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Figure 1: Starting from (a) a template low-discrepancy (LD) point set we use (b) a segmented table of permutations to rearrange the LD
set to match a reference set with the desired target spectrum. The permutations are localized and carefully constructed in such a way that
they have minimal impact on the discrepancy of the underlying template set. (c) The resulting set inherits the spectral profile of the target set,
while (d) still retains the discrepancy properties of the template set.

Abstract

We present a novel technique that produces two-dimensional low-
discrepancy (LD) blue noise point sets for sampling. Using one-
dimensional binary van der Corput sequences, we construct two-
dimensional LD point sets, and rearrange them to match a target
spectral profile while preserving their low discrepancy. We store
the rearrangement information in a compact lookup table that can
be used to produce arbitrarily large point sets. We evaluate our tech-
nique and compare it to the state-of-the-art sampling approaches.

Keywords: Blue Noise, Low Discrepancy, Sampling, Monte
Carlo, quasi-Monte Carlo

Concepts: •Computing methodologies→ Rendering;

1 Introduction

Point sampling is a fundamental process in rendering applications
in computer graphics [Pharr and Humphreys 2010]. For example,
estimating the per pixel radiance requires the evaluation of com-
plex integrals, and (quasi-)Monte Carlo methods are widely used to
numerically estimate these integrals from samples.
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The choice of a sampling pattern plays a crucial role to reach a
prescribed rendering quality. Unfortunately, it is still not clear what
is the ideal pattern for a given number of samples. At low sampling
rates, some scholars argue in favor of blue noise patterns [Ulichney
1988], noting that these patterns are observed in the photoreceptors
of animals [Yellot1983], and are therefore desirable from the visual
perception perspective. Others argue in favor of low discrepancy
(LD) sequences and point sets that are commonly used for sampling
in various contexts, noting their computational efficiency [Shirley
1991; Kollig and Keller 2002]. These different perspectives lead
to two different and relatively disjoint trends of research. In this
paper we try to reconcile these two perspectives by developing a
sampling pattern that simultaneously carries the blue noise and LD
properties.

1.1 Motivation

LD sequences and point sets play a crucial role in quasi-Monte
Carlo (QMC) integration — an active research field during the
last few decades [Niederreiter 1992; Lemieux 2009; Keller 2012].
In computer graphics, (quasi-)Monte Carlo integration is exten-
sively used to evaluate light transport in complex scenes that in-
corporate sophisticated geometry and/or objects with complex re-
flection/refraction/absorption properties, as well as having multi-
ple light sources [Pharr and Humphreys 2010; Ramamoorthi et al.
2012]

The discrepancy of a point set is a quantitative measure of deviation
from the uniform distribution. The extreme discrepancy of a point
set in a unit domain is defined as the largest difference, over all
axes-aligned rectangles, between the area of a rectangle and the pro-
portion of the point set elements it contains. The star discrepancy
is defined similarly, but one corner of the rectangles is fixed at the
origin. These measures allow for bounding the numerical integra-
tion error; see the Koksma-Hlawka inequality [Niederreiter 1992].
A 2D set of N points is considered an LD set if its discrepancy is
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O(log(N)/N). A 2D LD sequence is a sequence that maintains
O(log2(N)/N) discrepancy for all its sub-sequences. The con-
cept of uniform, low-discrepancy sequences emerged in the 1930s,
after the pioneering work of van der Corput [1935]. Many differ-
ent LD constructions were proposed thereafter [Niederreiter 1992;
Lemieux 2009].

Despite the wide adoption of LD sets and sequences in computer
graphics, there are considerable differences compared to their ap-
plication in, say, financial simulations. First, the final judgement
on image quality of a QMC integration is performed on a two-
dimensional projection plane, whereas most existing LD sequences
were developed to improve the uniformity in very high dimensions.
Secondly, the rendering results are evaluated visually, and the hu-
man eye is particularly sensitive to aliasing artifacts, which is much
less important in financial simulations. Most LD sequences, such as
Sobol, Faure or Halton sequences — without scrambling (see Sec-
tion 2.6) — contain strong spectral peaks, and may generate strong
aliasing artifacts when used in rendering applications.

The main goal of this work is to build a provably LD point set that
bears a blue-noise spectrum. On the one hand, the variance in inte-
gration is directly dependent on the product of the power spectra of
the integrand and the sampling pattern [Pilleboue et al. 2015]. Con-
sequently, for integrands whose spectral content can be estimated,
one can considerably reduce variance by choosing the parameters
of the blue-noise sampling distribution in such a way that its van-
ished low-frequency spectral part contains the major part of the
spectral content of the integrand. On the other hand, according to
the Koksma-Hlawka inequality, the error in integration is bounded
by the product of the integrand’s variation, in the sense of Hardy
and Krause, and the star discrepancy of the sampling distribution
[Niederreiter 1992]. Thus, for bounded-variation integrands whose
spectral content cannot be easily estimated, the LD property will
still guarantee low variance, at least asymptotically. Finally, the ab-
sence of spectral peaks will avoid aliasing [Durand 2011; Pilleboue
et al. 2015].

The realization of our goal consists in morphing a special strati-
fied LD point set into a close approximation of a given stratified
reference point set; thus adopting the spectral properties of the ref-
erence set, while retaining its LD properties. We achieve this by
locally rearranging the coordinates first in the horizontal and then
the vertical direction. We prove that such a rearrangement main-
tains LD properties, and we provide evidence that we achieve close
approximations of the reference point set even with small LD sets.
Our construction is conceptually very simple and computationally
efficient. It minimizes aliasing and introduces only low levels of
noise. Furthermore, it is easy to implement, and we provide code
in a supplementary material.

