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In this article, we propose to investigate two extensions of the E2DT (squared Euclidean Distance Trans-
formation) on irregular isothetic grids (or [-grids), such as quadtree/octree or run-length encoded
d-dimensional images. We enumerate the advantages and drawbacks of the 1-CDT, based on the cell cen-
tres, and the ones of the 1-BDT, which uses the cell borders. One of the main problem we mention is that
no efficient algorithm has been designed to compute both transforms in arbitrary dimensions. To tackle
this problem, we describe in this paper two algorithms, separable in dimension, to compute these dis-
tance transformations in the two-dimensional case, and we show that they can be easily extended to

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

The distance transformation (Klette and Rosenfeld, 2004;
Rosenfeld and Pfaltz, 1968) (DT) of a binary image consists in label-
ing each point of a discrete object £ (i.e. foreground) with its short-
est distance to the complement of £ (i.e. background). This process
has been widely studied and developed on regular grids (see Fabbri
et al., 2008 for a survey). Some specific extensions of the DT to non-
regular grids also exist, such as elongated grids (Chehadeh et al.,
1996; Fouard and Malandain, 2005; Sintorn and Borgefors, 2004),
quadtrees/octrees (Samet, 1990; Vo6ros, 2001), Face-Centered Cubic
(FCC)/Body-Centered Cubic (BCC) grids (Fouard et al., 2007), etc.
But, to our knowledge, no generic DT process has been designed
on every kinds of image representations in two or higher
dimensions.

This article deals with generalizing the DT computation on
irregular isothetic grids (or 1-grid for short). In two dimensions (2-
D), an [-grid is defined by a partition of R? with rectangular cells
whose edges are aligned along the two axes. The quadtree decom-
position and the RLE (Run Length Encoding) are examples of clas-
sical techniques in imagery which induce an [-grid. Here, we focus
our interest on generalizing techniques that compute the EDT
(squared Euclidean DT) of a d-dimensional (d-D) binary image
(Coeurjolly and Montanvert, 2007; Maurer et al., 2003; Saito and
Toriwaki, 1994). This transformation is a very common way to ana-
lyze the shape of graphical objects for various applications (see
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Paglieroni, 1992 and references of Maurer et al. (2003), for more
details). Many of those techniques can be linked to the computa-
tion of a discrete Voronoi diagram of the background pixels (Coeur-
jolly and Montanvert, 2007; Hesselink et al., 2005). A further
application of our work would be to compute E2DT in octree-based
images, which are a common way to model very large-scale vol-
umes (Samet, 1990).

In (Vacavant et al., 2008; Vacavant et al., 2009a), we introduced
two kinds of extensions of the E2DT on I-grids. The first one is
based on the distance between cell centres, while the second one
computes the distance between a cell centre and the nearest fore-
ground/background frontier. In this article, we make a complete re-
view of each model, and we list their differences. We also recall
previous work and present several techniques to compute them.
In this review, we show that no efficient algorithm has been de-
signed to compute both distance transformations in arbitrary
dimensions. The methods that we introduce in this article are sep-
arable, i.e. they perform operations independently along the two
axes and can be naturally extended to handle d-D images. More-
over, they can compute both E?DT extensions we have introduced
in our previous work.

This paper is organized as follows: We first recall in Section 2
previous work about DT on the I-grid model, the two extensions
of the E2DT on these grids, with their advantages and drawbacks.
Then, we present the mathematical and algorithmic tools we
need to develop separable DT processes on [-grid (Section 3). In
Section 4, we describe two separable DT algorithms and we final-
ly compare them (in terms of complexity and execution times), in
Section 5.
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2. Previous work about DT on Igrids

In this section, we first recall the concept of irregular isothetic
grids (I-grids) in 2-D, with the following definition (Coeurjolly
and Zerarga, 2006):

Definition 1 (2-D i-grid). Let P be a closed rectangular subset of
R2. A 2-D I-grid G is a tiling of P with non overlapping rectangular
cells whose edges are parallel to the X- and Y-axis. The position of
each cell is characterized by its centre point (its position)
(xg,yg) € R? and its length along X- and Y-axis (I}, &) € R*2.

We consider this definition of 2-D I-grids for the rest of the
paper, and we will shortly show that our contribution is easily
extensible to the d-D case. In our framework, we consider labeled
I-grids, i.e. each cell of the grid has a foreground or background label
(its value is respectively “0” or “1” for example). For an I-grid G, we
denote by Gr and Gp the sets of foreground and background cells.

