
Separable algorithms for distance transformations on irregular grids

Antoine Vacavant a,⇑, David Coeurjolly b,c, Laure Tougne b,d

aClermont Université, Université d’Auvergne, ISIT F-63000, France
bUniversité de Lyon, CNRS, France
cUniversité Lyon 1, LIRIS, UMR5205 F-69622, France
dUniversité Lyon 2, LIRIS, UMR5205 F-69676, France

a r t i c l e i n f o

Article history:

Available online 24 November 2010

Keywords:

Squared Euclidean distance transformation

Irregular grids

Quadtree

Voronoi diagrams

a b s t r a c t

In this article, we propose to investigate two extensions of the E2DT (squared Euclidean Distance Trans-

formation) on irregular isothetic grids (or I-grids), such as quadtree/octree or run-length encoded

d-dimensional images. We enumerate the advantages and drawbacks of the I-CDT, based on the cell cen-

tres, and the ones of the I-BDT, which uses the cell borders. One of the main problem we mention is that

no efficient algorithm has been designed to compute both transforms in arbitrary dimensions. To tackle

this problem, we describe in this paper two algorithms, separable in dimension, to compute these dis-

tance transformations in the two-dimensional case, and we show that they can be easily extended to

higher dimensions.

� 2010 Elsevier B.V. All rights reserved.

1. Introduction

The distance transformation (Klette and Rosenfeld, 2004;

Rosenfeld and Pfaltz, 1968) (DT) of a binary image consists in label-

ing each point of a discrete object E (i.e. foreground) with its short-

est distance to the complement of E (i.e. background). This process

has been widely studied and developed on regular grids (see Fabbri

et al., 2008 for a survey). Some specific extensions of the DT to non-

regular grids also exist, such as elongated grids (Chehadeh et al.,

1996; Fouard and Malandain, 2005; Sintorn and Borgefors, 2004),

quadtrees/octrees (Samet, 1990; Vörös, 2001), Face-Centered Cubic

(FCC)/Body-Centered Cubic (BCC) grids (Fouard et al., 2007), etc.

But, to our knowledge, no generic DT process has been designed

on every kinds of image representations in two or higher

dimensions.

This article deals with generalizing the DT computation on

irregular isothetic grids (or I-grid for short). In two dimensions (2-

D), an I-grid is defined by a partition of R2 with rectangular cells

whose edges are aligned along the two axes. The quadtree decom-

position and the RLE (Run Length Encoding) are examples of clas-

sical techniques in imagery which induce an I-grid. Here, we focus

our interest on generalizing techniques that compute the E2DT

(squared Euclidean DT) of a d-dimensional (d-D) binary image

(Coeurjolly and Montanvert, 2007; Maurer et al., 2003; Saito and

Toriwaki, 1994). This transformation is a very common way to ana-

lyze the shape of graphical objects for various applications (see

Paglieroni, 1992 and references of Maurer et al. (2003), for more

details). Many of those techniques can be linked to the computa-

tion of a discrete Voronoi diagram of the background pixels (Coeur-

jolly and Montanvert, 2007; Hesselink et al., 2005). A further

application of our work would be to compute E2DT in octree-based

images, which are a common way to model very large-scale vol-

umes (Samet, 1990).

In (Vacavant et al., 2008; Vacavant et al., 2009a), we introduced

two kinds of extensions of the E2DT on I-grids. The first one is

based on the distance between cell centres, while the second one

computes the distance between a cell centre and the nearest fore-

ground/background frontier. In this article, we make a complete re-

view of each model, and we list their differences. We also recall

previous work and present several techniques to compute them.

In this review, we show that no efficient algorithm has been de-

signed to compute both distance transformations in arbitrary

dimensions. The methods that we introduce in this article are sep-

arable, i.e. they perform operations independently along the two

axes and can be naturally extended to handle d-D images. More-

over, they can compute both E2DT extensions we have introduced

in our previous work.

This paper is organized as follows: We first recall in Section 2

previous work about DT on the I-grid model, the two extensions

of the E2DT on these grids, with their advantages and drawbacks.

Then, we present the mathematical and algorithmic tools we

need to develop separable DT processes on I-grid (Section 3). In

Section 4, we describe two separable DT algorithms and we final-

ly compare them (in terms of complexity and execution times), in

Section 5.

0167-8655/$ - see front matter � 2010 Elsevier B.V. All rights reserved.

doi:10.1016/j.patrec.2010.11.010

⇑ Corresponding author. Tel.: +33 4 78 77 23 38.

E-mail address: antoine.vacavant@iut.u-clermont1.fr (A. Vacavant).