Although we focus on blue-noise properties and very low spectral
peaks, our method can be applied to any given stratified point set.
An extension to adaptive LD sampling is not yet given. However,
as pointed out by Pharr and Humphreys [2010], adaptive sampling
in many practical applications is avoided because of the overhead it
induces. If the sampler is fast enough, it is more efficient, for many
scenes, to use global supersampling. Our method is compliant with
this approach thanks to its computational efficiency.

2 Related Work

Our work builds upon many existing approaches for sampling in
computer graphics, and combines many ideas. We briefly review
the main categories of related work.

2.1 Stochastic Sampling

The computer graphics community became sensitive to the prob-
lem of sampling thanks to the pioneering works of Dippé and
Wold [1985], Cook [1986], Mitchell [1991], and Shirley [1991].
They documented how aliasing artifacts arrise in regular sampling,
and proposed stochastic sampling as an alternative, arguing that un-
structured noise is better visually perceived than aliasing or Moiré
effects. The dart-throwing and other Poisson disk algorithms be-
came popular since then, and a lot of research was devoted to im-
proving the computational efficiency and the sampling quality of
the algorithms. To name a few, McCool and Fiume [1992] proposed
a hierarchical version of dart throwing, and introduced Lloyd’s re-
laxation [Lloyd 1982] as a post-process, Dunbar and Humphreys
[2006] proposed a linear-time acceleration, Yuksel [2015] pro-
posed an algorithm based on sample elimination, while Ebeida et
al. [2011] focused on maximal Poisson disk algorithms.

Recently, a number of new optimization-based algorithms have
been proposed for blue noise [Balzer et al. 2009; Chen et al. 2012;
Schmaltz et al. 2010; Schlömer et al. 2011; Fattal 2011; de Goes
et al. 2012; Jiang et al. 2015], as well as general noise [Zhou et al.
2012; Öztireli and Gross 2012; Heck et al. 2013]. Since our method
relies on an offline optimization (Section 4), many of these algo-
rithms can be used.

2.2 Stratified Sampling

Stratified sampling patterns are obtained by subdividing the sam-
pled domain into a regular lattice of strata (cells), and placing one
or more sample point on each stratum. As an efficient alternative to
Poisson disc distributions, Dippé and Wold [1985] proposed a jit-
tered grid by placing the samples randomly on each stratum. This
approach became popular for its computational efficiency and de-
cent anti-aliasing qualities. Shirely et al. [1994] proposed a multi-
jittered grid to improve the uniformity of a jittered grid, and Kensler
[2013] proposed correlated multi-jittering to improve the spacing
between the points. Our method is also stratified.

2.3 Latin Hybercube Sampling

Another approach to generating a uniform distribution of samples
is the Latin hybercube, also known as N-Rook sampling [Shirley
1991]. The idea is that the projections of the samples on each axis
are uniformly distributed. Saka et al. [2007] studied Latinization as
a post-processing of an optimized set, whereas Reinert et al. [2016]
integrated the idea within the optimization process. Our technique
also produces uniform distributions of projection, but with provable
LD.

2.4 Look-up Methods

The generation of high-quality blue noise sets is computationally
expensive, and could be prohibitive for high sampling rates [Lagae
and Dutré 2008]. Many lookup methods were therefore developed
for distributing pre-computed blue noise sets. These methods store
the offsets of the points relative to a stochastic regular-lattice tiling
[Cohen et al. 2003; Kopf et al. 2006; Lagae and Dutré 2006], a com-
plex recursive tiling [Ostromoukhov et al. 2004; Ostromoukhov
2007; Wachtel et al. 2014], or AA Patterns [Ahmed et al. 2015].
Our method is also look-up based, but we store the offsets of the
points relative to an LD point set. The AA Patterns method was an
important inspiration to us, but here we solve a different problem.



2.5 Low-Discrepancy Sets and Sequences

LD sets (or sequences) use deterministic mathematical formulas to
calculate the coordinates of the sample points directly from the or-
dinal sequence numbers of the samples in the set (or sequence).
They are provably more uniformly distributed than random num-
bers can be [Kuipers and Niederreiter 1974]. In fact, most LD se-
quences exhibit both stratification (Section 2.2) and Latin Hyper-
cube properties (Section 2.3). Shirley was among the pioneers and
the best advocates for the use of discrepancy as a quality measure of
computer graphics samplers [Shirley 1991]. Keller and his collabo-
rators further promoted the use of LD sequences in computer graph-
ics [Keller 2012]. Even though there are many known constructions
for two-dimensional LD sets, we develop our own construction, and
prove its discrepancy bounds from the first principles. The inherent
2D indexing of our construction is crucial for our optimization.

2.6 Scrambled LD Sequences

Random scrambling techniques [Tezuka 1994; Owen 1995; Ma-
toušek 1998; Owen 2003] were introduced to improve uniformity,
and to allow for error estimation, resulting in so-called random-
ized quasi-Monte Carlo techniques. Keller and Kollig [2002] use
random scrambling to pad low dimensional LD sequences for sam-
pling in higher dimensions. However, these techniques do not en-
able spectral control; rather, the typical resulting power spectrum
resembles a jittered set; see Figure 7 on page 8. Our LD blue noise
construction is based on scrambling as well, but in a more general
way (Section 3.1), as it does not necessarily preserve the structure
of the elementary intervals [Niederreiter 1992].

