-
ant (II) method of [39,38] into the digital world. This estimator is a
non-trivial extension of our mean digital curvature estimator [10],
since it involves the computation of digital moments and covari-
ance matrices, and requires results from matrix perturbation
theory.

The contributions of the paper can be sketched as follows. First,
we define digital versions of integral invariant estimators with
multigrid convergence results (Theorems 3 and 4). We provide
an explicit formula for the kernel size, which guarantees uniform
convergence in Oðh

1
3Þ for smooth enough curves and surfaces (The-

orem 6). Furthermore, we demonstrate that these estimators have
simple, exact and efficient implementations (available in DGTAL

library [46]). We provide an extensive comparative evaluation of
these estimators (mean curvature, principal curvatures), which
shows that they compete with classical ones in terms of accuracy
(Section 4). Computation speed is also considered, and our method
is for instance ten times faster than the osculating jets. Finally, we
show empirical results illustrating the robustness to noise and out-
liers of our estimators.
2. Preliminaries

2.1. Shapes, digital shapes and multigrid convergence

Since we are interested in evaluating both theoretically and
experimentally the behavior of a given differential estimator on
digital object boundaries, we first have to formalize links between
Euclidean objects and digital ones with the help of a digitization
process. Let us consider a family X of smooth and compact subsets
of Rd. In Section 2.3 we will be more precise on the notion of
smoothness for shapes X 2 X. We denote DhðXÞ the digitization
of X in a d-dimensional grid of grid step h. More precisely, we con-
sider classical Gauss digitization defined as

DhðXÞ ¼
def 1

h
� X

� �
\ Zd; ð1Þ

where 1
h � X is the uniform scaling of X by factor 1

h. Furthermore, the
set @X denotes the frontier of X (i.e. its topological boundary). If
z 2 Zd, then Qz denotes the unit d-dimensional cube of Rd centered
on z. The h-frontier DhZ of a digital set Z � Zd is defined as
DhZ ¼def

@ðh � [z2ZQzÞ. Therefore, the h-frontier of DhðXÞ is a ðd� 1Þ-
dimensional subset of Rd, which is close to @X. We will precise
the term ‘‘close’’ later in this section. Since this paper deals with
multigrid convergence, digital shapes will always come from the
digitization of continuous ones. To simplify notations, the h-frontier
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Fig. 1. Integral invariant computation (a) and notations (b) in dimension 2.

1 The proof follows the same lines as Lemma B.9 [29].
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of the Gauss digitization at step h of a shape X will simply be
denoted by @hX ¼def

DhDhðXÞ, and called later on h-boundary of X.
As discussed in various previous works (see for instance [11] for

a survey), the idea of multigrid convergence is that when we define
a quantity estimator on DhðXÞ, we check if the estimated quantity
converges (theoretically and/or experimentally) to the associated
one on X when h tends to zero. More formally,

Definition 1. Multigrid convergence for local geometric quantities
A local discrete geometric estimator bE of some geometric

quantity E is multigrid convergent for the family X if and only if, for
any X 2 X, there exists a grid step hX > 0 such that the estimatebEðDhðXÞ; x̂;hÞ is defined for all x̂ 2 @hX with 0 < h < hX , and for any
x 2 @X,

8x̂ 2 @hX with kx̂� xk1 6 h;bE DhðXÞ; x̂;hð Þ � EðX; xÞ
��� ��� 6 sX;xðhÞ; ð2Þ

where sX;x : Rþ n f0g ! Rþ has null limit at 0. This function defines
the speed of convergence of bE toward E at point x of X. The conver-
gence is uniform for X when every sX;x is bounded from above by a
function sX independent of x 2 @X with null limit at 0.

When a geometrical quantity is global (e.g. area or volume), we
do not need an explicit mapping between @X and @hX, and Defini-
tion 1 can be rephrased to define multigrid convergence of global
geometric quantities [11]. A local discrete estimator however esti-
mates a geometric quantity at points on the h-frontier of a digital
set, otherwise said at any point on the interpixel representation
of the digital set boundary. This definition encompasses usual def-
initions where input points are pointels, linels or surfels.

In some proofs, a more precise mapping between points x 2 @X
and x̂ 2 @hX is required. For any shape X 2 Rd, the medial axis
MAð@XÞ of @X is the subset of Rd whose points have more than
one closest point to @X. The reach reach(X) of X is the infimum of
the distance between @X and its medial axis. Shapes with positive
reach have principal curvatures bounded by �1=reachðXÞ. The
(orthogonal) projection pX is the mapping from X nMAð@XÞ onto
@X that associates to each point its closest point in @X (cf. Fig. 1(b)).

This projection can be restricted to domain @hX in order to
define a mapping pX

h from the h-frontier @hX to the boundary @X.
This mapping was called back-projection in [29]. For any 2D shape
X with positive reach, for 0 < h 6 reachðXÞ, Lemma B.9 [29] indi-
cates that the map pX

h is well-defined and onto. It shows that the
Hausdorff distance of boundaries @hX and @X is no greater thanffiffi

2
p

2 h, hence they get closer and closer as the grid step is refined.
In d dimensions, it is possible to show1 that their Hausdorff dis-

tance is no greater than
ffiffi
d
p

2 h. Furthermore, it is a known fact that pX

is continuous over Rd nMAð@XÞ, hence over @hX with an adequate h.

2.2. Integral invariants theory

In geometry processing, integral invariants have been widely
investigated to define estimators of differential quantities (see
[39,38] for a complete overview). For short, the main idea is to
move a kernel on points x 2 @X and to compute integrals on the
intersection between X and the kernel. Even though different ker-
nels (e.g. Euclidean ball, Euclidean sphere) and different integration
functions can be considered, we focus here on volumetric integral
invariants defined as follows:

Definition 2. Given X 2 X and a radius R 2 Rþ�, the volumetric
integral VRðxÞ at x 2 @X is given by (see Fig. 1(a))

VRðxÞ ¼
def
Z

BRðxÞ
vðpÞdp; ð3Þ

where BRðxÞ is the Euclidean ball with radius R and center x and vðpÞ
the characteristic function of X. In dimension 2, we simply denote
ARðxÞ such quantity.

Several authors have detailed connections between VRðxÞ and
curvature (resp. mean curvature) at x for shapes in R2 (resp. R3)
[7,39,38].