Here, we first recall the two extensions of the E2DT proposed on
I-grids, for each cell R € Gg:

U{mmyq%Q£mnye@} (1)
1-BDT(R) = min {di(p,s) se s}. 2)

where S is the set of segments contained in the background/fore-
ground frontier of the grid. The first extension, the Centre-based
DT (Eq. (1)) (Vacavant et al., 2008) is based on the cell centres of
the grid, where dg(p, p') the squared Euclidean distance between
the centres p = (xg,yr) and p’ = (xg, Yy ). The Border-based DT (Eq.
(2)) (Vacavant et al., 2009a) employs cell borders, and computes
the shortest distance between a foreground cell centre and the
background/foreground boundary. We sum up in Table 1 the advan-
tages and the drawbacks of each model.

As mentioned in Table 1, we can compute these extensions
thanks to the construction of two kinds of Voronoi diagrams
(VD). We recall that the VD of a set of points P = {p;} is a tiling
of the plane into Voronoi cells (or VD cells) {C,} (de Berg et al.,
2000; Voronoi, 1908). The 1-CDT may be computed with such a
structure, as we discussed in (Vacavant et al., 2008). If we now con-
sider the background/foreground frontier to compute the 1-BDT,
Eq. (2) implies that we compute a VD of segments, and not a clas-
sical VD of points (see Fig. 1 for an example of these diagrams com-
puted on a simple I-grid). Hence, a simple approach to compute the
1-CDT (presented in Algorithm 1 s to pre-compute the complete VD
of the background points (Vacavant et al., 2008), and to locate fore-
ground points in the VD. In this case, the I-CDT computation has a
O(nlogng) time complexity, where n is the total number of cells,

Table 1
Differences between the two extensions of E2DT on [-grids.

1-CDT 1-BDT

Based on centre-to-border
distance

Can be computed thanks to the
construction of a Voronoi
diagram of segments

Not easily extensible to these

Based on distance between cells
centres
Can be computed thanks to the
construction of a Voronoi
diagram of points

+ Is extensible to other non- -

isothetic grids (hexagonal, grids
triangular, etc.)
— Is not independent from +  The result does not depend on

background encoding

+ Can be computed in 2-D (but not —
in d-D) in linear time with a
sweep line algorithm (Vacavant,
2010)

This article: the two extensions can be computed with a separable approach,
extensible to d-D

the background representation
Not easily computable by this
algorithm

and ng is the number of background cells. This technique is obvi-
ously not computationally efficient for every grids, and not
adapted to dense grids (Vacavant et al., 2008). To compute the
1-BDT, a similar process can be drawn, where the computation of
the VD of segments can be handled in (’)(nslogzng), where ng =4ng
is the total number of segments belonging to the background/fore-
ground frontier (Karavelas, 2006). The extension of those transfor-
mations to d-D [-grids is difficult. A VD can be computed in d-D
with a O(ng log ng + nj"?) time complexity (thanks to a gift-wrap-
ping approach (de Berg et al., 2000 for example). However, localiz-
ing a point in the VD is an arduous task, and an additional structure
like subdivision grids (Park et al., 2005) should be constructed to
handle this operation. Hence, the building of the entire VD to ob-
tain the [-BDT is neither computationally efficient for every
I-grids, nor easily extensible to higher dimensions.

Algorithm 1. [-CDT with the complete VD

input: a labelled [-grid G.
output: the 1-CDT of G.
compute the Voronoi Diagram V of the points {p; R € Gz};
foreach cell R € G- do
locate p in V;
if p is the Voronoi vertex v of V then
| s— Voronoi site of an adjacent cell of #;
elseif p belongs to a Voronoi edge e in V then
\ s« Voronoi site of an adjacent cell of e;
else {p belongs to a Voronoi cell ¢ of V}
| s— Voronoi site of c;
0 L [-CDT (R) < d?(s,p);

11 foreach cell R € Gg do 1-CDT (R) + O

— O 00NN U A WN =

In Table 1, we also mention that one of the major problem of
1-CDT is that it is strongly dependent of the background represen-
tation (Vacavant et al., 2009a). In Fig. 2, we present an example of
the computation of the 1-CDT of two I-grids where only the back-
ground cells differ. Since this definition is based on the cell centres
position, the 1-CDT do not lead to the same distance map depend-
ing on the background encoding.

In a recent work (Vacavant, 2010), we have presented an effi-
cient algorithm that permits to compute the I-CDT with a sweep-
line based approach in 2-D (Breu et al., 1995). However, this tech-
nique is not easily extensible neither to higher dimensions, nor to
1-BDT. As a new contribution, we now propose two separable algo-
rithms that compute both 1-CDT and 1-BDT that can be extended to
the d-D case.