3 Optimized Low-Discrepancy Sets

In order to build an LD blue noise set, we start with a template low
discrepancy set, and optimize it to acquire the desired blue noise
profile (BNOT [de Goes et al. 2012], Step [Heck et al. 2013], etc).
There are many LD constructions to choose from (Sobol, Halton,
Hammersley, rank-1, etc.), but they all suffer from one fundamen-
tal problem when it comes to optimization: the topology of these
sets changes with the size of the set, making it difficult to iden-
tify the neighborhoods of the points; whereas, on the other hand,
the spectral properties are sensitive to the local neighborhoods of
the points [Wei and Wang 2011]. Therefore, we devise a new LD
construction that suits our needs, based on stratification.

Suppose that we want to generate N := n2 samples. A stratified
point set can be written as

P :=
{

(X + uX,Y , Y + vX,Y ) :X,Y ∈ {0 . . . n− 1};

uX,Y , vX,Y ∈ [0, 1)
}
. (1)

The ordered pair (X,Y ) selects a specific stratum, and an associ-
ated ordered pair (u, v) specifies the location of the sample point
in that stratum. Note, that u and v are not necessarily functions of
X and Y ; we only indicate here that each (u, v) pair is associated
with a specific stratum (X,Y ). To sample the unit domain, [0, 1)2,
one can simply scale the point set by 1/n.

The essence of stratification is that the discrepancy is zero for all
the strata that are completely enclosed by the considered rectan-
gle; hence, evaluating the star discrepancy of a stratified point
set reduces to evaluating the discrepancy along a column and a
row. As we show in Appendix A, we obtain a low-discrepancy
2D stratified point set if for every column, X , the sequence
{uX,0, uX,1, . . . , uX,n−1} is an LD sequence, and for every row,

Y , the sequence {v0,Y , v1,Y , . . . , vn−1,Y } is an LD sequence. To
transform this condition into a construction, we pick up a 1D low-
discrepancy sequence, S, and use it to supply the horizontal offsets
along the columns:

uX,Y := SY ,

and the vertical offsets along the rows:

vX,Y := SX .

The resulting LD point set is then defined by:

PS :=
{

(X + SY , Y + SX) : X,Y ∈ {0 . . . n− 1}
}
. (2)

Unlike existing LD constructions, ours is inherently indexed in two
dimensions, using a pair of indices. This difference is important
for optimization, because the local neighborhood is fixed around
any given index (X,Y ). Our new construction allows to align the
LD set with any stratified set, on a one-to-one basis. As we will
discuss in Section 3.2, this is the key element to control the spectral
properties of the set.

The set PS will serve as our template LD set, and we will subse-
quently discuss how to enhance its spectral properties.

3.1 Randomized Permutation

m{
σk(i) } n

A random element can be incorporated into
our construction by applying a discrepancy-
preserving rearrangement of the sequence
S for each row and column. Unlike the
global bit-wise scrambling techniques used
with common LD constructions (Section 2.6),
we randomly permute the entries of the con-
stituent sequences (in rows and columns) lo-
cally within small chunks. We choose a chunk
size, m, and re-order every subsequent m en-
tries of the input sequence S (we assume that
m divides n):

S′k·m+i =Sk·m+σk(i) ;

k ∈ {0 . . . n/m} ; i ∈ {0 . . .m− 1} , (3)

where each σk is a permutation over {0...m − 1}. To incorporate
this 1D chunk-wise permutation into PS , we apply two passes; first
along the columns, then along the rows; see Algorithm 1.

What makes this chunk-wise permutation have little impact on the
discrepancy is that any subset of S′ differs from the correspond-
ing subset of S in at most m points. According to [Kuipers and
Niederreiter 1974, Chapter 2, Theorem 4.1]1, the difference in dis-
crepancy of any subsets of length n > m of the two sequences is
then bounded by m/n. Since m is fixed, the difference,

|D∗n(S′)−D∗n(S)|

in discrepancy between the two sequences, is O(1/n). Conse-
quently, if S is an LD sequence, with O(log(n)/n) discrepancy
bound, then the shuffled sequence S′ is also an LD sequence. The
parameter m only alters the constant in the O(·) notation, but we
want to keep m small so that we stay close to the discrepancy of S.

1The statement of the mentioned theorem compares corresponding en-
tries in two “finite sequences”. But since we are referring to subsets, these
can be arranged in any order without altering their discrepancy. To give
an example, the sets {0, 0.25, 0.5, 0.75} and {0, 0.5, 0.25, 0.75} have dif-
ferent discrepancies as sequences, but the same discrepancy as fixed sets.
Alternatively, it is easy to show from the first principles that the difference
in discrepancy between S′ and S is bounded by m/n, since the point-count
of the two sequences in any intervals differs by no more than m points.
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Figure 2: Spatial and spectral plots of a point set (4096 points) obtained from (a) Algorithm 1 (m = 8), and (b) Algorithm 2 (BNOT target,
m = 16, t = 64).

Algorithm 1: Randomized permutation of PS .

1 for each column X do
2 for each chunk k do
3 Randomly permute the vector {uX,Y }k·m+m−1

Y=k·m ;
4 Write the permuted vector back into the set;
5 end
6 end
7 Repeat with the rows by exchanging the roles of u,X and v, Y ,

respectively;

Discussion: At this point, the resulting point set of Algorithm 1
(Figure 2a) closely resembles a scrambled LD set like Owen’s
[Owen 1995] (Figure 7 on page 8), which is the current state-of-
the-art. Our localized permutation, however, admits much more
control over the placement of individual points than Owen’s axis-
wise scrambling, and it enables real optimization, as we discuss
subsequently.