Pattern Recognition Letters 32 (2011) 1356–1364

Contents lists available at ScienceDirect

Pattern Recognition Letters

journal homepage: www.elsevier .com/locate /patrec

Lowres version

http://dx.doi.org/10.1016/j.patrec.2010.11.010
mailto:antoine.vacavant@iut.u-clermont1.fr
http://dx.doi.org/10.1016/j.patrec.2010.11.010
http://www.sciencedirect.com/science/journal/01678655
http://www.elsevier.com/locate/patrec


2. Previous work about DT on Igrids

In this section, we first recall the concept of irregular isothetic

grids ðI-gridsÞ in 2-D, with the following definition (Coeurjolly

and Zerarga, 2006):

Definition 1 (2-D I-grid). Let P be a closed rectangular subset of

R
2. A 2-D I-grid G is a tiling of P with non overlapping rectangular

cells whose edges are parallel to the X- and Y-axis. The position of

each cell is characterized by its centre point (its position)

ðxR; yRÞ 2 R
2 and its length along X- and Y-axis ðl

x
R; l

y
RÞ 2 R

�2
þ .

We consider this definition of 2-D I-grids for the rest of the

paper, and we will shortly show that our contribution is easily

extensible to the d-D case. In our framework, we consider labeled

I-grids, i.e. each cell of the grid has a foreground or background label

(its value is respectively ‘‘0’’ or ‘‘1’’ for example). For an I-grid G, we

denote by GF and GB the sets of foreground and background cells.

Here, we first recall the two extensions of the E2DT proposed on

I-grids, for each cell R 2 GF:

I-CDTðRÞ ¼ min
R0

d
2
e ðp; p

0Þ : R0 2 GB

n o

; ð1Þ

I-BDTðRÞ ¼ min
s

d
2
e ðp; sÞ : s 2 S

n o

: ð2Þ

where S is the set of segments contained in the background/fore-

ground frontier of the grid. The first extension, the Centre-based

DT (Eq. (1)) (Vacavant et al., 2008) is based on the cell centres of

the grid, where d
2
e ðp;p

0Þ the squared Euclidean distance between

the centres p = (xR,yR) and p0 ¼ ðxR0 ; yR0 Þ. The Border-based DT (Eq.

(2)) (Vacavant et al., 2009a) employs cell borders, and computes

the shortest distance between a foreground cell centre and the

background/foreground boundary. We sum up in Table 1 the advan-

tages and the drawbacks of each model.

As mentioned in Table 1, we can compute these extensions

thanks to the construction of two kinds of Voronoi diagrams

(VD). We recall that the VD of a set of points P ¼ fpig is a tiling

of the plane into Voronoi cells (or VD cells) fCpig (de Berg et al.,

2000; Voronoi, 1908). The I-CDT may be computed with such a

structure, as we discussed in (Vacavant et al., 2008). If we now con-

sider the background/foreground frontier to compute the I-BDT,

Eq. (2) implies that we compute a VD of segments, and not a clas-

sical VD of points (see Fig. 1 for an example of these diagrams com-

puted on a simple I-grid). Hence, a simple approach to compute the

I-CDT (presented in Algorithm 1 s to pre-compute the complete VD

of the background points (Vacavant et al., 2008), and to locate fore-

ground points in the VD. In this case, the I-CDT computation has a

Oðn lognBÞ time complexity, where n is the total number of cells,

and nB is the number of background cells. This technique is obvi-

ously not computationally efficient for every grids, and not

adapted to dense grids (Vacavant et al., 2008). To compute the

I-BDT, a similar process can be drawn, where the computation of

the VD of segments can be handled in OðnSlog
2
nSÞ, where nS = 4nB

is the total number of segments belonging to the background/fore-

ground frontier (Karavelas, 2006). The extension of those transfor-

mations to d-D I-grids is difficult. A VD can be computed in d-D

with a OðnB lognB þ ndd=2e
B Þ time complexity (thanks to a gift-wrap-

ping approach (de Berg et al., 2000 for example). However, localiz-

ing a point in the VD is an arduous task, and an additional structure

like subdivision grids (Park et al., 2005) should be constructed to

handle this operation. Hence, the building of the entire VD to ob-

tain the I-BDT is neither computationally efficient for every

I-grids, nor easily extensible to higher dimensions.

In Table 1, we also mention that one of the major problem of

I-CDT is that it is strongly dependent of the background represen-

tation (Vacavant et al., 2009a). In Fig. 2, we present an example of

the computation of the I-CDT of two I-grids where only the back-

ground cells differ. Since this definition is based on the cell centres

position, the I-CDT do not lead to the same distance map depend-

ing on the background encoding.

In a recent work (Vacavant, 2010), we have presented an effi-

cient algorithm that permits to compute the I-CDT with a sweep-

line based approach in 2-D (Breu et al., 1995). However, this tech-

nique is not easily extensible neither to higher dimensions, nor to

I-BDT. As a new contribution, we now propose two separable algo-

rithms that compute both I-CDT and I-BDT that can be extended to

the d-D case.

3. Separable minimization processes for I-CDT and I-BDT

3.1. Separable E2DT algorithms on regular grids

The separable algorithm introduced by Saito and Toriwaki

(1994) (one phase by dimension) first computes a one-dimensional

(1-D) transformation along X-axis for each row of a binary image F

of size n � n, which leads to a new image G = {g(i, j)} (see Fig. 3a).

Then, a minimisation process is realized along Y-axis to obtain

the final image H = {h(i, j)} (Fig. 3b): h(i, j) = miny{g(i, j)
2 + (j � y)2;

1 6 y 6 n}.