3. Separable minimization processes for I-CDT and [-BDT
3.1. Separable E?DT algorithms on regular grids

The separable algorithm introduced by Saito and Toriwaki
(1994) (one phase by dimension) first computes a one-dimensional
(1-D) transformation along X-axis for each row of a binary image F
of size n x n, which leads to a new image G = {g(i,j)} (see Fig. 3a).
Then, a minimisation process is realized along Y-axis to obtain
the final image H = {h(i,j)} (Fig. 3b): h(i,j) = min,{g(i,j)* + (G — ¥)*;
1<y<n}

The main idea of the separable method of Maurer et al. (2003) is
that the intersection between the complete VD of background pix-
els (i.e. sites) and a line of the grid can be easily computed, then
simplified. Indeed, for a row j, the VD sites can be “deleted” by
respecting three remarks mainly based on the monotonicity of
the d, distance (Maurer et al., 2003): (1) if we consider the line
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Fig. 1. Example of the VD of the background points to obtain the I-CDT of a simple -grid (a) and the background/foreground ffonder (dark segments) to obtain the 1-BDT (b).

l:y=j, j € Z then we only have to keep the nearest VD sites from
1 (2) those sites can be ordered along the X-axis; which means that
it is not necessary to keep the complete VD, but only its intersec-
tion with the line [ (3) a VD site may be hidden by two neighbour
sites, and thus not considered anymore (Fig. 4b). In this article,
we show the extension of this technique on I-grids by adapting
these properties on these grids.

3.2. Separable computation of 1-CDT and 1-BDT

To develop a separable process on [-grids, we use the irregular
matrix M associated to a labeled [-grid G introduced in (Vacavant

(a)

(b)

()

et al., 2008). This data structure aims to organize the cells of the
grid along the X- and Y-axis by adding virtual cells centres (see
Fig. 5 for an example). We show in Section 5 that, even if we add
points in this structure, separable processes on the irregular matrix
are faster than the complete VD based approach we presented in
the previous section (Algorithm 1). More precisely, the irregular
matrix contains as many columns (respectively rows) as X-coordi-
nates (Y-coordinates) in the grid. These coordinates are stored in
two tables Tx and Ty (and we denote n; = |Tx| and n; = |Ty|). At the
intersection of two X- and Y-coordinates, a node in M has the same
value as the cell containing it, and may represent the cell centre or
not (i.e. this is an extra node, see Fig. 5a). The extra nodes are used

(d)

(e)

Fig. 2. The result of the I-CDT of the complete regular grid (b) computed from the binary image (a) and an [-grid where the foreground is regular and the background is
encoded with a RLE scheme along Y (c). The distance value d of a cell is represented with a grey level ¢ =d mod 255. The contour of the object (background/foreground
frontier) is recalled in each distance map (b) and (c) with a smooth curve. We also present the associated elevation map of each distance map in (d) and (e).
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Fig. 3. Double minimization process on a small binary image. The first step of the algorithm computes G (a), representing minimal distances along X axis. If we choose one
column of G, the second phase consists in computing g(ij)? + (j — y)? for each pixel of this column (b). The minimization of this column lead to the computation of the E2DT

stored in H.
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to propagate the distance values through the irregular matrix and
then compute a correct distance value for each cell centre. To apply
the 1-BDT on this data structure, we also have to take into account
the border and the size of the treated cells. We thus add for each
node M(i,j) border attributes along X- and Y-axis that permit to
propagate the distance values to cell borders through M. For a node
M(i,j) contained by the cell R in G, we denote respectively by H,(i,j)
and Hg(i,j) the attributes that represent the minimum between the
distance to the left (respectively right) border of R along X, and the
distance to the neighbour node at the left (right) position in M. In
the same manner, we define H(i,j) and Hpg(i,j) in respect to the top
(bottom) border of R and neighbour nodes at the top (bottom) po-
sition in M (see Fig. 5b). Building the irregular matrix of an 1-grid G
can be handled in O(nyn;) time complexity. More precisely, we
first scan all the cells of G to know the n; columns and the n, rows
of M. Then, we consider each node of M and we assign its back-
ground or foreground value and its border attributes.