If jðX; xÞ is the curvature of @X at x and HðX; xÞ is the mean cur-
vature of @X at x, we have:

Lemma 1 [38]. For a sufficiently smooth shape X in R2; x 2 @X, we
have

ARðxÞ ¼
p
2

R2 � jðX; xÞ
3

R3 þ OðR4Þ: ð4Þ

For a sufficiently smooth shape X in R3 and x 2 @X, we have

VRðxÞ ¼
2p
3

R3 � pHðX; xÞ
4

R4 þ OðR5Þ: ð5Þ

Such results are obtained by Taylor expansion at x of the surface
@X approximated by a parametric function y ¼ f ðxÞ in 2D and
z ¼ f ðx; yÞ in 3D. From Eqs. (4) and (5) and with a fixed radius R,
one can derive local estimators ~jR and eHR respectively:

~jRðX; xÞ ¼
def 3p

2R
� 3ARðxÞ

R3 ; eHRðX; xÞ ¼
def 8

3R
� 4VRðxÞ

pR4 : ð6Þ

In this way, when R tends to zero, both estimated values will
converge to expected ones (respectively j and H). More formally:

~jRðX; xÞ ¼ jðX; xÞ þ OðRÞ; eHRðX; xÞ ¼ HðX; xÞ þ OðRÞ: ð7Þ

Similarly, directional information such as principal curvatures
and thus Gaussian curvature can be retrieved from integral compu-
tations. Indeed, instead of computing the measure of BRðxÞ \ X as in
Definition 2, we consider its covariance matrix. Given a non-empty
subset Y � Rd, the covariance matrix of Y is given by

JðYÞ ¼def
Z

Y
ðp� YÞðp� YÞT dp ¼

Z
Y

ppT dp� VolðYÞYYT ; ð8Þ
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where Y is the centroid of Y and VolðYÞ its volume. For non-negative
integers p; q and s, we recall the definition of ðp; q; sÞ-moments
mp;q;sðYÞ of Y:

mp;q;sðYÞ ¼
def
ZZZ

Y
xpyqzsdxdydz: ð9Þ

Note that the volume VolðYÞ is the 0-moment m0;0;0ðYÞ, and that
the centroid Y is the vector of 1-moments normalized by the 0-
moment, i.e. ðm1;0;0ðYÞ;m0;1;0ðYÞ;m0;0;1ðYÞÞT=m0;0;0ðYÞ. For simplic-
ity, let us denote by A the Euclidean set BRðxÞ \ X. The covariance
matrix of A is then rewritten as2:

JðAÞ¼
m2;0;0ðAÞ m1;1;0ðAÞ m1;0;1ðAÞ
m1;1;0ðAÞ m0;2;0ðAÞ m0;1;1ðAÞ
m1;0;1ðAÞ m0;1;1ðAÞ m0;0;2ðAÞ

264
375� 1

m0;0;0ðAÞ

m1;0;0ðAÞ
m0;1;0ðAÞ
m0;0;1ðAÞ

264
375� m1;0;0ðAÞ

m0;1;0ðAÞ
m0;0;1ðAÞ

264
375

T

:

ð10Þ

In [39], the authors have demonstrated that eigenvalues and
eigenvectors of JðAÞ provide principal curvature and principal
direction information:

Lemma 2 [39, Theorem 2]. Given a shape X 2 X, the eigenvalues
k1; k2; k3 of JðAÞ, where A ¼ BRðxÞ \ X and x 2 @X, have the following
Taylor expansion:
k1 ¼
2p
15

R5 � p
48

3j1ðX; xÞ þ j2ðX; xÞ
� �

R6 þ OðR7Þ; ð11Þ

k2 ¼
2p
15

R5 � p
48

j1ðX; xÞ þ 3j2ðX; xÞ
� �

R6 þ OðR7Þ; ð12Þ

k3 ¼
19p
480

R5 � 9p
512

j1ðX; xÞ þ j2ðX; xÞ
� �

R6 þ OðR7Þ; ð13Þ

where j1ðX; xÞ and j2ðX; xÞ denotes the principal curvatures of @X at
x.3

Hence, similarly to Eq. (6), one can define local estimators ~j1
R, ~j2

R

and finally the Gaussian curvature eK R ¼
def ~j1

R � ~j2
R as functions of

fkig1;2;3 and R. From Lemma 2, all these estimators converge in
the continuous setting when R tends to 0.

When dealing with digital shapes DhðXÞ, implementation of
these estimators becomes straightforward: choose a radius R,
center a Euclidean (or digital) ball at chosen points of @hX (e.g. cen-
troids of linels or surfels), compute the quantities (area, volume,
covariance matrix) and finally estimate curvature information
~j; eH; ~j1, ~j2 or eK . However, several issues are hidden in this
approach: What are meaningful values for R according to the shape
size and geometry? Do points of @hX converge to points x 2 @X for
which Lemmas 1 and 2 are valid? Does counting the number of
pixels (resp. voxels) converge to ARðxÞ (resp. VRðxÞ)? Does the dig-
ital covariance matrix converge to the expected one? The rest of
the paper addresses all these questions.

2.3. Multigrid convergence of 2D and mean curvature estimator in
digital space

In [10], we have demonstrated that digital versions of estima-
tors defined in Eq. (6) lead to efficient and multigrid convergent
estimators for digitizations of smooth 2D shapes. In this section,
we briefly describe the overall structure of this proof since similar
arguments will be used in Section 3 to demonstrate that our digital
principal curvature estimators do converge uniformly.
2 � denotes the usual tensor product in vector spaces.
3 There is a typographic error in k1 in the paper [39].
First, we used existing results on digital area or volume estima-
tion by counting grid points. Hence, for 2D shapes X 2 X and 3D
shapes X 0 2 X, we have

dAreaðDhðXÞ; hÞ ¼
def

h2CardðDhðXÞÞ ¼ AreaðXÞ þ OðhbÞ; ð14ÞdVolðDhðX0Þ;hÞ ¼
def

h3CardðDhðX 0ÞÞ ¼ VolðX0Þ þ OðhcÞ;

for b ¼ c ¼ 1 in the general case and b ¼ c > 1 with further con-
straints on X (e.g. C3 with non-zero curvature) [27,21,26].

Then, we focused on the convergence of the area estimation on
Euclidean shapes defined by BRðxÞ \ X at x 2 @X in dimension 2. We
defined a digital curvature estimator ĵRðDhðXÞ; x; hÞ by applying the
area estimation by counting on BRðxÞ \ X and Eq. (6), see [10, Eq.
(11)]. We first demonstrated that ĵRðDhðXÞ; x;hÞ converges to
jðX; xÞ (note that curvatures are evaluated at the same point
x 2 @X):

Theorem 1 (Convergence of ĵR along @X, [10]). Let X be some convex
shape of R2, with at least C2-boundary and bounded curvature. Then
there exists positive constants h0;K1 and K2 such that

8h < h0;R ¼ kmham ; 8x 2 @X;

ĵRðDhðXÞ; x;hÞ � jðX; xÞj j 6 Kham ; ð15Þ

where am ¼ b
2þb ; km ¼ ðð1þ bÞK1=K2Þ

1
2þb; K ¼ K2km þ 3K1=k1þb

m , with
b as above. In the general case, am ¼ 1

3.