The main idea of the separable method of Maurer et al. (2003) is

that the intersection between the complete VD of background pix-

els (i.e. sites) and a line of the grid can be easily computed, then

simplified. Indeed, for a row j, the VD sites can be ‘‘deleted’’ by

respecting three remarks mainly based on the monotonicity of

the de distance (Maurer et al., 2003): (1) if we consider the line

Table 1

Differences between the two extensions of E2DT on I-grids.

I-CDT I-BDT

Based on distance between cells

centres

Based on centre-to-border

distance

Can be computed thanks to the

construction of a Voronoi

diagram of points

Can be computed thanks to the

construction of a Voronoi

diagram of segments

+ Is extensible to other non-

isothetic grids (hexagonal,

triangular, etc.)

� Not easily extensible to these

grids

� Is not independent from

background encoding

+ The result does not depend on

the background representation

+ Can be computed in 2-D (but not

in d-D) in linear time with a

sweep line algorithm (Vacavant,

2010)

� Not easily computable by this

algorithm

This article: the two extensions can be computed with a separable approach,

extensible to d-D

A. Vacavant et al. / Pattern Recognition Letters 32 (2011) 1356–1364 1357

Lowres version



l : y ¼ j; j 2 Z, then we only have to keep the nearest VD sites from

l (2) those sites can be ordered along the X-axis; which means that

it is not necessary to keep the complete VD, but only its intersec-

tion with the line l (3) a VD site may be hidden by two neighbour

sites, and thus not considered anymore (Fig. 4b). In this article,

we show the extension of this technique on I-grids by adapting

these properties on these grids.

3.2. Separable computation of I-CDT and I-BDT

To develop a separable process on I-grids, we use the irregular

matrix M associated to a labeled I-grid G introduced in (Vacavant

et al., 2008). This data structure aims to organize the cells of the

grid along the X- and Y-axis by adding virtual cells centres (see

Fig. 5 for an example). We show in Section 5 that, even if we add

points in this structure, separable processes on the irregular matrix

are faster than the complete VD based approach we presented in

the previous section (Algorithm 1). More precisely, the irregular

matrix contains as many columns (respectively rows) as X-coordi-

nates (Y-coordinates) in the grid. These coordinates are stored in

two tables TX and TY (and we denote n1 = jTXj and n2 = jTYj). At the

intersection of two X- and Y-coordinates, a node in M has the same

value as the cell containing it, and may represent the cell centre or

not (i.e. this is an extra node, see Fig. 5a). The extra nodes are used

Fig. 1. Example of the VD of the background points to obtain the I-CDT of a simple I-grid (a) and the background/foreground frontier (dark segments) to obtain the I-BDT (b).

Fig. 2. The result of the I-CDT of the complete regular grid (b) computed from the binary image (a) and an I-grid where the foreground is regular and the background is

encoded with a RLE scheme along Y (c). The distance value d of a cell is represented with a grey level c = d mod 255. The contour of the object (background/foreground

frontier) is recalled in each distance map (b) and (c) with a smooth curve. We also present the associated elevation map of each distance map in (d) and (e).

Fig. 3. Double minimization process on a small binary image. The first step of the algorithm computes G (a), representing minimal distances along X axis. If we choose one

column of G, the second phase consists in computing g(i,j)2 + (j � y)2 for each pixel of this column (b). The minimization of this column lead to the computation of the E2DT

stored in H.

1358 A. Vacavant et al. / Pattern Recognition Letters 32 (2011) 1356–1364

Lowres version



to propagate the distance values through the irregular matrix and

then compute a correct distance value for each cell centre. To apply

the I-BDT on this data structure, we also have to take into account

the border and the size of the treated cells. We thus add for each

node Mði; jÞ border attributes along X- and Y-axis that permit to

propagate the distance values to cell borders throughM. For a node

Mði; jÞ contained by the cell R in G, we denote respectively by HL(i, j)

and HR(i, j) the attributes that represent the minimum between the

distance to the left (respectively right) border of R along X, and the

distance to the neighbour node at the left (right) position in M. In

the same manner, we define HT(i, j) and HB(i, j) in respect to the top

(bottom) border of R and neighbour nodes at the top (bottom) po-

sition inM (see Fig. 5b). Building the irregular matrix of an I-grid G

can be handled in Oðn1n2Þ time complexity. More precisely, we

first scan all the cells of G to know the n1 columns and the n2 rows

of M. Then, we consider each node of M and we assign its back-

ground or foreground value and its border attributes.