We now present how to adapt Eq. (1) on the irregular matrix
thanks to a separable minimization process:

Proposition 1 (Separable 1-CDT). Let M be the associated irregular
matrix of the 2-D [1-grid G. Then the 1-CDT of G can be decomposed in
two separable processes, and consists in computing the matrix M’ and
M” as follows:

M'(i,j) = mxin{\Tx(i) —Tx(x)|: x € {0,...,n; — 1} and M(x,j) = 0},

M"(i,j) = myin {FyG):ye{0,...,n; —1}},

(010!0!0!0-0'0!0-00!0!00!000)
2 N AN
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where F,(j) is a parabola given by:

Fy() = M'(,9)* + (Ty () = Ty(v))*.

In this case, this transformation is equivalent to a minimization
process of 2-D quadratic forms. Eq. (2) can also be adapted on the
irregular matrix with a minimization process along the two axis:

Proposition 2 (Separable 1-BDT). Let M be the associated irregular
matrix of the 2-D [-grid G. Then the 1-BDT of G can be decomposed in
two separable processes, and consists in computing the matrix M’ and
M" as follows:

M'(i,j) = min {min (|Tx (i) — Tx(x) — Hr(x.)|, |Tx(x) — Tx(i)

—Hi(x,j))) : x €{0,...,n; — 1} and M(x,j) = 0},
M//(i,j) = Inyin {gy(J) HVAS {07 My — 1}}7

where G, (j) is a flattened parabola given by:

M'(i,y)* + (Ty(j) — Ty () — Hr(i,))
if Ty(j) — Ty(y) > Hr(i,y),
(Ty(y) — Ty(j) — Hs(i,y))*
if Ty(y) — Ty(j) > Ha(i.y),
M'(i,y)* otherwise.

Gy(j) = M'(i,y)* +

We prove in (Vacavant et al., 2009b) that this proposition is cor-
rect, i.e. this two-dimensional scheme consists in computing the

ceeeeeeeaea

(b)

Fig. 4. In a regular grid, when we treat a row | with Maurer et al. algorithm, we consider the VD of background nodes like in (a).We only keep the nearest VD sites of [ and we
obtain (c) by deleting sites which associated VD cells intersect the [ row. Arrows indicate the associated VD site of each foreground pixel of this row.
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Fig. 5. Construction of the irregular matrix associated to the simple I-grid illustrated in Fig. 1. In (a), the extra node M(0, 2) of the matrix is depicted at the intersection of the
dotted lines. In (b), examples of values for border attributes are also given along X (dashed lines) and Y (dotted lines). For instance, we have Hg(0,2)= H;(0,2) = 20,
H1(0,2) = Hg(0,2) =10, Hg(1,1)=H,(1,1) =10, and Hy(1,1) = Hg(1,1) = 0 since this node coincides with a cell horizontal border. We can also notice that H;(2,3) # Hg(2,3)

while Hy(2,3) = Hy(2,3) = 5.
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1-BDT given in Eq. (2). One can notice that it is possible to adapt the
proof of this proposition to prove Proposition 1. This separable
minimization process also permits to compute the [-CDT (Eq.
(1)), if we assign all border attributes to zero. Here, a flattened
parabola (see also Fig. 6) is an ad hoc function composed by two
half-parabolas and a constant function. It represents a constant
distance value from a node M(i,j) to its neighbour nodes and cell
borders, and then increases as a classical quadratic function be-
yond those limits. The computation of matrix M” in Proposition 2
thus consists in computing the lower envelope of a set of flattened
parabolas. This operation is possible since these functions are con-
vex (composition of convex functions), and there exist a single
intersection or an infinity of intersections between two flattened
parabolas. In the regular case, E2DT algorithms based on a 2-D qua-
dratic form minimization (Hirata, 1996; Meijster et al., 2000; Saito
and Toriwaki, 1994) are linear and correct, since the intersection
between two parabolas F,(y) and F(y) is clearly defined:

Proposition 3 (Intersection between two classical parabolas (Hirata,
1996)). Let  F,: R—R,y—g2+ (x—y)* and Fp:R-R,y—gi+
(B —y)? be two parabolas. The number of intersections is either one,
or an infinity if they are coincident, i.e. when g, = g and o = .

This property is verified because parabolas are convex functions
(Hirata, 1996). It implies that we can compute the lower envelope
of a set of parabolas since we are able to order them.

To prove that our algorithms are correct on [-grids for 1-BDT, we
have verified that this property is preserved. The following lemma
enounce the conditions so that two flattened parabolas intersect at
a single point or an infinity of points:

Lemma 1 (Intersection between two flattened parabolas). Let G, and
Gy be two flattened parabolas given by:

G.:R—R
2+ u-y—lu)?
ifu—y>hy,
Yo Guy) =< g2+ (y—u—uy)?
ify—u>lu,,
g2 otherwise
and
G,:R—R

0.5

M(Zv y)2 "",
0 |

Ty(y) — Hp(i,y) Ty (y) Ty (y) + Hr(i,y)

Fig. 6. Important features of a flattened parabola, composition of two half-
parabolas (in dotted lines) and a constant function.