3.2 Optimized Permutation

Instead of considering random permutations, we can construct the
permutations such that the resulting point set, PS′ , is close to a
given reference point set. Consider a stratified t× t point set, opti-
mized to a specific blue noise profile (BNOT, Step, etc; see Section
4). We also assume that t is a multiple of m, so that each row
and column of the point set can be decomposed into chunks of size
m. The main idea is to start with a t × t slice of the PS template
set, and find the permutations, for all 1D chunks, that would trans-
form this point set so that it approximates the reference set. The
permutations are then stored in a look-up table that can be used to
reconstruct the approximate set. For a given point, (Xt, Yt), in the
t × t domain, the look-up table entry, LUT (Xt, Yt), contains the
offset, (Xm, Ym) ∈ m×m, of its new sequence numbers within
the m×m block.

Technically, we minimize the distance between the two sets in two
passes: first along the horizontal axis, then along the vertical axis;
see Algorithm 2. Note that the two passes are completely inde-
pendent, and can therefore be parallelized. Our algorithm solves a
discrete assignment problem similarly to the Hungarian algorithm
[Kuhn 1955]. Figure 3 illustrates the process for a single chunk,
and Figure 4 illustrates it inside a single m×m block. We apply a
similar rearrangement to eachm×m block in the point-set. Within
each block, the process is very similar to Latinization, but instead
of snapping the points to a regular grid, the coordinates are taken
from the underlying LD sequences. Thanks to this Latinization, the

Algorithm 2: Generating an optimized LD set from a reference
stratified point set and our template LD point set.

1 Initialize the output set to PS from Eq. (2);
2 for each column, X , do
3 for each chunk, k, do
4 Retrieve the vector Lx = {uX,Y }k·m+m−1

Y=k·m from the
reference set;

5 Retrieve the corresponding vector, Qx, from the output
set;

6 Rearrange Qx so that the smallest entry aligns with the
smallest entry in Lx, the second smallest with the second
smallest, and so on;

7 Write the permuted vector, Qx, back to the output set;
8 end
9 end

10 Repeat with the rows by exchanging the roles of u,X and v, Y ,
respectively;

discrepancy is improved even within the blocks, cf. [Kensler 2013].
Figure 2b shows an example set generated by Algorithm 2.

{m
Figure 3: A visual illustration of step 6 in Algorithm 2, us-
ing m = 8. For each chunk of size m from the template LD
set (blue dots) and the reference set (orange squares), we rear-
range the points of the template set so that the smallest u aligns
with the smallest u of the reference, the second smallest with
the second smallest, and so on. The new sequence of indices,
{7, 4, 1, 3, 6, 5, 2, 0}, is appropriately encoded and stored in the
look up table. Note that v is not relevant at this stage.
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Figure 4: Reordering the template LD set (blue circles) to match a given reference (orange squares), without loosing its LD property. (a) An
m×m block is extracted from the LD set, along with the corresponding block from the reference. (b) The horizontal offsets are rearranged
along the columns first, as shown in Figure 3 for one column, and then the vertical offsets along the rows. (c) The final block — now closely
matching the reference — is written back to the set.

The resulting point set of Algorithm 2 inherits the LD property from
the template set, PS , and the spectral profile from the reference
set. The parameter m controls the blending ratio between the two.
Setting m = 1 reproduces PS , whereas m = t produces a merely
Latinized copy of the reference set, with limited improvement of
its discrepancy. From our experiments, m = 16 is a good compro-
mise. The impact of m on the discrepancy was discussed earlier in
Section 3.1. The effect of m on how the rearranged LD set comes
close to the reference is discussed in Appendix B.

The size of the reference point set, t2, is a trade-off between the
memory footprint of the look-up table, and the quality of the spec-
tral profile (compared to the reference set) when the size of the final
point set, N , is larger than t2; see Section 3.4. In our experiments,
we have considered t = 128; evidence for this is given in the sup-
plementary materials, along with a complete evaluation of both the
t and m parameters.

3.3 Choosing a Low Discrepancy Set

Any one-dimensional LD sequence can be used to construct the
template LD point set in Eq. (2), but the inherent binary nature of
the van der Corput sequence [van der Corput 1935] makes it an
excellent candidate for an efficient implementation. This sequence
is obtained by mirroring the binary digits of each sequence num-
ber around the binary point. That is, if φ is a binary bit-reversal
function:

φ

(
∞∑
j=0

aj2
j

)
=

∞∑
j=0

aj2
−j−1 ; aj ∈ {0, 1} , (4)

then the ith entry in the sequence is φ(i). If the chunk size, m, is
a power of 2, then permutation reduces to permuting the log2(m)
least significant bits of the sequence number. We denote by PvdC

the 2D point set obtained from this 1D sequence:

PvdC :=
{

(X + φ(Y ), Y + φ(X))
}
. (5)

As shown in Appendix A,PvdC is an LD point set, with discrepancy
bound in O (log(N)/N). It is worth noting that PvdC coincides
with the Hammersley construction when the generated number of
points is a power of two, and is different otherwise.

3.4 Indexing and the Overall Sampler Construction

Our optimized permutation described in Section 3.2 is an offline
process to construct the t × t look-up table. For a desired num-
ber of samples N (N > t2), we need to retrieve the offsets (u, v)
associated with the strata (X,Y ). One solution could be to repli-
cate the t× t permuted point set [Dippé and Wold 1985; Pharr and
Humphreys 2010], assuming that the set can be tiled seamlessly.
However, replication would break the low discrepancy property,
since several points would project to the same 1D point on either
of the two axes. To overcome this issue, we define an indexing
scheme tightly related to the underlying 1D LD sequence and the
bit-reversal principle.

For a given abscissa X , we define Xt := X mod t, its position in
a t × t domain, and Xm := X mod m, its position in a chunk of
size m within the t × t domain (we assume similar definitions for
Yt and Ym). The final offsets are given by:

u := φ(Y − Ym + LY ) (6)
v := φ(X −Xm + LX) , (7)

where (LX , LY ) := LUT (Xt, Yt).