Then, we showed that moving the digital estimation from
x 2 @X to x̂ 2 @hX does not change the convergence results:

Theorem 2 (Uniform convergence ĵR along @hX, [10]). Let X be some
convex shape of R2, with at least C3-boundary and bounded curvature.
Then, there exists positive constants h0 and k, for any h 6 h0, setting
R ¼ kh

1
3, we have

8x 2 @X; 8x̂ 2 @hX;

kx̂� xk1 6 h ) ĵRðDhðXÞ; x̂;hÞ � jðX; xÞj j 6 Kh
1
3:

In [10], we also presented similar results and convergence
speed for mean curvature estimation in 3D from digital volume
estimation.

To demonstrate that principal curvature estimators can be
defined from digital version of integral invariants, we use exactly
the same process:

1. We first demonstrate that digital estimations of covariance
matrix are multigrid convergent (Sections 3.1 and 3.2).

2. Then, we give explicit error bounds on both the geometrical
moments and the covariance matrix when we change the refer-
ence point from x 2 @X to x̂ 2 @hX (Sections 3.3 and 3.4).

3. Finally, we gather all these results to demonstrate that principal
curvature estimators are uniformly multigrid convergent for all
x̂ 2 @hX (Section 3.5).

3. Multigrid convergence of principal curvature estimators in
digital space

In this section, we derive digital principal curvature and princi-
pal direction estimators by digital approximation of local covari-
ance matrices. Convergence results rely on the fact that digital
moments converge in the same manner as volumes [26]. In the
whole section, the considered family of shapes X is composed of
compact subsets of R3 with positive reach, the boundary of which
is C3 and can be decomposed into a finite number of monotonous
(convex/concave) pieces. Compactness is required so that the
boundary belongs to the shape. C3-smoothness is required in the
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truncated Taylor expansion of Pottmann et al. [39,38] relating
covariance matrix and curvatures. Positive reach guarantees that
two pieces of boundaries are not too close to each other, and this
fact is also required in the previous truncated Taylor expansion
(although this is not stated in their paper). The finite decomposi-
tion into monotonous pieces induces that integrals as limits of
sums converge at speed at least OðhÞ.

3.1. Convergence of digital moments

Following the same principles as the area and volume estima-
tors by counting, we define the digital ðp; q; sÞ-moments m̂p;q;sðZ;hÞ
of a subset Z of Z3 at step h as

m̂p;q;sðZ;hÞ ¼
def

h3þpþqþsMp;q;sðZÞ; ð16Þ

where Mp;q;sðZÞ ¼
def P

ði;j;kÞ2Zipjqks. To shorten expressions, we denote
by r the sum pþ qþ s, which will always be an integer in f0;1;2g.

There exist multigrid convergent results for digital moments
that are similar to the multigrid convergence of the area and the
volume estimator (see Eq. (14)). Since their speed of convergence
depends on the order r of the moment, we may thus write for
some constant lr P 1 [26]:

m̂p;q;sðDhðYÞ; hÞ ¼ mp;q;sðYÞ þ OðhlrÞ: ð17Þ

The involved constants li are at least 1 in the general case, and
some authors have established better bounds in places where the
Gaussian curvature does not vanish (e.g. see [28] where
l0 ¼ 38

25� �, or [36], Theorem 1, where l0 ¼ 66
43� �).

We wish to apply this formula to the set A ¼ BRðxÞ \ X, whose
size decreases with h. Big ‘‘O’’ notation in Eq. (17) hides the fact
that the involved constant depends on the shape size, scale and
maximal curvature. Hence, we need to normalize our moment esti-
mation so that the error is no more influenced by the scale:

m̂p;q;s DhðAÞ;hð Þ ¼ h3þrMp;q;s
1
h
� BRðxÞ \ X

� �
\ Z3

� �
¼ h3þrMp;q;s

R
h
� B1

1
R
� x

� �
\ 1

R
� X

� �
\ Z3

� �
¼ R3þr h

R

� �3þr

Mp;q;s Dh=R B1
1
R
� x

� �
\ 1

R
� X

� �� �
¼ R3þrm̂p;q;s Dh=R B1

1
R
� x

� �
\ 1

R
� X

� �
;
h
R

� �
:

ð18Þ

The shape B1
1
R � x
� �

\ 1
R � X tends toward a half-ball of radius 1 as

R decreases. Therefore, we may apply Eq. (17) on Eq. (18)
and consider that the involved constant does not depend on
R or h. Note that we use below the obvious relation
mp;q;sðR � YÞ ¼ R3þrmp;q;sðYÞ.

m̂p;q;s DhðAÞ;hð Þ ¼ R3þrmp;q;s B1
1
R
� x

� �
\ 1

R
� X

� �
þ R3þrO

h
R

� �lr

¼ mp;q;sðBRðxÞ \ XÞ þ OðR3þr�lr hlr Þ

¼ mp;q;sðAÞ þ O R3þr�lr hlr
� 	

: ð19Þ

Eq. (19) is a multigrid convergence result for digital moments of
subsets BRðxÞ \ X valid for R decreasing as h decreases.

3.2. Digital approximation of covariance matrix around a point x

For any digital subset Z � Z3, we define its digital covariance
matrix bJðZ;hÞ at step h as:
bJðZ;hÞ ¼def
m̂2;0;0ðZ;hÞ m̂1;1;0ðZ;hÞ m̂1;0;1ðZ;hÞ
m̂1;1;0ðZ;hÞ m̂0;2;0ðZ;hÞ m̂0;1;1ðZ;hÞ
m̂1;0;1ðZ;hÞ m̂0;1;1ðZ;hÞ m̂0;0;2ðZ;hÞ

264
375� 1

m̂0;0;0ðZ;hÞ

m̂1;0;0ðZ;hÞ
m̂0;1;0ðZ;hÞ
m̂0;0;1ðZ;hÞ

264
375� m̂1;0;0ðZ;hÞ

m̂0;1;0ðZ;hÞ
m̂0;0;1ðZ;hÞ

264
375

T

:

ð20Þ

We now establish the multigrid convergence of the digital
covariance matrix toward the covariance matrix. In this case, we
know the exact position of the point x at which both digital and
continuous covariance matrices are computed. The following theo-
rem only takes into account the integral approximation error.

Theorem 3 (Multigrid convergence of digital covariance matrix). Let
X 2 X. Then, there exists some constant hX, such that for any grid step
0 < h < hX, for arbitrary x 2 R3, for arbitrary R P h, with non-empty

AðR; xÞ ¼def
BRðxÞ \ X, we have:

kbJðDhðAðR; xÞÞ; hÞ � JðAðR; xÞÞk 6
X2

i¼0

OðR5�li hli Þ:

The constants hidden in the big O do not depend on the shape size
or geometry. k � k denotes the spectral norm on matrices.