2+ w-y—Iln)

if v—y>luv,
Yo GuY) =14 g+ (y—v—Iv)?
ify—v>lv,,
g2 otherwise
where:

e g, gy luy, luy, vy, vy, u and v are positive or null real numbers;
eifu=>v=0thenu—Iu; > v+lvy
eifO<u<v, thenu+lu, <v-lu;.

The intersections between these parabolas is either reduced to a
point, or reduced to an infinite set of points.

Notice that the elements M'(i,y), Hr(i,¥), Hg(i,y) and Ty (y) of G,
in Proposition 2 respectively correspond to g, luy, lu,, and u of G,.
They also respect the conditions given at the end of Lemma 1. For
example, let G,, and G,, be two flattened parabolas such that
Y1 = ¥2, we can easily verify that y; — Hp(i,y1) = y2 + H{{(i,y>) (see
Figs. 5 and 6). The proof of this lemma and a way to compute a va-
lid intersection point are given in (Vacavant et al., 2009b).

4. Proposed separable methods to compute ICDT and IBDT

In this section, we first present the adaptation of Saito et al.
algorithm (Saito and Toriwaki, 1994), because this is a natural
application of the 1-CDT and [-BDT minimization processes we de-
scribed in Propositions 1 and 2. Then, we show how to use Maurer
et al. approach (Maurer et al., 2003) for the same purpose, which
lead to the development of a faster algorithm.

4.1. Adaptation of Saito et al. E2DT Algorithm on [-grids

Algorithm 2. Separable 1-BDT inspired from Saito and Toriwaki
(1994) (1/2)

input: A labeled 1-grid G.

output: The 1-BDT of G, stored in an irregular matrix M".
1  build the irregular matrix M associated to G;

2 forj=0ton,—1do {First stage along X}
3 if M(0,j) = 0 then M’'(0,j) < O;

4 else M'(0,j) «— oo ;

5 fori=1ton; —1do
6

7

8

if M(i,j) = 0 then M/(i,j) — O;
else
if M'(i — 1,j) = 0 then
9 | M/(i,j) — Tx(i) — Tx(i— 1) — Hg(i — 1.j);
10 else
11| LD W) — Tx() = Te(— 1) + MG — 1,));
12 fori=n; —2to 0do
13 if M'(i+1,j) < M'(i,j) then
14 if M'(i + 1,j) = 0 then
15 | MY (i.j) < Tx(i+ 1) - Tx() — Hy(i.j);
16 else
17 LMY (Gj) — Tx(i + 1) = Tx(i) + M'(i — 1,);

In this section, we present the complete algorithm inspired
from Saito and Toriwaki (1994) (Algorithm 2, divised into two
main parts), and how to modify it in order to compute the 1-CDT
and [1-BDT. As we discussed in the previous section, we need to
compute the intersection between parabolas to realize a correct
minimization scheme of a 2-D quadratic form, conform to Proposi-
tions 1 and 2. The function CSepi(u, v) is the exact coordinate of the
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intersection point between two classical parabolas (Coeurjolly and
Montanvert, 2007; Meijster et al., 2000): CSep'(u,v) = (Ty(v)?
—Ty(u)®> +M'(i, v)* — M'(i,u)?)/(2(Ty(v) — Ty(u))). For 1-BDT, we
introduce the BSep(u,v) function thanks to the proof of Lemma 1
(see Vacavant et al., 2009b).

Algorithm 3. Separable I-BDT inspired from Saito and Toriwaki
(1994) (2/2)
input: A labeled [-grid G.
output: The [-BDT of G, stored in an irregular matrix M”.
1 fori=0ton;—1do {Second stage along Y}

q < 0; s[0] < O; t[0] < O;

2 h7{0] « Hy{(i,0); hg[0] «— Hp(i,0)
3 forj=1ton,—1do
4 while q > 0 A Gy (t[q]) > G;(t[q]) do {F function for 1-CDT}
5

q—q-1;
6 if ¢ <0 then
7 q < 0; s[q] —j; N
8 hr{q] — He(ij); hslq] — Hg(ij); _
9 else {CSep' function for 1-CDT}
10 w — BSep(slqly);
11 if w < Ty(n, — 1) then
12 Lﬁnd the node M'(i,k), k € {s[gl,...,ny — 1} such that Ty(k) > w;
13

q—q+1;s[q]l — k; t{q] — w;
14 hlq] — Hx(i.j); helq] — Ha(i.j);
15
16 L

17 forj=n,—1to 0do
18 L M (i, J)  Gsq );
19 if Ty(j) = t[q] then g — q — 1;