Eq. (6) and (7) perform both the initial offset construction, using
the van der Corput sequence, and the optimized permutation within
the chunks of size m. More precisely, for a given X and Y , φ(X)
is the vertical offset in the template LD point set (Eq. (2)). The opti-
mized permutation is only performed within the size-m vertical and
horizontal chunks the point (X,Y ) belongs to. In a bitwise repre-
sentation of X , the permutation only occurs in the least significant
log2(m) bits, as illustrated in Figure 5.

Using previous notations, we define our final Low-Discrepancy
Blue Noise sampler as follows:

LDBN :=
{(
X + φ(Y − Ym + LY ),

Y + φ(X −Xm + LY )
)}
. (8)

From Appendix A, LDBN is an LD set, and we demonstrate in Sec-
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Figure 5: Bitwise representation of Eq. (7) with
X ′ := X −Xm + LX . Note that the permutation in orange
depends on the X mod t range (bit reversal is illustrated with
color gradient).

tion 5 that when optimizing the look-up table with a reference point
set with specific spectral properties (e.g, Step blue noise), LDBN
preserves these properties.

On the practical side, LDBN is extremely computationally efficient,
since it can be implemented using only bit manipulations and mem-
ory lookups. It is also considerably efficient in storage, since only
integer permutations in [0,m) have to be stored, rather than the ac-
tual real-valued (u, v) offsets. If m = 16, then the storage space
reduces to only one byte per entry.

4 Producing the Input reference Sets

The only input we require to build an LDBN sampler is a stratified
set optimized for the desired spectral profile. We now discuss the
practical details of how to obtain such sets.

In order to create a stratified blue noise set, we start with a jittered
grid, then apply a blue noise optimizer while ensuring that the dis-
placements of the points are confined to the respective strata. The
actual realization of these steps, however, is not as trivial as it may
sound.

The first obstacle is that a regular grid is a stable minimum for the
associated energy of many optimizers (Lloyd’s algorithm [McCool
and Fiume 1992] and kins [Balzer et al. 2009; de Goes et al. 2012;
Chen et al. 2012; Xu et al. 2011]); hence, such optimizers tend to
restore the grid structure of the jittered grid. Rather than employ-
ing direct optimization algorithms, we overcome this problem by
employing a target-matching algorithm, such as Heck et al. [2013].
These algorithms consider much wider neighborhoods compared to
Lloyd’s variants, and are therefore less likely to form local regu-
lar structures. Once the point set is sufficiently close to the target
profile, it becomes safe to use the original optimizer without risk-
ing convergence towards a grid structure. Alternatively, the target-
matching algorithm can be resumed until convergence. This be-
comes the only available choice for producing noise profiles that
are only defined analytically, such as Step blue noise [Heck et al.
2013].

The second obstacle concerns the treatment of points that escape
their strata during optimization. We experimented with different
policies, such as clamping the shifts suggested by the optimizer to
the strata, moving the escaped points to a random location, or just
skipping these point in the current iteration. We prefer the latter op-
tion, since it imposes less bias (over- or under-crowding) near the
edges of the strata, and is also easier to implement. We also occa-
sionally Latinized the point-set during the optimization process in

the spirit of Reinert et al. [2016]. This process almost circumvents
the bias to the edges.

Depending on the optimizer and the targeted quality, the optimiza-
tion process may take a few cycles of jittering, optimizing, Latiniz-
ing, and evaluation. It requires certain skills, and may take hours.
Fortunately, the end users would not need to implement the opti-
mization by themselves. In our supplementary material, we provide
the look-up tables for the BNOT and the Step blue noise profiles.

5 Results

In this section, we perform a series of experiments to demonstrate
the low discrepancy and spectral properties of our sampler, leading
to good results in quasi-Monte Carlo integration. First, we recall
that integration error and low discrepancy of the point set are related
thanks to the Koksma-Hlawka’s [Hlawka 1961] inequality. In Sec-
tion 5.1, we present a comparison between our sampler and state-
of-the-art samplers with respect to star discrepancy. In Section 5.2,
we compare spectral contents in addition to zoneplate experiments
widely used to evaluate the anti-aliasing performances of the point
sets. Finally, in Section 5.3, we present some integration results for
classical integrand functions.

In all our experiments, we compare our sampler with samplers of
different types, including LD samplers like Sobol [Sobol’ 1967],
blue noise samplers like BNOT [de Goes et al. 2012] and Step
[Heck et al. 2013], stratified samplers like jittered grid, and rank-1
lattices with Fibonnacci sequences [Keller 2004]. In our supple-
mentary material, we provide a more exhaustive analysis including
CVT [Lloyd 1982], Wang tiles [Kopf et al. 2006], FPO [Schlömer
et al. 2011], CapCVT [Chen et al. 2012], Polyhexes [Wachtel et al.
2014], AA patterns [Ahmed et al. 2015], Poisson disk, Halton [Hal-
ton 1960], Hammersley [Hammersley 1960], Faure [Faure 1982],
Niederreiter [Niederreiter 1988], N-Rooks [Shirley 1991], rank-1
[Keller 2004; Dammertz 2009], Correlated Multi Jittered sampling
[Kensler 2013], Owen’s scrambling over Sobol [Owen 1995; Owen
2003; Kollig and Keller 2002], regular and hexagonal grid, jittered
grid, and white noise.

All our tests were performed using m = 16 and t = 128; the
influence of these parameters on the result is discussed in our sup-
plementary material.

5.1 Discrepancy

In Figure 6, we present the evolution of star discrepancy as the num-
ber of points increases for our sampler and various others. As ex-
pected, our sampler is a low discrepancy point set and thus behaves
like LD samplers in Figure 6a.