We now present how to adapt Eq. (1) on the irregular matrix

thanks to a separable minimization process:

Proposition 1 (Separable I-CDT). Let M be the associated irregular

matrix of the 2-D I-grid G. Then the I-CDT of G can be decomposed in

two separable processes, and consists in computing the matrix M
0 and

M
00 as follows:

M
0ði; jÞ ¼ min

x
jTXðiÞ � TXðxÞj : x 2 f0; . . . ; n1 � 1g and Mðx; jÞ ¼ 0f g;

M
00ði; jÞ ¼ min

y
F yðjÞ : y 2 f0; . . . ;n2 � 1g

� �

;

where F yðjÞ is a parabola given by:

F yðjÞ ¼ M
0ði; yÞ2 þ ðTYðjÞ � TYðyÞÞ

2
:

In this case, this transformation is equivalent to a minimization

process of 2-D quadratic forms. Eq. (2) can also be adapted on the

irregular matrix with a minimization process along the two axis:

Proposition 2 (Separable I-BDT). Let M be the associated irregular

matrix of the 2-D I-grid G. Then the I-BDT of G can be decomposed in

two separable processes, and consists in computing the matrix M
0 and

M
00 as follows:

M
0ði; jÞ ¼ min

x
min jTXðiÞ � TXðxÞ � HRðx; jÞj; jTXðxÞ � TXðiÞðf

�HLðx; jÞjÞ : x 2 f0; . . . ;n1 � 1g and Mðx; jÞ ¼ 0g;

M
00ði; jÞ ¼ min

y
GyðjÞ : y 2 f0; . . . ;n2 � 1g

� �

;

where GyðjÞ is a flattened parabola given by:

GyðjÞ ¼

M
0ði; yÞ2 þ ðTY ðjÞ � TYðyÞ � HTði; yÞÞ

2

if TY ðjÞ � TYðyÞ > HTði; yÞ;

M
0ði; yÞ2 þ ðTY ðyÞ � TY ðjÞ � HBði; yÞÞ

2

if TY ðyÞ � TY ðjÞ > HBði; yÞ;

M
0ði; yÞ2 otherwise:

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

We prove in (Vacavant et al., 2009b) that this proposition is cor-

rect, i.e. this two-dimensional scheme consists in computing the

Fig. 4. In a regular grid, when we treat a row l with Maurer et al. algorithm, we consider the VD of background nodes like in (a).We only keep the nearest VD sites of l and we

obtain (c) by deleting sites which associated VD cells intersect the l row. Arrows indicate the associated VD site of each foreground pixel of this row.

Fig. 5. Construction of the irregular matrix associated to the simple I-grid illustrated in Fig. 1. In (a), the extra node Mð0;2Þ of the matrix is depicted at the intersection of the

dotted lines. In (b), examples of values for border attributes are also given along X (dashed lines) and Y (dotted lines). For instance, we have HR(0,2) = HL(0,2) = 20,

HT(0,2) = HB(0,2) = 10, HR(1,1) = HL(1,1) = 10, and HT(1,1) = HB(1,1) = 0 since this node coincides with a cell horizontal border. We can also notice that HLð2;3Þ– HRð2;3Þ

while HT(2,3) = HB(2,3) = 5.

A. Vacavant et al. / Pattern Recognition Letters 32 (2011) 1356–1364 1359

Lowres version



I-BDT given in Eq. (2). One can notice that it is possible to adapt the

proof of this proposition to prove Proposition 1. This separable

minimization process also permits to compute the I-CDT (Eq.

(1)), if we assign all border attributes to zero. Here, a flattened

parabola (see also Fig. 6) is an ad hoc function composed by two

half-parabolas and a constant function. It represents a constant

distance value from a node Mði; jÞ to its neighbour nodes and cell

borders, and then increases as a classical quadratic function be-

yond those limits. The computation of matrix M
00 in Proposition 2

thus consists in computing the lower envelope of a set of flattened

parabolas. This operation is possible since these functions are con-

vex (composition of convex functions), and there exist a single

intersection or an infinity of intersections between two flattened

parabolas. In the regular case, E2DT algorithms based on a 2-D qua-

dratic form minimization (Hirata, 1996; Meijster et al., 2000; Saito

and Toriwaki, 1994) are linear and correct, since the intersection

between two parabolas F aðyÞ and F bðyÞ is clearly defined:

Proposition 3 (Intersection between two classical parabolas (Hirata,

1996)). Let Fa : R#R; y#g2a þ ða� yÞ2 and F b : R#R; y#g2bþ

ðb� yÞ2 be two parabolas. The number of intersections is either one,

or an infinity if they are coincident, i.e. when ga = gb and a = b.

This property is verified because parabolas are convex functions

(Hirata, 1996). It implies that we can compute the lower envelope

of a set of parabolas since we are able to order them.

To prove that our algorithms are correct on I-grids for I-BDT, we

have verified that this property is preserved. The following lemma

enounce the conditions so that two flattened parabolas intersect at

a single point or an infinity of points:

Lemma 1 (Intersection between two flattened parabolas). Let Gu and

Gv be two flattened parabolas given by:

Gu : R # R

y # GuðyÞ ¼

g2
u þ ðu� y� lu1Þ

2

if u� y > lu1;

g2
u þ ðy� u� lu2Þ

2

if y� u > lu2;

g2
v
otherwise

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

and

Gv : R# R

y# GvðyÞ ¼

g2
v
þ ðv � y� lv1Þ

2

if v � y > lv1;

g2
v
þ ðy� v � lv2Þ

2

if y� v > lv2;

g2
v
otherwise

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

where:

� gu, gv, lu1, lu2, lv1, lv2, u and v are positive or null real numbers;

� if uP vP 0, then u � lu1P v + lv2;

� if 0 6 u 6 v, then u + lu2 6 v � lu1.