{F function for 1-CDT}

This function is defined by:

¥ = Ty(v) — Hall, 0) — /M (G,u)® — MG, o), 3)

y if Ty(u) — Hg(i,u) <y < Ty(u) + Hr (i, u),

CSep(Ty(u) — Hp(i,u), Ty(v) — Hp(i, ))

BSep'(u, v) = if § < Ty(u) — Hg(i,u) < Ty(u) + Hr(i,u),
CSep(Ty(u) + Hr(i,u), Ty(v) — Hp(i, v))

if Ty(u) — Hp(i,u) < Ty(u) + Hr(i,u) <.

In the first step, we can notice that the only difference with the reg-
ular square case (Coeurjolly and Montanvert, 2007; Saito and Tori-
waki, 1994) is the computation of the distance, lines 2 to 17 (part 1/
2). We have to consider in those operations the distance between
the point M'(i,j) and its neighbors. This is indeed a double linear
scan for each row, where we use Hg and H; attributes to propagate
the distance to cells borders!. During the second phase, we use
stacks s and t, as in (Meijster et al., 2000), and two additional stacks
hr and hp to propagate border distances through the columns of the
matrix. This step is equivalent to the computation of the lower enve-
lope of a set of flattened parabolas (see Fig. 7). The computation of w
(line 11 part 2/2) only depends on the function BSep(u,7) and then
permits to find the intersection point in M’ between two flattened
parabolas (line 13 part 2/2). It is replaced by CSep'(u,7) in the case
of the 1-CDT. The find command is performed with a dichotomous
search through the ordered set of nodes {M'(i, k) };gck<n, 1 and has
a O(logn,) time complexity in the worst case. But in our experi-
ments (see Section 5), we have observed that this is a fast operation,
since we begin the search from the last intersection point (with in-
dex s[q]).

1 If we consider an I-CDT process, we can set these values to zero, or use the
complete description given in (Vacavant et al., 2008).

4.2. Adaptation of R. Maurer et al. E>DT Algorithm on 1-grids

The first stage of this method (Algorithm 3) consists in scan-
ning along X and in initializing the distance of each node of the
irregular matrix, as in Algorithm 2. In the second part of our algo-
rithm, we build a partial VD intersected with each column i. As in
the original algorithm (Maurer et al., 2003), we use two stacks
storing real successive coordinates of treated sites (h), and their
squared distance (g). The first loop of this function (line 7) corre-
sponds to the deletion of hidden sites, thanks to the hidden_by
() predicate.

Algorithm 4. Separable 1-BDT inspired from Maurer et al.
(2003)

input: the labeled [I-grid G.

output: the 1-BDT of G, stored in the irregular matrix M”.
build the irregular matrix M associated to G;

{Process same first stage along X as Algorithm 2}

1

2

3 fori=0ton; —1do
4 [+—0,g«0,h0;
5 fr—0fg—0;
6

7

8

{Second stage along Y})

forj=0ton, —1do
if M'(i,j) # co then

while [ > 2/ hidden by

L gll - 1,g[l], M'(i.j), h{l - 1], h[l]. Ty (j)) do
9 l—1-1;

10 I —1+1,g[l] — M(i,j), hil] — Ty(j);

11 frll] — H(i,j).fz < Hp(i.j);

12 if (n; < ) = 0 then return;

13| 11

14 forj=0ton, — 1 do {F function for 1-CDT}
15 while [ <ng A Gi(j) > Gi() do I —1+1;
16 M"(i,j) — Gi(j);

Function hidden_by

input: Y-coordinates of three points in R?
denoted by u,, v, wy, and their squared distance
to the line L: y =r denoted by
d(u,L),d*(v,L),d*(w,L).
output: is v hidden by u and w?
1 a—vy—-u,b—w,—y,c—a+b
return ¢ x d2(v,L) — b x d*(u,L) — a x d*(w,L) — abc > 0;

In Algorithm 3, we also use two additional stacks, denoted by fr
and fp to store the border attributes and update them. Thanks to
these stacks, the second stage of our algorithm is achieved in linear
time. By testing the value of [ (line 12), we know if we have to scan
again the stacks and to update the distance values of the nodes.
Finally, we linearly scan the stacks to find the nearest border of
the M (i,j) current node (line 15), and this step actually consists
in considering the lower envelope of a set of flattened parabolas,
as in Algorithm 2 (see also Fig. 7).