In Figure 6b, we also compare our sampler with stochastic samplers
targeting particular spectral content such as BNOT [de Goes et al.
2012] or Step [Heck et al. 2013]. Since these samplers do not op-
timize specifically the discrepancy, LD samplers outperform them
in this discrepancy test. Note that BNOT and Step optimizer are
time consuming compared to LD samplers or to our sampler, which
limits the size of the point sets considered in this experiment. Fur-
thermore, the star-discrepancy measurements have been obtained
using an exact O(N2) algorithm.

5.2 Spectral and Anti-Aliasing Analysis

In Figure 7, we detail spectral content of various samplers and zone-
plate aliasing tests. This test reconstructs the function sin(x2 + y2)
using a single sample per pixel and a Mitchell reconstruction filter
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(b) Discrepancies of other samplers

Figure 6: Discrepancy comparison between our sampler and vari-
ous others. Samplers such as Step or BNOT require tens of hours to
compute a point set of size 105, since this graph requires between
30 to 100 point sets for each sampler with sizes ranging from 16
to 106, it is impracticable to generate it up to 106 if a single point
set requires days to compute. Samplers such as Low Discrepancy
ones on the other hand are much faster to compute and we could
therefore analyze their behaviors up to 106 points (k1 and k2 are
constants used to scale analytic curves).

[Mitchell and Netravali 1988]. Since a whole range of frequen-
cies is present, zoneplate reconstructed images are classical tools to
evaluate the aliasing defects of sampling patterns.

First, you may note that apart from the black cross (resulting from
our low discrepancy property), the fourier spectra of our sampler
(BNOT and Step targets) match with, respectively, BNOT and Step
spectra, illustrating its versatility.

Blue Noise Sam-
plers

1k 10k 100k 1M

[de Goes et al. 2012] 10s 6m 5s 6h 27m -
[Heck et al. 2013] 6s 7m 45s 17h 5m -
Dunbar et al. [2006] 0.000s 0.015s 0.131s 1.33s
[Wachtel et al. 2014] 0.003s 0.032s 0.23s 2.43s
Ours 0.002ms 0.023ms 0.22ms 2.14ms

Other Samplers 1k 10k 100k 1M

[Sobol’ 1967] 0.066ms 0.669ms 6.88ms 0.067s
[Keller 2004] 0.067ms 0.38ms 2.72ms 0.027s
Jittered 0.04ms 0.403ms 3.90ms 0.041s
Ours 0.002ms 0.023ms 0.22ms 2.14ms

Table 1: Timings (on a bi-Intel Xeon E5-2650 2.60GHz) to gener-
ate different number of points with various method. BNOT [de Goes
et al. 2012], Fast Poisson [Dunbar and Humphreys 2006], Poly-
hexes [Wachtel et al. 2014] and Step [Heck et al. 2013] implemen-
tations correspond to source code provided by the authors. Note
that for our sampler and for [Wachtel et al. 2014], we did not in-
clude the timings for reading the LUT table since it needs to be read
only once to generate multiple pointsets.

Secondly, the zoneplate images show that the best reconstruction is
obtained using blue noise samplers, such as BNOT or ours. How-
ever, whereas BNOT requires several hours to generate a 100k
pointset (Table 1), our sampler requires less than a millisecond. We
also compare timings with optimized fast approximation techniques
of Poisson disk sampling [Dunbar and Humphreys 2006]. However,
spectral profiles of Poisson disk point patterns lead to slower vari-
ance convergence rates ([Pilleboue et al. 2015] and Figure 8 and 9).
The zoneplates also show how state-of-the-art LD samplers, such as
Sobol or rank-1, perform poorly for this reconstruction, due to the
spectral peaks in their Fourier spectra. Note that Owen’s scrambling
over a Sobol sequence is still an LD sequence, but does not exhibit
significant peaks in the Fourier spectra; hence, very little aliasing is
observed in the reconstruction. Nevertheless, its zoneplate is simi-
lar to a jittered grid, with only a narrow low-noise band.

5.3 Quasi-Monte Carlo Integration

In this work, point sets are used in a Monte Carlo context where
we want to evaluate a complex integral by sampling and summing
up integrand values. To predict the integration error with respect to
the number of samples, the discrepancy is a first critical value, as
discussed earlier. The shape of the point set power spectra can also
be explicitly related to variance or integration error [Pilleboue et al.
2015].

We evaluate integration variance by integrating a scene with sev-
eral realizations of a point set (1000 realizations for a fast sampler
and between 10 to 100 for slower ones). All samplers considered
here being unbiased, the integration error is only composed of the
variance term. For deterministic samplers such as ours, we apply
Cranley-Patterson rotations to achieve several realizations [Pharr
and Humphreys 2010] similarly to stochastic samplers.

The integrand functions used in this test are of two kinds. First,
we integrated over an analytical disk (see Figure 8), with a radial
mean spectral profile in O(ρ−3), which corresponds to a difficult
integration test [Pilleboue et al. 2015].

Secondly, we integrated HDR images (see Figure 9). The two HDR
images used were chosen because they present very different fourier
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spectra profiles. Natural images spectra can be roughly categorized
into two categories [Torralba and Oliva 2003]: The ones showing
man made scenes (buildings, streets, etc.) and the ones showing
natural scenes (forests, grass, etc.). Man made structures have a
much more anisotropic spectra and present a mean spectral profile
in O(ρ−1.8) while natural images are much more isotropic with a
mean spectral profile inO(ρ−2). Integrating over an HDR image of
each kind allows to test the behaviour of a sampler in very different
situations. The integrated disk has a radius 0.25 with a sampling
domain of [0, 1)2. The two gray scale HDR images are taken from
the sIBL archive with a size of 1600x1600. In Figure 8 and Fig-
ure 9, analytic curves in O(1/N) and O(1/N

√
N) correspond to

expected behaviors of white noise and jittered grid or blue noise
samplers, respectively [Pilleboue et al. 2015].