Proof. To simplify expressions, we set A ¼def
AðR; xÞ;

Ah ¼
def DhðAðR; xÞÞ. We begin by translating the sets A and Ah

towards the origin w.r.t. x. We must use a vector that takes into
account the digitization, hence we shift Ah by the vector x

h, the inte-
ger vector closest to x

h, and we shift A with the vector h x
h. We further

set eAh ¼
def DhðAÞ � x

h and eA ¼def
A� h x

h. Following these definitions,

bJðDhðAðR; xÞÞ;hÞ ¼ bJ Ah; hð Þ ¼ bJ eAh þ
x
h
;h

� 	
: ð21Þ

Using the translation invariance for covariance matrix4 which
implies that for any finite subset Z � Z3, for any integral vector
v 2 Z3, for any h > 0; bJhðZ þ vÞ ¼ bJhðZÞ, we have

bJ eAh þ
x
h
;h

� 	
¼ bJ eAh; h
� 	

: ð22Þ

Writing down the definition of digital covariance matrix (see
Eq. (20)), we have:

bJ eAh;h
� 	

¼
m̂2;0;0

eAh;h
� 	

. .
.

264
375� 1

m̂0;0;0
eAh;h
� 	 m̂1;0;0ðeAh;hÞ

..

.

24 35� m̂1;0;0ðeAh;hÞ
..
.

24 35T

: ð23Þ

We remark that eAh ¼ DhðAÞ � x
h ¼ Dh A� h x

h

� �
¼ DhðeAÞ. Conse-

quently, we apply convergence result of Eq. (19) onto set eA and
insert them into Eq. (23) to get

bJðeAh;hÞ¼
m2;0;0ðeAÞþOðR5�l2 hl2 Þ

. .
.

24 35� 1

m0;0;0ðeAÞþOðR3�l0 hl0 Þ
ðm1;0;0ðeAÞþOðR4�l1 hl1 ÞÞ

2

. .
.

24 35:
ð24Þ

Note that constants in big O are independent of X thanks to the
normalization. In Eq. (24), we recognize easily JðeAÞ plus other
terms. We bound the other terms from above with two facts: (i)
the radius R is greater than h, (ii) since eA is non-empty and close
to the origin, we apply Eqs. (A.2) and (A.4) of Lemma 4 for seteA � BRðtÞ with t ¼ x� h x

h, noticing that ktk1 6 h
2. We obtainbJðeAh; hÞ ¼ JðeAÞ þ OðR5�l2 hl2 Þ þ OðR5�l0 hl0 Þ þ OðR5�l1 hl1 Þ:

We conclude since J eA� 	
¼ J A� h x

h

� �
¼ JðAÞ (Translation invariance

for covariance matrix). h
3.3. Influence of a positioning error on moments

In general, we do not know the exact position of x but only some
approximation x̂ taken on the digital boundary @hX. We therefore
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examine the perturbation of the moments when they are evaluated
at a shifted position xþ t.

Lemma 3. For any measurable subset X � R3 and any vector t with
norm t ¼def ktk2 6 R, we have for 0 6 pþ qþ s ¼def r 6 2:

mp;q;s BRðxþ tÞ \ Xð Þ ¼ mp;q;s BRðxÞ \ Xð Þ þ
Xr
i¼0

O kxkitR2þr�i
� 	

: ð25Þ

The proof is detailed in Appendix A.2.
3.4. Influence of a positioning error on covariance matrix

We now establish the multigrid convergence of the digital
covariance matrix toward the covariance matrix even when the
exact point x is unknown.

Theorem 4 (Multigrid convergence of digital covariance matrix with
position error). Let X 2 X. Then, there exists some constant hX, such
that for any grid step 0 < h < hX, for arbitrary R P h, for any x 2 @X
and any x̂ 2 @hX; kx� x̂k1 6 h, we have:

kbJ DhðAðR; x̂ÞÞ; hð Þ � JðAðR; xÞÞk 6 O kx� x̂kR4
� 	

þ
X2

i¼0

O R5�li hli

� 	
;

with AðR; yÞ ¼def
BRðyÞ \ X. The constants hidden in the big O do not

depend on the shape size or geometry.
Proof. The fact that kx� x̂k1 6 h 6 R induces that AðR; xÞ and
AðR; x̂Þ are both non-empty. We cut the difference of two matrices
into two parts:

kbJðDhðAðR; x̂ÞÞ; hÞ � JðAðR; xÞÞk 6 kbJðDhðAðR; x̂ÞÞ;hÞ � JðAðR; x̂ÞÞk
þ kJðAðR; x̂ÞÞ � JðAðR; xÞÞk:

For the first error term, we apply directly Theorem 3 at point x̂.

For the second term, we set t ¼def
x̂� x; t ¼def ktk. Then we use the

invariance of the covariance matrix with respect to translation to
shift the problem toward the origin:
Fig. 2. Illustrations of 2D and 3D shapes considered in the experimental evaluation (plea
flower (c), sphere (d), rounded cube (e) and Goursat’s surface (f).

Table 1
Equations, parameters and domains of Euclidean shapes considered in the experimental e

Shape Equation (parametric in 2D, implicit in 3D)

Ellipse ðxðtÞ; yðtÞÞ ¼ ðqðtÞ � cosðtÞ;qðtÞ � sinðtÞÞ with qðtÞ ¼ bffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�ða2�b2Þ=a2 �
p

Flower ðxðtÞ; yðtÞÞ ¼ ðqðtÞ � cosðtÞ;qðtÞ � sinðtÞÞ with qðtÞ ¼ r1 þ r2 � cosð
AccFlower ðxðtÞ; yðtÞÞ ¼ ðqðtÞ � cosðtÞ;qðtÞ � sinðtÞÞ with qðtÞ ¼ r1 þ r2 � cosð
Sphere x2 þ y2 þ z2 � a2 ¼ 0
Rounded cube x4 þ y4 þ z4 � a4 ¼ 0
Goursat’s surface ax4 þ ay4 þ az4 þ bx2 þ by2 þ bz2 þ c ¼ 0
kJðAðR; x̂ÞÞ � JðAðR; xÞÞk ¼ kJðAðR; xþ tÞÞ � JðAðR; xÞÞk
¼ kJðAðR; xþ tÞ � xÞ � JðAðR; xÞ � xÞk
¼ kJððBRðxþ tÞ � xÞ \ ðX � xÞÞ � JððBRðxÞ
� xÞ \ ðX � xÞÞk

¼ kJðBRðtÞ \ ðX � xÞÞ � JðBRð0Þ \ ðX � xÞÞk
¼ kJðBRðtÞ \ X 0Þ � JðBRð0Þ \ X 0Þk;

with X0 ¼def
X � x. We will apply Lemma 3 for the different moments

in the covariance matrix J. We denote by Yt the set BRðtÞ \ X 0 and by
Y0 the set BRð0Þ \ X0.

kJðYtÞ � JðY0Þk

¼
m2;0;0ðYtÞ �m2;0;0ðY0Þ

. .
.