4.3. Complexity analysis
In Algorithms 2 and 3, the first operation (build the irregular

matrix) is performed in O(n;n,) time. More precisely, we first scan
all the cells of G to get the n; rows and n, columns of M. Algorithm
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Fig. 7. For the column chosen in (a), the last phase of Algorithms 2 and 3 consists in considering the lower envelope of a set of flattened parabolas (b). At the bottom of this
plot, background and foreground nodes are represented by black and white circles at the corresponding Y-coordinate. Cell borders are also represented (vertical dashes). Black
squares represent where the cell centers are located along Y-axis, and the associated 1-BDT value. We give in (c) the obtained I-BDT for this I-grid.

T

(d) ¢T of noise

Fig. 8. For the images noise (100 x 100), lena (208 x 220), canon (512 x 512) in

2 has a global time complexity in O(n; n, logn,). It can be easily
extended to higher dimensions: the step 1 stands as an initializa-
tion step, and for each greater dimension, a mixing process, as step
2, permits to combine results obtained in the lower dimensions.
For a labeled d-D 1-grid, which associated irregular matrix size is
ny,...,ng, the cost of the consecutive steps is in O(ny ... ng
logn; ... logng q).

Algorithm 3 realizes a linear 1-BDT algorithm in respect to the
associated irregular matrix size, i.e. in O(n; ny) time complexity.
As Algorithm 2, this method is easily extensible to higher dimen-
sions: we still realize the first step as an initialization phase, and
for each dimension d > 1, we combine results obtained in dimen-
sion d — 1. If we consider a labeled d-D I-grid, which associated
irregular matrix size is ny,...,ng the time complexity of our algo-
rithm is thus in O(n; ... ny).

(e) ¢T of lena

(f) ¢T of canon

(a-c), we consider in our experiments the associated (-grids (regular grid, quadtree
decomposition and RLE along Y scheme). We have also depicted the quadtree decomposition of these images (d-f).

In the next section, we present experiments to show the inter-
est of the 1-BDT and 1-CDT, and to point out that the last algorithm
is a very efficient approach to compute both 1-CDT and [-BDT of
various classical [-grids.

5. Experimental analysis

Here, we first propose to study the computation of the I-CDT
on several classical 2-D grids in imagery. We consider in our
experiments three regular grids (square, rectangular and hexago-
nal), then two image-dependent grids, based on a quadtree
decomposition and a RLE grouping scheme. Since the definition
of the 1-CDT is only based on the centres of the cells, we can
treat all those grids that belong to the [-grid model, and other
non-isothetic grids, like hexagonal or triangular grids. We
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Fig. 9. Results of the [-CDT for classical 2-D grids constructed from the image ghost: (a) regular square grid, (b) rectangular grid, (c) hexagonal grid, (d) quadtree-based grid,

and (e) a grid built with a RLE along X-axis.

Background

Fig. 10. Elevation maps representing the [-BDT of each I-grid. X and Y are the axis of the image, and Z corresponds to the distance value. The foreground is encoded with a RLE
and the background (rows) of the image are digitized independently. The color palette is depicted on the right of the figure.

present the computation results of the 1-CDT for those grids,
based on the small image ghost (16 x 16 pixels) in Fig. 9. In this
figure, the rectangular grid cells have a height two times greater
than the width. We recall that 1-CDT is an extension of E?DT
conform to classical E2DT definitions on regular grids, and may
be extended to such d-D grids.

We now propose to present the result of our 1-BDT algorithm
for the binary image depicted at the beginning of this article in
Fig. 2, digitized in various classical [-grids used in imagery.
Fig. 10 illustrates [1-BDT elevation maps where the background of
the original image is represented with a regular square grid (D),
a quadtree (gT) and a RLE along Y(L). The foreground is encoded
with an RLE along Y-axis. We can notice in this figure that the re-
sult of the 1-BDT is independent of the representation of the back-
ground. The distance values sin the foreground region are thus the
same in the three elevation maps of a given column.