We observe that integration errors for functions with higher expo-
nents (in absolute value) in their mean spectral profile are similar
for all samplers. The differences appear when integrating over func-
tions having a mean spectral profile with a lower exponent (due to
the fact that all samplers try to be as close to 0 as possible in the low
frequencies). Even though BNOT performs still very well, the im-
portance of LD samplers can be seen more clearly. If one compares
Owen’s scrambling with jittered grid, even though they have a very
similar anti-aliasing property, the low discrepancy property of the
Owen’s scrambled Sobol sequence leads to better results (Figure 9,
bottom image). We can also note that our sampler performs very
well, similarly to BNOT and LD samplers, but with the ability to
efficiently generate very large point sets.
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Figure 8: Measured integration variance over an analytical disk.
Samplers such as Step or BNOT require tens of hours to compute
over 105 points, therefore we could not perform their analysis be-
fore 106 points.

6 Conclusions, Limitations, and Discussion

In a certain sense, this work is a proof of concept: we have demon-
strated that LD point sets with anti-aliasing features and almost
blue-noise properties can be reliably constructed in 2D. Positive
aspects of the system include its performance (very few calcula-
tions in the runtime, linear time complexity), its compactness, and
conceptual simplicit. We also believe that the algorithm can be im-
plemented on the GPU.
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Figure 9: Measured integration variance over two HDR images
from the sIBL archives. Samplers such as Step or BNOT require
tens of hours to compute over 105 points, therefore we could not
perform their analysis until 106 points.

Our construction carries some limitations, and can be improved in
many ways. Namely, as we have already mentioned in Section 1,
the current version does not yet support adaptive LD sampling. In
the future, we would like to extend our system to support adaptivity.

This paper raises a number of important and challenging open prob-
lems. First, our current version of the sampling system produces
LD point sets, not sequences. It would be very interesting to build
LD sequences with blue-noise properties, based on simple and com-
pact constructions. Another interesting direction for future research
is to extend our approach to build higher-dimensional sampling sys-
tems. Multi-dimensional LD pointsets and sequences with spec-
tral control may play an important role in computer graphics: they
might provide excellent support for uniform sampling while being
computationally efficient, and may bring satisfactory solutions to
many problems that are inherently high-dimensional. We hope that
this work will promote further research towards solving such open



problems.

While this work mainly focussed on the theoretical concepts and
analysis, and even though we do not claim any optimality, there is
still an interesting practical outcome. Indeed, our primary goal was
to combine blue noise and low discrepancy, but we ended up with
a sampler that combines blue noise, low discrepancy, stratification,
look-up, and the Latin hybercube property; all in one framework.
Thus, LDBN can readily replace any existing implementation of
any of these sampling strategies, and bring the advantages of the
others.

The proposed solution, including the code and lookup tables, will
be made publicly available.
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LAGAE, A., AND DUTRÉ, P. 2006. An alternative for Wang tiles:
Colored edges versus colored corners. ACM Trans. Graph. 25,
4, 1442–1459.
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A Discrepancy Bounds of Stratified Sets

In this section, we demonstrate that if a 2D stratified pointset, P ,
as defined in Eq. (1), is viewed as an ensemble of 1D sequences
of u’s along the columns, and an ensemble of 1D sequences of v’s
along the rows, then the discrepancy of the pointset is related to the
discrepancy of these 1D sequences.

Without loss of generality, let P be scaled to [0, 1)2. λ2 (respec-
tively λ1) denotes the Lebesgue measure of a subset of R2 (re-
spectively R). A(Ω;P ) is number of points of P in Ω ⊂ [0, 1)d

(d = {1, 2}). The discrepancy of a pointset P with respect to a set
Ω ⊂ [0, 1)2 is defined as

DN (Ω;P ) :=

∣∣∣∣λ2(Ω)− A(Ω;P )

N

∣∣∣∣ .
The discrepancy of a pointset is defined as the maximum discrep-
ancy for all subsets of [0, 1)2:

DN (P ) := max
Ω⊂[0,1)2

{DN (Ω;P )} .

IfRp denotes the rectangle defined by the origin and p ∈ [0, 1), the
star-discrepancy of P is defined by

D∗N (P ) := max
p∈[0,1)2

{DN (Rp;P )} .

Additivity of the Lebesgue measure and A(Ω, P ) leads to the fol-
lowing property: Let A and B be disjoint subset of [0, 1), then

DN (A ∪B;P ) ≤ DN (A;P ) +DN (B;P ) . (9)

We denote by u := {ui} a one-dimensional sequence of points in
[0, 1). u(k) denotes the set of the first k elements of the sequence.

We consider a collection of n such sequences u(X) :=
{
u

(X)
i

}
,

indexed by an integer X; that is, u(X) is the Xth sequence in the
collection, while u(X)

i is the i-th entry in that sequence. We con-
sider a similar setup for v, v, and Y , respectively.
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Figure 10: Notations for Lemma 1.

In Eq. (2) and our LDBN sampler, we have considered van der Cor-
put LD sequences for each column and row offsets. The results
stated below are more general. We consider a more generic two-
dimensional stratified point set, with N = n2 points, defined as:

P :=

{(
X + u

(X)
Y

n
,
Y + v

(Y )
X

n

)
;X,Y ∈ {0 . . . n− 1}

}
.

