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a b s t r a c t

We propose a fast shape decomposition method for granular microstructures using a 3-D approach based

on medial axis. We define a two-step algorithm: the first step relies on a notion of digital flow to obtain a

preliminary over-decomposition from medial balls. During a second step, we use geometric criteria to

obtain a relevant and precise volumetric decomposition. We apply our algorithm to 3-D objects of mate-

rials and, more precisely, to microtomographic images of snow microstructures.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

Shape decomposition is one of the fundamental techniques in

computer graphics and is widely used in shape processing. The

goal of decomposition, sometimes called segmentation, is to sim-

plify and/or change the representation of an object in order to

make it more meaningful and easy to analyze [33]. The principal

contribution of this paper focuses on a fast and efficient shape

decomposition method which is based on the digital flow. The con-

cept of flow was introduced in [12]. With the proposition of a fast

computation of critical points in digital domain, we obtain a frame-

work of method which is optimal in time. Moreover, we provide

two distinct geometrical criteria to control the quality of the

decomposition.

In this paper, we first propose a digital version of the flow notion

from computational geometry to yield a fast initial decomposition

of 3-D granular materials into regions (Section 4). This approach

provides a structure on the initial regions which allows us to define

a simple filtering algorithm to correct over-decomposition effects

(Section 5). We validate the quality of the decomposition on both

synthetic data and images of granular snow samples (Section 6).

2. Related works

The main context of this paper is the analysis of granular mate-

rials from 3-D computed tomographic images. More precisely, we

focus on a specific granular material, i.e. deposited snow on the

ground (see Fig. 9), which is observed at the scale of its microstruc-

ture (1 voxel � 5–20 lm). In this context, micro-scale modelling

requires a precise 3-D description of snow microstructures in

terms of individual grains and bond’s characteristics [6]. Practi-

cally, there are various shape types of snow present in the snow-

pack, like Precipitation Particles (PP), Rounded Grains (RG), Melt

Forms (MF) and so on [15]. Each class implies different geometry

of grains from nearly spherical objects to facetted ones. So the chal-

lenge is to decompose the 3-D images of these different snow types

into grains, which are usually sintered together and form complex

shapes. Another specific aspect of our context is that physical anal-

ysis of snow microstructures leads to further requirements on the

grain-to-grain interfaces: the interface between two grains should

be flat or with minimal curvature values. We do not use such an

information directly in our segmentation approach but we rely

on it in our experimental evaluation.

From image processing, several approaches for shape decompo-

sition problems consider mathematical morphology tools such as

watershed transform [13] or region growing operators [32]. In

our context where the input object is a binary volume, the main

idea of these approaches is to start from a set of markers defined

by local maxima in the distance transform of the input shape

(see [34,22] for a survey). Then, a propagation process is used to

enlarge catchment basins of each local minimum to define the
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overall decomposition into non-overlapping regions. Despite

several improvements [14], the main drawback is that such

approaches have difficulties to capture the complex shape geome-

try of snow grains and bonds.

Surface based techniques can also be considered. The main idea

is to perform a first decomposition on the 3-D object boundary and

to propagate such decomposition to the object’s interior to finally

obtain the volumetric decomposition. If we suppose that grains

are smooth with rounded shapes, differential estimators (mean

andGaussian curvatures) can be used to decompose the surface into

components with almost constant curvature values [37]. In a previ-

ous work [36], we have developed such decomposition tools based

on surface curvature information. This method identifies groove

regions on the surface of object to locate the possible separating

boundaries in volume.However, all these techniques are highly sen-

sitive to the initial surface decomposition into groove regions from

curvaturemap. Furthermore, they require stable and robust to noise

differential curvature estimators, which could be challenging.

Another approach consists in decomposing the initial shape

using volumetric information based on the distance map [35] or

the medial axis representation of a shape [12]. For the first men-

tioned approach, the idea is close to the watershed approach: we

start from local maxima of the distance map and we perform a

propagation process to construct the regions. A last step is required

to overcome the over-decomposition induced by the first step and

uses a heuristic based merging process between adjacent regions.

Similarly to watershed, the method is highly sensitive to the initial

local maxima computation and the region interface quality is poor.