The intersections between these parabolas is either reduced to a

point, or reduced to an infinite set of points.

Notice that the elements M0ði; yÞ;HTði; yÞ;HBði; yÞ and TY(y) of Gy

in Proposition 2 respectively correspond to gu, lu1, lu2, and u of Gu.

They also respect the conditions given at the end of Lemma 1. For

example, let Gy1 and Gy2 be two flattened parabolas such that

y1P y2, we can easily verify that y1 � HB(i,y1)P y2 + HT(i,y2) (see

Figs. 5 and 6). The proof of this lemma and a way to compute a va-

lid intersection point are given in (Vacavant et al., 2009b).

4. Proposed separable methods to compute ICDT and IBDT

In this section, we first present the adaptation of Saito et al.

algorithm (Saito and Toriwaki, 1994), because this is a natural

application of the I-CDT and I-BDT minimization processes we de-

scribed in Propositions 1 and 2. Then, we show how to use Maurer

et al. approach (Maurer et al., 2003) for the same purpose, which

lead to the development of a faster algorithm.

4.1. Adaptation of Saito et al. E2DT Algorithm on I-grids

In this section, we present the complete algorithm inspired

from Saito and Toriwaki (1994) (Algorithm 2, divised into two

main parts), and how to modify it in order to compute the I-CDT

and I-BDT. As we discussed in the previous section, we need to

compute the intersection between parabolas to realize a correct

minimization scheme of a 2-D quadratic form, conform to Proposi-

tions 1 and 2. The function CSepi(u,v) is the exact coordinate of the
Fig. 6. Important features of a flattened parabola, composition of two half-

parabolas (in dotted lines) and a constant function.

1360 A. Vacavant et al. / Pattern Recognition Letters 32 (2011) 1356–1364

Lowres version



intersection point between two classical parabolas (Coeurjolly and

Montanvert, 2007; Meijster et al., 2000): CSepiðu;vÞ ¼ ðTYðvÞ
2

�TYðuÞ
2 þM

0ði;vÞ2 �M
0ði;uÞ2Þ=ð2ðTYðvÞ � TYðuÞÞÞ. For I-BDT, we

introduce the BSepi(u,v) function thanks to the proof of Lemma 1

(see Vacavant et al., 2009b).

This function is defined by:

�y ¼ TYðvÞ � HBði;vÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M
0ði;uÞ2 �M

0ði;vÞ2
q

; ð3Þ

BSepiðu;vÞ ¼

�y if TYðuÞ � HBði;uÞ 6 �y 6 TYðuÞ þ HTði;uÞ;

CSep TYðuÞ � HBði; uÞ; TY ðvÞ � HBði; vÞð Þ

if �y 6 TYðuÞ � HBði;uÞ 6 TYðuÞ þ HTði;uÞ;

CSep TYðuÞ þ HTði; uÞ; TY ðvÞ � HBði; vÞð Þ

if TYðuÞ � HBði;uÞ 6 TYðuÞ þ HTði;uÞ 6 �y:

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

In the first step, we can notice that the only difference with the reg-

ular square case (Coeurjolly and Montanvert, 2007; Saito and Tori-

waki, 1994) is the computation of the distance, lines 2 to 17 (part 1/

2). We have to consider in those operations the distance between

the point M
0ði; jÞ and its neighbors. This is indeed a double linear

scan for each row, where we use HR and HL attributes to propagate

the distance to cells borders1. During the second phase, we use

stacks s and t, as in (Meijster et al., 2000), and two additional stacks

hT and hB to propagate border distances through the columns of the

matrix. This step is equivalent to the computation of the lower enve-

lope of a set of flattened parabolas (see Fig. 7). The computation of w

(line 11 part 2/2) only depends on the function BSepi(u,v) and then

permits to find the intersection point in M
0 between two flattened

parabolas (line 13 part 2/2). It is replaced by CSepi(u,v) in the case

of the I-CDT. The find command is performed with a dichotomous

search through the ordered set of nodes fM0ði; kÞgs½q�6k6n2�1, and has

a Oðlogn2Þ time complexity in the worst case. But in our experi-

ments (see Section 5), we have observed that this is a fast operation,

since we begin the search from the last intersection point (with in-

dex s[q]).

4.2. Adaptation of R. Maurer et al. E2DT Algorithm on I-grids

The first stage of this method (Algorithm 3) consists in scan-

ning along X and in initializing the distance of each node of the

irregular matrix, as in Algorithm 2. In the second part of our algo-

rithm, we build a partial VD intersected with each column i. As in

the original algorithm (Maurer et al., 2003), we use two stacks

storing real successive coordinates of treated sites (h), and their

squared distance (g). The first loop of this function (line 7) corre-

sponds to the deletion of hidden sites, thanks to the hidden_by

() predicate.