(10)
In other words, the abscissa X

n
of a given grid point is shifted by

u
(X)
Y
n

, whose numerator is the Y th element of the sequence u(X).
Same for the ordinate. In the following, we simplify the notations
of these sequences to u and v (and their points {ui} and {vi}) in
expressions whenever there is no ambiguity on X and Y values.

A bound for the star discrepancy of such a set is obtained
in terms of the discrepancy of the constituent sequences u
and v. More formally, we have the following lemma:
Lemma 1. If N = n2 denotes the total number of points in P , we
have

D∗N (P ) ≤ 1

N

(
max

X,Y ∈{0...n−1}
(XD∗X(v) + Y D∗Y (u)) + 1

)
.

(11)

Proof. Let

J := [0, (X + x)/n]× [0, (Y + y)/n] ; x, y ∈ [0, 1) , (12)

be an arbitrary interval in I2. It can be partitioned into non-
overlapping sub-intervals (see Figure 10):

J = JXY + JXx + JxY + Jxy (13)

where

JXY := [0, X/n)× [0, Y/n) ,

JXy := [0, X/n)× [Y/n, (Y + y)/n] ,

JxY := [X/n, (X + x)/n]× [0, Y/n) ,

Jxy := [X/n, (X + x)/n]× [Y, (Y + y)/n] .

Thanks to the additive property of discrepancy, we have:

DN (J ;P ) ≤ DN (JXY ;P ) +DN (JXy;P ) +

DN (JxY ;P ) +DN (Jxy;P ) . (14)

Now

DN (JXY ;P ) =

∣∣∣∣A(JXY ;P )

N
− λ2(JXY )

∣∣∣∣
=

∣∣∣∣X · YN − X

n
· Y
n

∣∣∣∣ = 0 . (15)

For JXy we have(
X + uY

n
,
Y + vX

n

)
∈ JXy =⇒ vX ≤ y . (16)

If we write Jy to denote the one-dimensional interval [0, y], we
observe that

A(JXy;P ) = A (Jy;v(X)) , (17)

and

λ2(JXy) =
X

n
· y
n

=
Xλ1(Jy)

N
, (18)

Therefore:

DN (JXy;P ) =

∣∣∣∣A(JXy;P )

N
− λ2(JXy)

∣∣∣∣
=

∣∣∣∣A(Jy;v(X))

N
− X · λ1(Jy)

N

∣∣∣∣
=
X

N

∣∣∣∣A(Jy;v(X))

X
− λ1(Jy)

∣∣∣∣
=
X

N
DX(Jy;v(X)) ≤ X

N
D∗X (v) . (19)

Similarly

DN (JxY ;P ) ≤ Y

N
D∗Y (u) . (20)

Finally, A(Jxy;P ) is either 0 or 1, and λ2(Jxy) is at most 1/N ,
therefore

DN (Jxy;P ) ≤ 1

N
. (21)

Substituting Eqs. (15, 19, 20, and 21) into Eq. (14):

DN (J ;P ) ≤ 1

N
(XD∗X(v) + Y D∗Y (u) + 1) (22)

and Eq. (11) follows for the upper bound of the star discrepancy of
the set P .

A regular grid uses a fixed value (typically 0 or 1
2

) for all the en-
tries in u and v, hence D∗X(v) and D∗Y (u) are O(1) and as such

D∗N (P ) is O
(√

N
N

)
.

If all of the u’s and v’s are low-discrepancy sequences, that is,
D∗X(v) is O(log(X)) and D∗Y (u) is O(log(Y )), both bounded
by O(log(

√
N)), then the resulting point-set is a low-discrepancy

point-set, with discrepancy in O
(

log(N)
N

)
. Note, however, that

such a construction does not extend automatically to higher dimen-
sions.

Finally:
Corollary 1. The LDBN point set defined from van der Corput se-
quences in Eq.(8) has a discrepancy in O

(
log(N)
N

)
.



B Approximation Error in Target Matching

The differences between corresponding entries (in assending or-
der) of the vectors L and Q in Algorithm 2, in all chunks, deter-
mine, along the respective axes, the distances between correspond-
ing points in the given target and its LD approximation constructed
from the template LD set. Let us refer to these distances as the “ap-
proximation error”. To get an estimate of this error we compare the
entries to a common reference: the uniform set A =

{
2i+1
2m

}m−1

i=0
.

The largest difference between an entry li ∈ L and the correspond-
ing entry qi ∈ Q, both sorted in an ascending order, is bounded
by

|li − qi| ≤ |li − ai|+ |qi − ai| ,

where ai is the i’th entry in A. But for any finite set, s, ofm points,

|si − ai| ≤ D∗m(s)− 1

2m
;

see [Kuipers and Niederreiter 1974, Chapter 2, Theorem 1,4]; there-
fore:

|li − qi| ≤ D∗m(L) +D∗m(Q)− 1

m
.

For the van der Corput sequence, and when m is a power of 2, then

D∗m(Q) =
1

m
;

hence
|li − qi| ≤ D∗m(L) . (23)

Thus, the approximation error is bounded by the discrepancy of the
u’s and v’s in the chunks. This has been shown in Appendix A to
be closely connected with the discrepancy of the whole stratified
set. We conclude that the approximation error is directly propor-
tional to discrepancy of the target set, and inversely proportional to
the chunk size, since the discrepancy normally decreases with the
number of points. Thanks to the inherent stochastic nature of blue-
noise sets, this approximation error manifests as random jittering of
the points, sized by the estimate in Eq. (23).

Blue-noise point sets attain relatively low discrepancies; cf. Fig-
ure 6b. Not so low as to qualify them as LD sets, but low enough
to make them easily matchable by rearranging the template LD set.
At some point the approximation error becomes small relative to
the Poisson disk radius of the set. In our experiments, the error
becomes barely noticeable with m ≥ 16.