From computational geometry, Dey et al. [12] proposed an inter-

esting mathematical tool which constructs a continuous flow from

the medial axis representation of a shape. In this approach, the

object is represented by point sets on its boundary and the medial

axis is defined as a subset of the Voronoi diagram of the input point

set [3]. Another method which is based on curve skeletons was

proposed by Reniers and Telea [27,28]. The curve-skeleton junc-

tions which signal the interpenetration of parts are detected based

on the junction rule using a function based geodesic metric to

quantify the relevance of a given curve-skeleton branch. These

approaches provide very good results on 3-D models and CAD

shapes. However, when applying them to large microtomographic

images of snow microstructures (high resolution objects, high

topology genus, noisy curve-skeleton with small shortest loops

associated to surface), these approaches become time consuming

and may lead to inconsistent decomposition.

We propose here a purely volumetric approach which does not

require to back-project volumetric information (curve-skeleton or

medial structures) to the object surface to compute geometrical

information. Our proposal is thus based on simple digital volumet-

ric data structures (digital power map and digital flow), which can

be obtained by very fast algorithms.

3. Preliminaries

In this section, we outline the notion of Flow induced by a shape

[12]. The original Flow definition is described here in a more gen-

eral setting by considering general shapes which are embedded

in d-dimensional Euclidean space R
d.

3.1. Flow in continuous space

In the following, X denotes a compact subset of d-dimensional

Euclidean space R
d; @X denotes its boundary. The definitions can

be found in [12]. Given X � R
d, the distance transform h : R

d ! R

is defined at each point x 2 R
d such that

hðxÞ ¼ inf y2@Xky� xk2 ð1Þ

Definition 1 (Anchor set). For all x 2 R
d, the anchor set AðxÞ of x is

given by

AðxÞ ¼ argminy2@Xky� xk2 ð2Þ

In other words, AðxÞ is the set of the closest points to x in @X . Let

convðAðxÞÞ be the convex hull of AðxÞ. In Fig. 1, we illustrate, in

dimension 2, several configurations where convðAðxÞÞ is a triangle

or an edge.

Definition 2 (Critical and Regular points). A point x 2 R
d is a critical

point if x 2 convðAðxÞÞ. Otherwise, x is regular.

The flow is defined byusing the direction of steepest ascent. First,

we set dðxÞ as driver of x, where dðxÞ ¼ argminy2convðAðxÞÞ

ky� xk2 8 x 2 R
d. We then define a vector v : R

d ! R
d; vðxÞ ¼

x�dðxÞ
kx�dðxÞk

if x – dðxÞ and 0 otherwise.

Definition 3 (Induced Flow). The flow is a function

/ : ½0;1Þ � R
d ! R

d, the right derivative of which satisfies, at each

point x 2 R
d

lim
t#t0

/ðt; xÞ � /ðt0; xÞ

t � t0
¼ vð/ðt0; xÞÞ ð3Þ

Definition 4 (Stable manifold). The stable manifold SðxÞ of a criti-

cal point x is the set of all the points which flow into x.

SðxÞ ¼ fy 2 R
d
: lim
t!1

/ðt; yÞ ¼ xg ð4Þ

The stable manifolds of all critical points induce a decomposi-

tion of the object into disjoint regions (the word stable thus

refers to locii where the flow gradient is null). It means,

R
d ¼

S
xSðxÞ for all critical points x. Furthermore, the decomposi-

tion is valid since for any two critical points x and y (x – y), we

have SðxÞ \ SðyÞ ¼ ;.

3.2. Medial axis and digital medial axis

The Medial axis of a shape is a classic method for shape analysis.

It was first proposed by Blum [4] in the continuous plane and can

be defined as the set of balls contained in X touching at least twice

@X . Following previous definitions, a ball with center x 2 X and

radius r belongs to the medial axis if and only if jAðxÞjP 2 and

ky� xk ¼ r for any point y 2 AðxÞ.

x

conv(A(x))

(a)

y

conv(A(y))

(b)

z

conv(A(z))

(c)

Fig. 1. Several configurations to illustrate the definition of critical points: In (a), x is

such that x 2 convðAðxÞÞ (triangle in red) and is thus a critical point. In (b), y lies in

the segment convðAðyÞÞ; y is a critical point too. In (c), z� convðAðzÞÞ, so z is a regular

point. (For interpretation of the references to color in this figure legend, the reader

is referred to the web version of this article.)

182 X. Wang et al. / Pattern Recognition Letters 45 (2014) 181–188

Lowres version



When dealing with digital objects (X � Z
d), an alternative defi-

nition has been proposed in the digital framework [23] using a

notion of maximal ball:

Definition 5 (Digital Medial Axis). The Digital Medial Axis (MA for

short) is defined as the set of maximal balls of X: a ball B � X is

maximal in X if there is no ball B0 � X such that B � B0.