In Algorithm 3, we also use two additional stacks, denoted by fT
and fB to store the border attributes and update them. Thanks to

these stacks, the second stage of our algorithm is achieved in linear

time. By testing the value of l (line 12), we know if we have to scan

again the stacks and to update the distance values of the nodes.

Finally, we linearly scan the stacks to find the nearest border of

the Mði; jÞ current node (line 15), and this step actually consists

in considering the lower envelope of a set of flattened parabolas,

as in Algorithm 2 (see also Fig. 7).

4.3. Complexity analysis

In Algorithms 2 and 3, the first operation (build the irregular

matrix) is performed in Oðn1n2Þ time. More precisely, we first scan

all the cells of G to get the n1 rows and n2 columns of M. Algorithm

1 If we consider an I-CDT process, we can set these values to zero, or use the

complete description given in (Vacavant et al., 2008).

A. Vacavant et al. / Pattern Recognition Letters 32 (2011) 1356–1364 1361

Lowres version



2 has a global time complexity in Oðn1 n2 logn2Þ. It can be easily

extended to higher dimensions: the step 1 stands as an initializa-

tion step, and for each greater dimension, a mixing process, as step

2, permits to combine results obtained in the lower dimensions.

For a labeled d-D I-grid, which associated irregular matrix size is

n1, . . .,nd, the cost of the consecutive steps is in Oðn1 . . . nd

logn1 . . . lognd�1Þ.

Algorithm 3 realizes a linear I-BDT algorithm in respect to the

associated irregular matrix size, i.e. in Oðn1 n2Þ time complexity.

As Algorithm 2, this method is easily extensible to higher dimen-

sions: we still realize the first step as an initialization phase, and

for each dimension d > 1, we combine results obtained in dimen-

sion d � 1. If we consider a labeled d-D I-grid, which associated

irregular matrix size is n1, . . .,nd, the time complexity of our algo-

rithm is thus in Oðn1 . . . ndÞ.

In the next section, we present experiments to show the inter-

est of the I-BDT and I-CDT, and to point out that the last algorithm

is a very efficient approach to compute both I-CDT and I-BDT of

various classical I-grids.

5. Experimental analysis

Here, we first propose to study the computation of the I-CDT

on several classical 2-D grids in imagery. We consider in our

experiments three regular grids (square, rectangular and hexago-

nal), then two image-dependent grids, based on a quadtree

decomposition and a RLE grouping scheme. Since the definition

of the I-CDT is only based on the centres of the cells, we can

treat all those grids that belong to the I-grid model, and other

non-isothetic grids, like hexagonal or triangular grids. We

Fig. 8. For the images noise (100 � 100), lena (208 � 220), canon (512 � 512) in (a–c), we consider in our experiments the associated I-grids (regular grid, quadtree

decomposition and RLE along Y scheme). We have also depicted the quadtree decomposition of these images (d–f).

Fig. 7. For the column chosen in (a), the last phase of Algorithms 2 and 3 consists in considering the lower envelope of a set of flattened parabolas (b). At the bottom of this

plot, background and foreground nodes are represented by black and white circles at the corresponding Y-coordinate. Cell borders are also represented (vertical dashes). Black

squares represent where the cell centers are located along Y-axis, and the associated I-BDT value. We give in (c) the obtained I-BDT for this I-grid.

1362 A. Vacavant et al. / Pattern Recognition Letters 32 (2011) 1356–1364

Lowres version



present the computation results of the I-CDT for those grids,

based on the small image ghost (16 � 16 pixels) in Fig. 9. In this

figure, the rectangular grid cells have a height two times greater

than the width. We recall that I-CDT is an extension of E2DT

conform to classical E2DT definitions on regular grids, and may

be extended to such d-D grids.

We now propose to present the result of our I-BDT algorithm

for the binary image depicted at the beginning of this article in

Fig. 2, digitized in various classical I-grids used in imagery.

Fig. 10 illustrates I-BDT elevation maps where the background of

the original image is represented with a regular square grid ðDÞ,

a quadtree ðqTÞ and a RLE along YðLÞ. The foreground is encoded

with an RLE along Y-axis. We can notice in this figure that the re-

sult of the I-BDT is independent of the representation of the back-

ground. The distance values sin the foreground region are thus the

same in the three elevation maps of a given column.

We now focus our interest on the execution time of the three

algorithms presented in this article. Moreover, we take into ac-

count the I-CDT 2-D approach that we introduced in (Vacavant,

2010). Hence, we consider the four algorithms presented in Table 2.

The first algorithm represents the simple approach we discussed in

Section 2, which is hardly extensible to d-D treatments, and I-BDT

computation. The fourth technique was recently introduced in

(Vacavant, 2010) and is based on a sweep-line process (Breu

et al., 1995). For this algorithm, extension to I-BDT and d-D case

are also difficult. As its complexity is quasi optimal, it represents

a reference for our experiments. Algorithm 2 is inspired from the

quadratic form minimization scheme of Saito and Toriwaki

(1994). Algorithm 3 is the separable transformation inspired from

Maurer et al. (2003). In Fig. 8, we present the three chosen images

for our experiments, and in Table 3, we show the execution times

for these four algorithms, for I-grids built from three binary

images. We have performed those experiments on a mobile work-

station with a 2.2 GHz Intel Centrino Duo processor, and 2 Gb

sRAM. We can first notice that Algorithm 3 gives good results for

I-CDT, even compared to the optimal Algorithm 4. Indeed, this is

the fastest one for regular square I-grids, and is very competitive

for sparse I-grids (e.g. near one half second for qT and L based

Fig. 9. Results of the I-CDT for classical 2-D grids constructed from the image ghost: (a) regular square grid, (b) rectangular grid, (c) hexagonal grid, (d) quadtree-based grid,

and (e) a grid built with a RLE along X-axis.