24 35� 1
m0;0;0ðYtÞ

m1;0;0ðYtÞ

..

.

24 35






�

m1;0;0ðYtÞ

..

.

24 35T

þ 1
m0;0;0ðY0Þ

m1;0;0ðY0Þ

..

.

24 35� m1;0;0ðY0Þ

..

.

24 35T







:

Matrix JðYtÞ � JðY0Þ contains differences of geometrical
moments of order two (e.g. m2;0;0ðYtÞ �m2;0;0ðY0Þ) and quantities

in the form of D ¼def m1;0;0ðYt Þ2

m0;0;0ðYt Þ �
m1;0;0ðY0Þ2

m0;0;0ðY0Þ
(component ð1;1Þ in

JðYtÞ � JðY0Þ matrix). From Lemma 3, every error on second-order
moments is in OðtR4Þ. To bound D quantities, we first observe that
j m0;0;0ðYtÞ �m0;0;0ðY0Þ j¼ pR2ðt þ Oðt2Þ þ OðtR2ÞÞ using Theorem 7
in [38]. Hence,

D ¼ m1;0;0ðYtÞ2

m0;0;0ðY0Þ þ OðtR2Þ
�m1;0;0ðY0Þ2

m0;0;0ðY0Þ

¼ OðtR2Þm1;0;0ðYtÞ2

m0;0;0ðY0Þ2
þm1;0;0ðYtÞ2 �m1;0;0ðY0Þ2

m0;0;0ðY0Þ
:

Since a
bþOðxÞ ¼ a

bþ a
b2 OðxÞ, using Lemma 3 and

a2 � b2 ¼ ða� bÞðaþ bÞ,
se refer to Table 1 for equations and parameters): Ellipse (a), flower (b), accelerated

valuation (t 2 ½0;2p� for parametric curves). Please refer to Fig. 2 for illustrations.

Parameters Domain kmin kmax

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cosðtþ/Þ

ða; bÞ ¼ ð20;7Þ ½�20;20�2 0:0175 0:408

p � tÞ ðr1; r2; pÞ ¼ ð20;7;6Þ ½�20;20�2 �1:4142 0:3827

p � t3Þ ðr1; r2; pÞ ¼ ð20;5;3Þ ½�20;20�2 �10:4475 3:14815

a ¼ 9 ½�10;10�3 0:1111 0:1111

a ¼ 9 ½�10;10�3 0 0:2822

ða; b; cÞ ¼ ð0:03;�2;�8Þ ½�10;10�3 �0:1501 0:4532



Fig. 3. Comparison with different a values for R ¼ kha in II on an ellipse (a), a flower (b) and an accelerated flower (c). Comparison of l1 and l2 curvature error with BC [18],
MDSS [12,16] and MDCA [41] on an ellipse (d and g), a flower (e and h) and an accelerated flower (f and i).
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D ¼ OðtR4Þ þ ðm1;0;0ðYtÞ þm1;0;0ðY0ÞÞ
m1;0;0ðYtÞ �m1;0;0ðY0Þ

m0;0;0ðY0Þ

¼ OðtR4Þ þ ðOðtR3Þ þ OðR4ÞÞm1;0;0ðYtÞ �m1;0;0ðY0Þ
m0;0;0ðY0Þ

ðLemma 4; Eq: ðA:2ÞÞ

We use Lemma 3 and the fact that since t < R, m0;0;0ðY0Þ ¼ OðR3Þ, we
have:

D ¼ OðtR4Þ þ ðOðtR3Þ þ OðR4ÞÞ OðtR3Þ
m0;0;0ðY0Þ

¼ OðtR4Þ:

The same bound is found for all terms of the matrix. Putting
everything together gives the result. h
3.5. Convergence for x̂ 2 @hX

Following the truncated Taylor expansion of Lemma 2, we
define estimators of curvatures from the diagonalization of the dig-
ital covariance matrix.
Definition 3. Let Z be a digital shape, x some point of R3 and h > 0
a grid step. For R P h, we define the integral principal curvature
estimators ĵ1

R and ĵ2
R of Z at point y 2 R3 and step h as

ĵ1
RðZ; y;hÞ ¼

6
pR6 ðk̂2 � 3k̂1Þ þ

8
5R

; ð26Þ

ĵ2
RðZ; y;hÞ ¼

6
pR6 ðk̂1 � 3k̂2Þ þ

8
5R

; ð27Þ

where k̂1 and k̂2 are the two greatest eigenvalues ofbJðBR=h
1
h � y
� �

\ Z;hÞÞ.

We recall the following result of matrix perturbation theory
[3,43,4]:

Theorem 5 (Lidskii-Weyl inequality). If kiðBÞ denotes the ordered
eigenvalues of some symmetric matrix B and kiðBþ EÞ the ordered
eigenvalues of some symmetric matrix Bþ E, then maxi j kiðBÞ�
kiðBþ EÞ j6 kEk.



Fig. 4. Comparison with different a values for R ¼ kha in II (mean curvature and principal curvatures) on a sphere (a, d and g), a rounded cube (b, e and h) and Goursat’s
surface (c, f and i).
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We prove below that our integral principal curvature estimators
are multigrid convergent toward the principal curvatures along the
shape.

Theorem 6 (Uniform convergence of principal curvature estimators
ĵ1

R and ĵ2
R along @hX). Let X 2 X. For i 2 f1;2g, recall that jiðX; xÞ is

the i-th principal curvature of @X at boundary point x. Then, there exist
positive constants hX ; k;K such that, for any h 6 hX, setting R ¼ kh

1
3,

we have
8x 2 @X; 8x̂ 2 @hX;

kx̂� xk1 6 h ) j ĵi
RðDhðXÞ; x̂;hÞ � jiðX; xÞ j6 Kh

1
3:
5 Note that since error bounds tend to zero as h tends to zero, the ordering of the
eigenvalues in both matrices is the same for a sufficiently small h.
Proof. We prove the result for the first principal curvature, the
proof for the second one is similar. According to Definition 3, k̂1

and k̂2 are the two greatest eigenvalues of bJ BR=h
1
h � x̂
� �

\ Z;h
� �

with
Z ¼ DhðXÞÞ. We derive easily:
bJ BR=h
1
h
� x̂

� �
\DhðXÞ;h

� �
¼bJ BR=h

1
h
� x̂

� �
\ 1

h
�X

� �
\Z3;h

� �
¼bJ 1

h
� ðBRðx̂Þ\XÞ\Z3;h

� �
¼bJ DhðBRðx̂Þ\XÞ;hð Þ¼bJ DhðAðR; x̂ÞÞ;hð Þ:

Theorem 4 indicates that bJðDhðAðR; x̂ÞÞ;hÞ and JðAðR; xÞÞ are
close to each other with a norm difference bounded by
Oðkx� x̂kR4Þ þ

P2
i¼0OðR5�li hli Þ. Since both matrices are symmetric

by definition, Theorem 5 implies that k̂1 and k̂2 are close to the
eigenvalues k1ðJðAðR; xÞÞÞ and k2ðJðAðR; xÞÞÞ with the same bound.5

We thus write:

ĵ1
RðDhðXÞ; x̂;hÞ ¼

6
pR6 ðk̂2 � 3k̂1Þ þ

8
5R

¼ 6
pR6 k2 � 3k1 þ Oðkx� x̂kR4Þ þ

X2

i¼0

OðR5�li hli Þ
 !