Bðc; rÞ denotes an Euclidean open ball with center c 2 X and

radius r.

From these definitions, many algorithms have been proposed to

extract such medial axis structure [30,5,25,24,31,26,20,10]. In the

following, we focus on the method of [10], which extracts the dis-

crete medial axis of a shape X � ½1 . . .n�3 in Oðn3Þ optimal time.

4. Digital flow and flow based decomposition

Dey et al. [12] use the stable manifolds to decompose a shape

represented by a point cloud sampling its surface. First, the authors

construct the Delaunay triangulation of input points [3]. Delaunay

triangulation is the dual structure of the Voronoi diagram. Both

structures are cellular structures in the sense that they are defined

as union of open i�facets with dimensions 0 to d. For instance, Del-

aunay triangulation in dimension 2 is made of triangles (2�facets),

edges (1�facets) and vertices (0�facets). Voronoi diagram and its

dual are meaningful in the flow context since the authors proved

that:

Lemma 1 [12]. Given a set of points P in R
d sampling the boundary

of a shape X , critical points for the flow induced by P are the Voronoi

i�facets inside X intersecting their dual Delaunay ðd� iÞ-facet.

In other words, to decide if a Voronoi vertex x is a critical point,

we have to check if x is inside the Delaunay triangle which is the

dual of x (see Fig. 2). Using such result, Dey et al. approximate sta-

ble manifolds as connected sets of Delaunay i�facets. Furthermore,

they proposed an algorithm to decompose an object defined by

points on its boundary into regions, each region being a stable

manifold or a union of stable manifolds. Indeed, they define a sim-

ple process to decide if two adjacent stable manifolds can be

merged: along the interface between the two stable manifolds,

the maximal distance function value hmax is computed. Then, the

two regions are merged if the ratio between hmax and the distance

function of each manifold critical point is below a given threshold.

We will discuss about this heuristic in Section 5.2.

When considering a digital object X in dimension 3 and if we

suppose that p is defined on a ½1 . . . n�3 domain, we could directly

use Lemma 1 and thus continuous Voronoi diagram and Delaunay

triangulation to extract critical points and thus stable manifolds.

However, the overall computational time would be high since

the Delaunay triangulation in 3D has a quadratic number, OðN2Þ,

of tetrahedrons if N is the number of the input points. In our case,

N can be in Oðn3Þ since the specific surface area (ratio between the

shape surface area and the volume) can be high. For instance, the

shape in Fig. 9(b) defined in volume with size 2563 has 1144238

surface elements. Computing the complete Delaunay triangulation

would be intractable for larger images.

We propose here a fast computation of critical points using

tools working on the digital domain. More precisely, we describe

an optimal in time Oðn3Þ algorithm to extract digital critical points

and digital stable manifolds. First of all, let us define an additional

structure from computational geometry, the Power Diagram. Let us

consider a set of N balls S defined by centers fcigi¼1...N and radii

frigi¼1...N . The power distance piðxÞ of a point x 2 R
d to the ball

ðci; riÞ is defined by

piðxÞ ¼ kx� cik
2 � r2i : ð5Þ

Hence, piðxÞ < 0 (resp. piðxÞ > 0) if x belongs to (resp. is outside

of) the ball ðci; riÞ. The power diagram is a decomposition of the

space into cells Powðfcig; frigÞ ¼ frigi¼1...N such that ri ¼ fx 2 R
d
:

piðxÞ 6 pjðxÞ;8j– ig. In other words, the Power Diagram is a Voro-

noi Diagram in which the Euclidean metric has been changed to a

weighted additive one.

In digital geometry, algorithms exist to compute Voronoi

[11,19] and Power mappings [10]. Such mappings differ from their

respective diagram in the sense that the output is not a combina-

torial structure but the intersection between the diagram and the

grid. For instance, in addition to the discrete medial axis extraction,

an algorithm proposed by Coeurjolly and Montanvert [10] also

computes the digital Power map PX : X ! f1; . . . ;Ng such that

PX ¼ Powðfcig; frigÞ \ Z
3 \ X from medial balls ðfcig; frigÞ in Oðn3Þ

optimal time. Hence, for each point p 2 X; PXðpÞ is the label of

the power cell ri such that p 2 ri (if p belongs to power cell bound-

ary, i.e. p is equi-distant, for the power metric, to two balls, we only

return one of the adjacent power cells).