Table 2

The three compared algorithms, and their associated time and space complexities. We also check if an algorithm is extensible to d-D I-grids and what kind of transformation it can

perform ðI-CDT;I-BDTÞ.

Id. Algorithm Time Space d-D I-CDT I-BDT

1 Complete VD (Vacavant et al., 2008; Voronoi, 1908) Oðn lognBÞ OðnÞ U

2 From Vacavant et al. (2008) and Saito and Toriwaki (1994) Oðn1n2 logn2Þ Oðn1n2Þ U U U

3 From Vacavant et al. (2009a) and Maurer et al. (2003) Oðn1n2Þ Oðn1n2Þ U U U

4 From Vacavant (2010) and Breu et al. (1995) OðnÞ best, Oðn1n2Þ worst OðnÞ U

Fig. 10. Elevation maps representing the I-BDT of each I-grid. X and Y are the axis of the image, and Z corresponds to the distance value. The foreground is encoded with a RLE

and the background (rows) of the image are digitized independently. The color palette is depicted on the right of the figure.

A. Vacavant et al. / Pattern Recognition Letters 32 (2011) 1356–1364 1363

Lowres version



on image canon). In the latter case (canon), Algorithms 1 and 4 are

faster than Algorithm 3, but we recall that they are hardly extensi-

ble to higher dimensions. Algorithm 2 is interesting for dense grids,

but is naturally overtaken by Algorithm 3. For the I-BDT, Algo-

rithms 2 and 3 suffer from an execution time increase, mainly

due to the integration of the complex flattened parabola. But the

last contribution remains as the fastest algorithm, and the time

increasing rate is moderate for the tested grids. Large sparse

I-grids like qT and L based on canon are still handled in less than

one second.

6. Conclusion and future works

In this article, we have recalled the two extensions of the E2DT

on I-grids based on the cells centres ðI-CDTÞ and on the

background/foreground frontier ðI-BDTÞ. An application of the algo-

rithms presented in this paper may be the computation of E2DT in

octree-based images for example. These algorithms, inspired from

Maurer et al. (2003) and Saito and Toriwaki (1994), are separable;

i.e. they are easily extensible to higher dimensions. The last algo-

rithm based on the work of Maurer et al. (2003) is able to efficiently

compute both I-CDT and I-BDT thanks to the irregular matrix struc-

ture, with competitive execution time and complexities.

As a future work, we first would like to study E2DT on other

generic image data structures, like (3-D and more generally d-D)

point sets or triangulations for example. Moreover, we are working

on developing efficient tools to compute the discrete Euclidean

reduced medial axis transform (Coeurjolly and Montanvert, 2007)

on I-grids. We plan to propose centred simple forms of d-D binary

objects represented within various image structures.

References

Breu, H., Gil, J., Kirkpatrick, D., Werman, M., 1995. Linear time Euclidean distance
algorithms. IEEE Trans. Pattern Anal. Machine Intell. 17 (5), 529–533.

Chehadeh, Y., Coquin, D., Bolon, P., 1996. A skeletonization algorithm using chamfer
distance transformation adapted to rectangular grids. In: 13th Internat. Conf. on
Pattern Recognition (ICPR 1996), vol. 2. pp. 131–135.

Coeurjolly, D., Montanvert, A., 2007. Optimal separable algorithms to compute the
reverse Euclidean distance transformation and discrete medial axis in arbitrary
dimension. IEEE Trans. Pattern Anal. Machine Intell. 29 (3), 437–448.

Coeurjolly, D., Zerarga, L., 2006. Supercover model, digital straight line recognition
and curve reconstruction on the irregular isothetic grids. Comput. Graph. 30 (1),
46–53.

de Berg, M., van Kreveld, M., Overmars, M., Schwarzkopf, O., Janvier, 2000.
Computational Geometry: Algorithms and Applications. Springer-Verlag.

Fabbri, R., Costa, L.D.F., Torelli, J.C., Bruno, O.M., 2008. 2D Euclidean distance
transform algorithms: A comparative survey. ACMComput. Surveys 40 (1), 1–44.

Fouard, C., Malandain, G., 2005. 3-D chamfer distances and norms in anisotropic
grids. Image Vision Comput. 23 (2), 143–158.

Fouard, C., Strand, R., Borgefors, G., 2007. Weighted distance transforms generalized
to modules and their computation on point lattices. Pattern Recognition 40 (9),
2453–2474.