þ 8
5R

:



Fig. 5. Comparison of l1 mean and principal curvatures error with Jet Fitting [8] on a sphere (a, d and g), a rounded cube (b, e and h) and Goursat’s surface (c, f and i).
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We then substitute the truncated Taylor expansion of Lemma 2 into
the latter equation and we bound kx� x̂k by h. After some calcula-
tions, we get:

ĵ1
RðDhðXÞ; x̂; hÞ ¼ j1ðX; xÞ þ OðRÞ þ Oðh=R2Þ

þ
X2

i¼0

Oðhli=R1þli Þ: ð28Þ

Setting R ¼ kha, we optimize the value a to minimize all errors.
Since li P 1 for the shape X, the optimal value is a ¼ 1

3. The bound
follows. h

It is worth to note that the preceding error bound could be
improved at neighborhoods where the Gaussian curvature does
not vanish: the constants li are then closer to 1:5. However, there
is the issue of estimating more precisely the position of x̂ with
respect to x. In the best known case [30], uniform convergence

with bound	 Oðh0:434Þ can be expected for radius R with a size pro-

portional to h0:434.
In Theorem 6, we focused on multigrid convergence of principal
curvature quantities. However, similar results can be obtained for
principal curvature directions as well [15].
4. Experimental evaluation

We present an experimental evaluation of curvature estimators
in 2D and 3D (mean and principal curvatures). We have imple-
mented our Integral Invariant estimators (II) in the open-source
library DGTAL [46]. DGTAL allows us to construct parametric or
implicit shapes in dimension 2 and 3 for any grid step h. Further-
more, DGTAL allows comparison with former approaches available
in dimension 2: curvature from Most-centered Maximal Segment
with length information (MDSS) [12,16], curvature from Most-cen-
tered Digital Circular Arc (MDCA) [41] and Binomial based convolu-
tion (BC) [18]; and in dimension 3: curvature from polynomial
surface approximation (Jet Fitting) [8] using a binding between
DGTAL and CGAL [45]. Jet Fitting approach requires a point set on
which the polynomial fitting is performed. In our multigrid setting,



Fig. 6. Comparison of l2 mean and principal curvatures error with Jet Fitting [8] on a sphere (a, d and g), a rounded cube (b, e and h) and Goursat’s surface (c, f and i).
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the radius of the spherical kernel used to construct the local point-
set around a given surface element is the same as the radius of the
integral invariant kernel (R ¼ kha).

As described in Section 2, brute-force implementation is trivial.
We first need to construct a kernel from a Euclidean ball with
radius given by R ¼ kha as described in theorem statements. Then,
the digital object boundary is tracked and the kernel is centered on
each surface elements. For 2D and 3D mean curvature estimators,
the volumetric integral of the intersection between the kernel and
the object is computed; for 3D principal curvature estimators, the
covariance matrix of this intersection is computed and then eigen-
values and eigenvectors are deduced from it by diagonalization.

With this approach, we achieve a computational cost of
OððR=hÞdÞ per surface element (i.e. the size of the kernel at grid step
h). However, we can take advantage of the digital surface structure
to considerably speed up this algorithm: if we consider a surface
tracker for which surface elements are processed by proximity
(the current surface element is a neighbor of the previous one
through a translation vector ~d), the area/volume estimation can
be done incrementally. Indeed, they are countable additive:
dAreaðDhðXÞ \ BRðxþ~dÞ; hÞ ¼ dAreaðDhðXÞ \ BRðxÞ; hÞ þ dAreaðDhðXÞ

\ ðBRðxþ~dÞ n BRðxÞÞ; hÞ � dAreaðDhðXÞ

\ ðBRðxÞ n BRðxþ~dÞÞ; hÞ:

Similarly we have for moments:
m̂p;q;sðDhðXÞ \ BRðxþ~dÞ;hÞ ¼ m̂p;q;sðDhðXÞ \ BRðxÞ;hÞ
þ m̂p;q;sðDhðXÞ \ ðBRðxþ~dÞ n BRðxÞÞ; hÞ
� m̂p;q;sðDhðXÞ \ ðBRðxÞ n BRðxþ~dÞÞ; hÞ:

Then, if we precompute all kernels DhðBRð0�~dÞ n BRð0ÞÞ for
some~d displacements (based on surface element umbrella config-
urations, 8 in 2D and 26 in 3D for k~dk1 ¼ h), the computational
cost per surface element can be reduced to OððR=hÞd�1Þ. Finally, in
the ideal case of a Hamiltonian traversal of the surface, only the
first surfel has to be computed using kernel BRðx̂Þ and every subse-
quent neighboring surfel is processed using sub-kernels
DhðBRð0�~dÞ n BRð0ÞÞ.



(a) (b) (c) (d)

Fig. 7. Ellipse with b ¼ 0:5 (a) and a zoom of his boundary in red (b). Rounded cube with b ¼ 0:5 (c) and his boundary (d). Comparison of 2D estimators on different level of
noise on an ellipse (e). Comparison of 3D estimators for mean (f) and principal curvatures (g and h) on different level of noise on a rounded cube.
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In our experimental evaluation, we need to compare the esti-
mated curvature values with expected Euclidean ones on paramet-
ric curves and surfaces on which such curvature information is
known. We have chosen three 2D shapes to perform our evalua-
tion: an ellipse (Fig. 2(a)) which matches the theorem’s hypotheses
(convex C3 shape), a flower (Fig. 2(b)) and an accelerated flower
(Fig. 2(c)) which do not satisfy the hypotheses exactly (C3 but
non-convex shapes). In 3D, we chose a sphere (Fig. 2(d)), a rounded
cube (Fig. 2(e)) and Goursat’s surface (Fig. 2(f)). As in 2D, the
sphere and the rounded cube match the theorem’s hypotheses,
and we have a non-convex shape with Goursat’s surface. Equa-
tions, parameters and shape domains of these Euclidean objects
are given in Table 1. In order to quantitatively interpret error
measurements given in the graphs, we detail expected minimum
and maximal curvature values in this table. To compensate sub-
pixel/subvoxel digitization effects when digitizing a continuous
object, we evaluate the estimators on digitization of 10 random
translations of the continuous objects (continuous objects are
translated by a vector randomly selected in ½�1;1�2 or ½�1;1�3).
Estimated quantities are compared to expected Euclidean ones
for each pair of digital/continuous contour points (x̂ 2 @hX and
x 2 @X). In our experiments, we consider two different metrics on
point-wise errors to get a global error measurement. First l1 metric
is used to quantify worst-case error since it reflects the uniform
convergence of Theorems 2 and 6. In other experiments, we also
consider l2 error to get an average error analysis.