The algorithm described by Coeurjolly and Montanvert [10] is

perfectly suited for processing large digital objects since it is based

on simple 1D raster scans in the volume (each voxel is visited a

constant number of times), which can be performed indepen-

dently. Hence, such a technique allows us to design efficient

multi-thread implementations to handle very large objects (an

implementation is available in the DGtal library [9]).

To define digital critical points we use the following lemma

which connects Power Diagram and Delaunay triangulation in

computational geometry.

Lemma 2 [1]. Let P be a set of points in general position in R
3. Let B

be the set of balls defined on Voronoi vertices of P. The power diagram

of B is the Delaunay triangulation of P.

Hence, instead of checking if a given Voronoi vertex v belongs to

its dual Delaunay triangle in Lemma 1, we check if v belongs to its

power diagram cell. We can now give our definition of digital crit-

ical points.

Definition 6 (Digital Critical Point). Let X � ½1 . . .n�3 be a digital

object and let MAðXÞ be its digital medial axis and PX the digital

power map of balls in MAðXÞ. Let ci be a medial ball center, ci is a

digital critical point if PXðciÞ ¼ i.

In other words, ci is critical if ci 2 ri in the digital domain (see

Fig. 3).

In this digital setting, stable manifolds become union of power

diagram cells. Let us first define the assignment of regular points to

critical ones in a recursive way: let cj be regular and let ci be the

(a) (b)

Fig. 2. Voronoi diagram (dashed lines) and Delaunay triangulation (solid lines) of

the points in R
2 (a). The critical points (maxima �, saddle point �, minima 	) of the

distance function induced by these seven points (b). (presented in [12]).
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medial ball center such that PXðcjÞ ¼ i, if ci is critical, we set

lðciÞ ¼ i, we attach rj to ri using a label function lðcjÞ ¼ i. If ci is

not critical, we set lðcjÞ ¼ lðciÞ. Even if sequences of regular points

may appear when attaching a regular point to a critical one, such

recursive definition makes sense only if there is no cycle of regular

points in the label assignment. We never observe such cycles in our

objects but if detected, a simple heuristic can be used to break it:

we compute the minimum power distance between each regular

point in the cycle and all critical balls. Then, if the minimum dis-

tance is given by the regular point cj and critical point ci, we force

the assignment lðcjÞ ¼ PXðciÞ, breaking the cycle.

Definition 7 (Digital Stable Manifolds). Let ci be a critical point, the

digital stable manifold of ci, denoted FðciÞ is given by

FðciÞ ¼ fp 2 X jPXðpÞ ¼ j and lðcjÞ ¼ ig ð6Þ

The construction of the digital stable manifold is depicted in

Fig. 4.

5. Main algorithm

The overall algorithm can be described as follows: starting from

a binary object X, we first compute its medial axis MAðXÞ and

power map PX using the method of [10] (see Fig. 5). Then we

use Def. 6 to detect critical points inMAðXÞ. At this step, digital sta-

ble manifolds (Definition 7) give us a first decomposition of X

which is consistent with the distance flow induced by X (see for

example Fig. 7(a)). At this point, the overall decomposition is con-

sistent in the sense that it is volumetric, the union of all regions

covers the input shape and all regions are disjoint.

However, an over-decomposition, i.e. a decomposition which

segments a shape unnecessarily into very small features is gener-

ally obtained at this stage. It is thus important to merge all merge-

able stable manifolds together. This step is ensured by filtering the

medial axis (condition on the balls’ size – Section 5.1) and by using

a simple geometrical criterion based on ball intersection geometry

(Section 5.2).

5.1. Pre-processing

When dealing with noisy data, the small perturbations change

the medial axis of a shape and then lead to many small balls on

the boundary or near sharp features (see Fig. 5(b)) which are not

desirable. In many cases, MA based algorithms have to filter the

output to only keep relevant MA balls. A large literature with many

approaches exist on this subject [5,2,1,8,27,18].

In the following, we consider a filtering we proposed in [10].

The main reason is that this filtering process is defined on the

power map of the digital medial axis and is well suited to our

method. More precisely, the filtering first computes the area of

each power cell. Such information is used to evaluate the relevance

of a ball since a power cell with small area means that either the

ball is small, or the ball is locally surrounded by larger ones. In

the following we can just filter the input medial axis using a

threshold c on the power cell area.