We now focus our interest on the execution time of the three
algorithms presented in this article. Moreover, we take into ac-
count the 1-CDT 2-D approach that we introduced in (Vacavant,

Table 2

2010). Hence, we consider the four algorithms presented in Table 2.
The first algorithm represents the simple approach we discussed in
Section 2, which is hardly extensible to d-D treatments, and 1-BDT
computation. The fourth technique was recently introduced in
(Vacavant, 2010) and is based on a sweep-line process (Breu
et al., 1995). For this algorithm, extension to [-BDT and d-D case
are also difficult. As its complexity is quasi optimal, it represents
a reference for our experiments. Algorithm 2 is inspired from the
quadratic form minimization scheme of Saito and Toriwaki
(1994). Algorithm 3 is the separable transformation inspired from
Maurer et al. (2003). In Fig. 8, we present the three chosen images
for our experiments, and in Table 3, we show the execution times
for these four algorithms, for [-grids built from three binary
images. We have performed those experiments on a mobile work-
station with a 2.2 GHz Intel Centrino Duo processor, and 2 Gb
SRAM. We can first notice that Algorithm 3 gives good results for
1-CDT, even compared to the optimal Algorithm 4. Indeed, this is
the fastest one for regular square [-grids, and is very competitive
for sparse [I-grids (e.g. near one half second for qT and L based

The three compared algorithms, and their associated time and space complexities. We also check if an algorithm is extensible to d-D [-grids and what kind of transformation it can

perform (I-CDT,I-BDT).

Id. Algorithm Time Space d-D I-CDT 1-BDT
1 Complete VD (Vacavant et al., 2008; Voronoi, 1908) O(nlogng) O(n) %4

2 From Vacavant et al. (2008) and Saito and Toriwaki (1994) O(nyny logny) O(niny) I » I

3 From Vacavant et al. (2009a) and Maurer et al. (2003) O(nyny) O(nyny) %4 I %4

4 From Vacavant (2010) and Breu et al. (1995) O(n) best, O(nyn,) worst O(n) I




1364 A. Vacavant et al./ Pattern Recognition Letters 32 (2011) 1356-1364

Table 3

We present execution times (in seconds) for each algorithm for the 1-CDT (a) and the I-BDT (b) and for each [-grid. Number inside parenthesis in (b) are the increasing rate in %

between [-CDT and 1-BDT execution times.

Image Algorithm 1 Image Algorithm 2 Image Algorithm 3 Image Algorithm 4

D qT L D qT L D qT L D qT L
(a) 1-CDT
Noise 0.255 0.104 0.053 Noise 0.037 0.077 0.044 Noise 0.046 0.065 0.038 Noise 0.112 0.055 0.016
Lena 1.413 0.145 0.081 Lena 0.192 0.376 0.245 Lena 0.185 0.166 0.135 Lena 0.327 0.062 0.024
Canon 36.236 0.273 0.234 Canon 1.678 1.322 1.316 Canon 1.134 0.485 0.585 Canon 0.675 0.068 0.031
Image Algorithm 2 Image Algorithm 2

D qT L D qT L

(b) 1-BDT
Noise 0.047 (27) 0.100 (29) 0.054 (23) Noise 0.065 (42) 0.085(31) 0.049 (29)
Lena 0.256 (33) 0.320 (31) 0.320 (31) Lena 0.258 (40) 0.170 (26) 0.170 (26)
Canon 2.248 (34) 2.107 (59) 2.020 (53) Canon 1.507 (33) 0.563 (16) 0.718 (23)

on image canon). In the latter case (canon), Algorithms 1 and 4 are
faster than Algorithm 3, but we recall that they are hardly extensi-
ble to higher dimensions. Algorithm 2 is interesting for dense grids,
but is naturally overtaken by Algorithm 3. For the 1-BDT, Algo-
rithms 2 and 3 suffer from an execution time increase, mainly
due to the integration of the complex flattened parabola. But the
last contribution remains as the fastest algorithm, and the time
increasing rate is moderate for the tested grids. Large sparse
I-grids like qT and L based on canon are still handled in less than
one second.

6. Conclusion and future works

In this article, we have recalled the two extensions of the E>DT
on [-grids based on the cells centres (I-CDT) and on the
background/foreground frontier (1-BDT). An application of the algo-
rithms presented in this paper may be the computation of E2DT in
octree-based images for example. These algorithms, inspired from
Maurer et al. (2003) and Saito and Toriwaki (1994), are separable;
i.e. they are easily extensible to higher dimensions. The last algo-
rithm based on the work of Maurer et al. (2003) is able to efficiently
compute both I-CDT and [1-BDT thanks to the irregular matrix struc-
ture, with competitive execution time and complexities.

As a future work, we first would like to study E2DT on other
generic image data structures, like (3-D and more generally d-D)
point sets or triangulations for example. Moreover, we are working
on developing efficient tools to compute the discrete Euclidean
reduced medial axis transform (Coeurjolly and Montanvert, 2007)
on [-grids. We plan to propose centred simple forms of d-D binary
objects represented within various image structures.
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