(a)

(b)

Fig. 8. Timings in milliseconds for 2D estimators on a flower (a) and 3D estimators
on a rounded cube (b). Results have been obtained on a Intel Xeon 2.27 GHz desktop
machine.
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From Theorems 2 and 6, theory indicates that the best candi-
date for a is am ¼

def 1
3 to ensure a multigrid convergence in Oðh

1
3Þ.

We first need to confirm this setting considering a values in
1
2 ;

2
5 ;

1
3 ;

2
7 ;

1
4

� �
. Fig. 3(a, b and c) presents results for the worst-case

(l1) distance between the true expected curvature values and the
estimated ones. For multigrid ellipses, we observe experimental
convergence for several a values (except for a ¼ 1

2). As suggested
by Theorem 2, for a ¼ am ¼

def 1
3 the behavior of the l1 error is exper-

imentally in Oðh
1
3Þ. The theorem is defined in the general case, but

the big O error can be improved with some further hypothesis on
the shape. This could explain why better convergence speeds seem
to be obtained when a ¼ 2

7 and 1
4. For non-convex shapes (flower

and accelerated flower), we still observe the convergence. Interest-
ingly, values a greater than 1

3 (and thus larger digital kernel size)
seems to lead to slightly better estimations. The theoretical ratio-
nale behind this observation should be explored in future works.

We performed the same analysis in 3D for the mean and prin-
cipal curvature estimators. Section 3 in [10] and Theorem 6 theo-
retically prove that a ¼ 1

3 leads to an l1 error at least in Oðh
1
3Þ.

Fig. 4 gives results of l1 error for various a values. We observe that
for both convex and non-convex shapes, a ¼ 1

3 provides expected
convergence speed in mean and principal curvatures estimation.
As in 2D, better convergence speed can be obtained with a ¼ 2

7
and 1

4.
In Fig. 3(d, e and f) we compare the proposed 2D curvature esti-

mator (II with a ¼ 1
3) with BC, MDSS, MDCA estimators for the l2

(mean error) and l1 error metrics. In these noise-free shapes, l1
convergence speeds of MDCA is close to II. We observe a conver-
gence for BC, but with lower convergence speeds. Note that MDSS
exhibits no experimental convergence here. We observe for ellip-
ses that BC provides better l2 results than II for high h values, but
the behavior of both curves show that II will be better when h is
refined. For flower and accelerated flower, we have the same
behavior for l2 than for l1 error.

In all graphs, we had to stop the computations for BC and MDCA
for the following reasons: in our implementation of BC, the mask
size becomes too large for small h values which induces memory
usage issues. For MDCA, circular arc recognition in DGTAL is driven
by a geometrical predicate based on a determinant computation of
squared point coordinates. Hence, small h values lead to numerical
capacity issues and thus instability (which could be solved consid-
ering arbitrary precision integer numbers but would lead to effi-
ciency issues). The proposed integral invariant estimator does not
suffer from these kinds of issues. Note that for the finest experi-
ment h ¼ 0:00017, digital shapes are defined in a digital domain
235,2952. At this scale, the digital ellipse has 648,910 contour
elements.

Fig. 5 illustrates the comparison with Jet Fitting on mean and
principal curvatures with l1 error metric on a sphere (a, d and g),
a rounded cube (b, e and h) and Goursat’s surface (c, f and i). We
notice Jet Fitting performs better on a sphere for mean and princi-
pal curvatures than our estimators. On a rounded cube or Goursat’s
surface and for the mean curvature, Jet Fitting has similar conver-
gence speed than II. However, II has slightly lower l1 errors. For
principal curvatures, we observe that our estimator significantly
outperforms principal curvatures from Jet Fitting. If we look at
mean errors (l2 metrics) in Fig. 6, similar behaviors can be
observed. Note that for the finest experiment h ¼ 0:04, digital
shapes are defined in a digital domain 5003. At this scale, the dig-
ital rounded cube object has 1,125,222 surface elements.

We have also evaluated the behavior of our estimators on noisy
data. Given a digital binary object, our noise model consists in
swapping the grid point value at p with probability defined by a
power law b1þdtðpÞ for some user-specified b 2 ½0;1� (dtðpÞ corre-
sponds to the distance of p to the boundary of the original digital
shape). Such noise model, so-called Kanungo noise [22], is
particularly well-adapted to evaluate the stability of digital geom-
etry algorithms [24]. In Fig. 7(a and d), examples of noisified
objects are given. Our experimental setting can be described as fol-
lows: for both the flower in 2D and the rounded cube in 3D
(h ¼ 0:1 for both), we slightly increase the noise parameter from
0 to 1 and we plot the l1 error. In dimension two (Fig. 7(e)), we
observe that estimators based on geometrical object recognition
(MDSS and MDCA) are highly sensitive to contour perturbations.
Both BC and II are extremely robust to small noise but for b greater
than 0.5, II significantly outperforms BC. In dimension 3, we
observe that both II and Jet Fitting approaches lead to quite stable
results. Indeed, some computations in the Jet Fitting approach rely
on a point-set PCA (Principal Component Analysis) which also pro-
vides robust statistics.

In Fig. 8, we detail timings in logscale of various estimators on
the flower object in 2D and the rounded cube in 3D. As expected,
approaches based on object recognition in dimension 2 (MDSS
and MDCA) provide faster computations. We also observe that II
is a bit slower but has an asymptotic behavior much more favor-
able that BC. In dimension 3 (Fig. 8(b)), we observe that Jet fitting



Fig. 9. Illustration of 3D curvature estimation. Mean curvature on rounded cube (a), Goursat’s surface (b), Leopold surface (c) and a bunny (d). First principal direction and
second principal direction Goursat’s surface (e and f) and Stanford bunny (g and h).
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and II behaviors are similar and that II is 10 times faster than our
implementation of Jet fitting.