Hesselink, W.H., Visser, M., Roerdink, J., 2005. Euclidean skeletons of 3D data sets in
linear time by the integer medial axis transform. In: Ronse, C., Najman, L.,
Decencire, E. (Eds.), Computational Imaging and Vision, vol. 30. Springer-Verlag,
pp. 259–268.

Hirata, T., 1996. A unified linear-time algorithm for computing distance maps.
Inform. Process. Lett. 58 (3), 129–133.

Karavelas, M., 2006. Voronoi diagrams in cgal. In: 22nd European Workshop on
Computational Geometry (EWCG 2006),. pp. 229–232.

Klette, R., Rosenfeld, A., 2004. Digital Geometry: Geometric Methods for Digital
Picture Analysis. Morgan Kaufmann Publishers Inc..

Maurer, C.R., Qi, R., Raghavan, V., 2003. A linear time algorithm for computing exact
Euclidean distance transforms of binary images in arbitrary dimensions. IEEE
Trans. Pattern Anal. Machine Intell. 25 (2), 265–270.

Meijster, A., Roerdink, J., Hesselink, W.H., 2000. A general algorithm for computing
distance transforms in linear time. In: Mathematical Morphology and its
Applications to Image and Signal Processing, pp. 331–340.

Paglieroni, D.W., 1992. Distance transforms: Properties and machine vision
applications. Graph. Models Image Process. 54 (1), 56–74.

Park, S., Lee, S.S., Kim, J., 2005. The Delaunay triangulation by grid subdivision. In:
Computational Science and Its Applications, pp. 1033–1042.

Rosenfeld, A., Pfaltz, J.L., 1968. Distance functions on digital pictures. Pattern
Recognition 1 (1), 33–61.

Saito, T., Toriwaki, J.I., 1994. New algorithms for Euclidean distance transformation
of an n-dimensional digitized picture with applications. Pattern Recognition 27
(11), 1551–1565.

Samet, H., 1990. Applications of Spatial Data Structures: Computer Graphics Image,
Processing, and GIS. Addison-Wesley Longman Publishing Co., Inc.

Sintorn, I.-M., Borgefors, G., 2004. Weighted distance transforms for volume
images digitized in elongated voxel grids. Pattern Recognition Lett. 25 (5),
571–580.

Vacavant, A., 2010. Fast distance transformation on two-dimensional irregular
grids. Pattern Recognition 43 (10), 3348–3358.

Vacavant, A., Coeurjolly, D., Tougne, L., 2008. Distance transformation on two-
dimensional irregular isothetic grids. In: 14th Internat. Conf. on Discrete
Geometry for Computer Imagery (DGCI 2008). Lecture Notes in Computer
Science, vol. 4292. Springer, pp. 238–249.

Vacavant, A., Coeurjolly, D., Tougne, L., 2009a. A novel algorithm for distance
transformation on irregular isothetic grids. In: 15th Internat. Conf. on Discrete
Geometry for Computer Imagery (DGCI 2009). Lecture Notes in Computer
Science, vol. 5810. Springer, pp. 469–480.

Vacavant, A., Coeurjolly, D., Tougne, L., 2009b. A novel algorithm for distance
transformation on irregular isothetic grids. Tech. Rep. RR-LIRIS-2009-009, LIRIS.

Voronoi, G., 1908. Nouvelles applications des paramtres continus + la théorie des
formes quadratiques.deuxième mémoire: Recherches sur les parallélloèdres
primitifs. J. Reine Angew. Math. 134, 198–287.

Vörös, J., 2001. Low-cost implementation of distance maps for path planning using
matrix quadtrees and octrees. Robot. Comput.-Int. Manuf. 17 (13), 447–459.

Table 3

We present execution times (in seconds) for each algorithm for the I-CDT (a) and the I-BDT (b) and for each I-grid. Number inside parenthesis in (b) are the increasing rate in %

between I-CDT and I-BDT execution times.

Image Algorithm 1 Image Algorithm 2 Image Algorithm 3 Image Algorithm 4

D qT L D qT L D qT L D qT L

(a) I-CDT

Noise 0.255 0.104 0.053 Noise 0.037 0.077 0.044 Noise 0.046 0.065 0.038 Noise 0.112 0.055 0.016

Lena 1.413 0.145 0.081 Lena 0.192 0.376 0.245 Lena 0.185 0.166 0.135 Lena 0.327 0.062 0.024

Canon 36.236 0.273 0.234 Canon 1.678 1.322 1.316 Canon 1.134 0.485 0.585 Canon 0.675 0.068 0.031

Image Algorithm 2 Image Algorithm 2

D qT L D qT L

(b) I-BDT

Noise 0.047 (27) 0.100 (29) 0.054 (23) Noise 0.065 (42) 0.085(31) 0.049 (29)

Lena 0.256 (33) 0.320 (31) 0.320 (31) Lena 0.258 (40) 0.170 (26) 0.170 (26)

Canon 2.248 (34) 2.107 (59) 2.020 (53) Canon 1.507 (33) 0.563 (16) 0.718 (23)

1364 A. Vacavant et al. / Pattern Recognition Letters 32 (2011) 1356–1364

Lowres version