Finally, Fig. 9 shows mean curvature and principal directions
mapped on various shapes (rounded cube, Goursat’s surface, Leo-
pold surface) and on an object (Stanford bunny). From these exper-
iments, we can see that principal directions are nicely captured by
covariance matrix eigenvectors.
5. Conclusion

In this paper, we have used integral invariant results from dif-
ferential geometry to design simple and efficient digital curvature
estimators in dimension 2 and 3. Digital geometry is a perfect
domain for such differential tools: volume, area or geometrical
moments computations are digital by nature, interesting connec-
tions to fundamental results on Gauss digitization exist, fast com-
putations are induced by the specific geometry of digital surfaces.
For curvature estimation in dimension 2 as well as principal curva-
ture estimations in dimension 3, we have proven a theoretical uni-
form convergence in O h

1
3

� 	
for C3 smooth object boundaries.

Experimental evaluation has not only confirmed this bound but
has also shown that these estimators can be computed efficiently
in practice with low computational costs. Our digital Integral
Invariant estimators and all other estimators used in the experi-
mental evaluation section are publicly available in DGTAL [46]. Con-
vergence speed are obtained with a weak constraint on the
distance between x̂ and x (which just needs to be lower that h
for the l1 metric). Using a specific projection as discussed in [29],
better convergence speed is expected at least for dimension 2.
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Appendix A. Technical lemmas

A.1. Technical lemmas related to covariance matrices and continuous
moments

We gather here a few technical facts and results related to
covariance matrices, digital and continuous ðp; q; sÞ-moments.

Lemma 4. Let BRðtÞ be the ball of radius R and center t. Then, for any
non-empty Y � BRðtÞ,

m0;0;0ðYÞ ¼ OðR3Þ; ðA:1Þ

mp;q;sðYÞ ¼ OðR3ðktk1 þ RÞÞ; ðpþ qþ s ¼ 1Þ ðA:2Þ

mp;q;sðYÞ ¼ OðR3ðktk2
1 þ Rktk1 þ R2ÞÞ; ðpþ qþ s ¼ 2Þ ðA:3Þ

and

mp;q;sðYÞ=m0;0;0ðYÞ ¼ OðRþ tÞ; ðpþ qþ s ¼ 1Þ: ðA:4Þ
Proof. Eq. (A.1) is immediate since 0-order moment is the volume
of Y, hence it cannot exceed the volume of the ball which is 4

3 pR3.
For Eq. (A.2), we make the change of variable ðx0; y0; z0Þ ¼ ðx; y; zÞ � t
in the following expression:

m1;0;0ðYÞ ¼
ZZZ

Y
xdxdydz ¼

ZZZ
Y�t
ðx0 þ txÞdx0dy0dz0

¼ txVolðYÞ þm1;0;0ðY � tÞ:

In the first term, VolðYÞ is bounded by the volume of any ball of
radius R. By the additivity of integrals, the second term is
maximized by the ð1;0;0Þ-moment of the half-ball BþR ð0Þ centered
on 0 and lying in the positive x orthants. Now, using spherical
coordinates, we get
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m1;0;0ðBþR ð0ÞÞ ¼
Z R

0

Z p
2

�p
2

Z p
2

�p
2

ðq cos / cos hÞðq2 cos /Þdhd/dq

¼ q4

4


 �R

0
sin h½ �

p
2
�p

2

1
2
½/þ sinð/Þ cosð/Þ�

p
2
�p

2
¼ p

4
R4; ðA:5Þ

which concludes for Eq. (A.2) (other cases pþ qþ s ¼ 1 are similar).
Other equations are proved in a similar way. h
A.2. Proof of Lemma 3

Proof. By decomposing X according to the two shifted balls (see
Fig. A.10), we get:

mp;q;sðBRðxþ tÞ \ XÞ �mp;q;sðBRðxÞ \ XÞ
¼ mp;q;sððBRðxþ tÞ n BRðxÞÞ \ XÞ �mp;q;sððBRðxÞ n BRðxþ tÞÞ \ XÞ:

We denote by DðtÞ the difference on the right term of preceding
equation. The two sets on the right form the symmetric difference
(symbol 
) of the two shifted balls. We will use the following fact:

;– Y1 � Y2 � R3 ) j sup
Y�Y1

mp;q;sðYÞ j6j sup
Y�Y2

mp;q;sðYÞ j : ðA:6Þ

By additivity of integrals, we have immediately:

j DðtÞ j ¼j mp;q;sððBRðxþ tÞ 
 BRðxÞÞ \ XÞ j
6 sup

Y�ðBRðxþtÞ
BRðxÞÞ\X
j mp;q;sðYÞ j

6 sup
Y�BRðxþtÞ
BRðxÞ

j mp;q;sðYÞ j

6 sup
Y�BRþtðxÞ�BR�t ðxÞ

j mp;q;sðYÞ j :
(a)

(b)

Fig. A.10. Illustration for Lemma 3.
In the last row, we cover the symmetric difference of two
shifted balls by the difference of two balls of same center, a kind
of spherical shell or annulus in 2D (see Fig. A.10). Although it is a
rough upper bound, it induces the same order of perturbation.
We denote this set BRþtðxÞ � BR�tðxÞ by HR;tðxÞ.

For zeroth order moment, we use simply the volume of the ball:
sup
Y�HR;tðxÞ

j m0;0;0ðYÞ j¼ m0;0;0ðHR;tðxÞÞ ¼
4p
3
ð6R2t þ 2t3Þ

¼ OðtR2Þ: ðA:7Þ

For first order moments, we translate the shape to the origin,
then we use the previous result plus the fact that the centered
ð1;0;0Þ-moment is maximized by the corresponding moment for
the x-positive half-ball6:

sup
Y�HR;tðxÞ

j m1;0;0ðYÞ j 6 sup
Y�HR;tð0Þ

j m1;0;0ðYÞ j þ j xx jj m0;0;0ðYÞ j

¼ m1;0;0ðBþRþtð0Þ � BþR�tð0ÞÞ þ Oðj xx j tR2Þ
¼ 2pðR3t þ Rt3Þ þ Oðj xx j tR2Þ
¼ OðtR3Þ þ OðkxktR2Þ: ðA:8Þ

For second order moments, we translate the shape to the origin,
then we use the two previous results plus the fact that the ð2;0;0Þ-
moment is maximized by the corresponding moment for the ball:

sup
Y�HR;tðxÞ

j m2;0;0ðYÞ j 6 sup
Y�HR;tð0Þ

j m2;0;0ðYÞ j þ2 j xx jj m1;0;0ðYÞ

þ x2
x j m0;0;0ðYÞ j¼ m2;0;0ðHR;tð0ÞÞ þ kxkðOðtR3Þ þ OðkxktR2ÞÞ

þ x2
x OðtR2Þ ¼ OðtR4Þ þ OðkxktR3Þ þ Oðkxk2tR2Þ: ðA:9Þ

Other moments are proved similarly. h
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