Beside its simplicity with respect to some other metrics on local

scale relevance of medial balls, such approach leads to a very effi-

cient pre-processing. In fact, this pre-processing is just used to

remove some spurious balls in the medial axis induced by small

noise on the object surface. The overall segmentation is driven by

σ1

c1

σ2

c2

(a)

σ1

c1 σ2

c2

(b)

Fig. 3. The definition of digital critical points: c1; c2 are the center points of balls

and r1; r2 are their respective power cells. In (a), c1 2 r1 and c2 2 r2; c1 and c2 are

both critical points. In (b), c2 2 r2; c2 is a critical point; however c1 2 r2 too, so c1 is

a regular point.

c1
c2

c3

c4

(a)

c1
c2

c3

c4

(b)

σ1
σ2

σ3

σ4

(c)

F(c1) F(c2)

F(c4)

(d)

Fig. 4. Digital stable manifold construction: (a) input set of medial balls with

centers c1; c2; c3 and c4 , (b) and (c) depict the corresponding power diagram and

their associated cells r1; r2; r3 and r4 . c3 R r3 , being regular, we have

lðc1Þ ¼ 1; lðc2Þ ¼ 2; lðc3Þ ¼ 4, and lðc4Þ ¼ 4. (d) illustrates the associated stable

manifolds.

(a) (b)

(c) (d)

Fig. 5. Digital Medial Axis and Power Map in dimension 2: (a) and (b) discrete

medial axes given by the ball centers, (c) and (d) the corresponding power maps.
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both critical balls and the merging process as described below, the

impact of the ball filtering technique on the results being actually

very limited.

5.2. Merging using geometric angle

When considering complex geometrical shapes, stable mani-

folds usually lead to an over-decomposition of the object (see

Fig. 7(a)). We describe here a simple geometric parameter to

decide whether two adjacent stable manifolds should be merged.

Let us consider two critical points ci; cj (with radii ri and rj)

with adjacent power cells in PX (we use 6 neighborhood in apply-

ing to 3-D images). We consider the angle a such that

cosðaÞ ¼
kci � cjk

2 � r2i � r2j
2 
 ri 
 rj

ð7Þ

Fig. 6 illustrates angles a for two given circles in dimension 2.

Similarly, in dimension 3, a corresponds to the angle between tan-

gent vectors of each ball at the intersection between two balls. In

the following, we use this quantity to design a simple local crite-

rion: given a threshold h 2 ½�1;1�, if cosðaÞ < h for any two adjacent

critical balls, we reassign one of the critical point label. For

instance, we set lðciÞ ¼ j (choice between ci or cj in the reassign-

ment has no influence on the result). Using different values of h,

we can obtain different decomposition results as shown in Fig. 7.

In practice, the choice of such a value depends on the requirements

of applications. In our context, hwas normally chosen from �0.6 to

�0.8, considering the structure of grains in different snow types.

6. Application to 3-D snow images

The proposed algorithm has been implemented using tools

available in DGtal library [9] such as linear in time volumetric algo-

rithms (medial axis extraction, power map,. . ., [10]). As mentioned

above, if the input 3-D object is defined in a ½1 . . .n�3 image, both

digital medial axis extraction and power map constructions can

be performed in Oðn3Þ [10]. The pre-processing (if needed) can be

done using a linear scan of the power map. The merging step crite-

rion is evaluated on each pair of critical points with adjacent power

cells. A rough upper bound for the computational cost of this step

is given by the size of the power map. This upper bound is not tight

since the number of critical points is usually much smaller than the

size of the input object. For instance, for the MF sample (Fig. 9(a))

with size 2703, we have 155281 digital medial balls and 3601 crit-

ical points. Finally, the operations on the label function l can be

implemented using a Disjoint-Set (or Union-Find) data-structure,

which allows us to have all these operations in amortized quasi-

constant time. Hence, the overall computational cost of the

segmentation algorithm is linear in the size of the input volume.

The proposed algorithm (MADF for short) has been experi-

mented on 3-D images and compared to other decomposition

approaches such as watershed with distance function and CDGS

(Curvature-Driven Grain Segmentation, [36]) and, when available,

to ground truth from physical experiments (DCT, [29] see Sec-

tion 6.2). In all cases, the provided outputs are volumetric decom-

posed objects whose components are labelled by different colors.

The methods have been applied on both synthetic data and snow

microtomographic images.

6.1. Experimentation on synthetic data

We first consider series of synthetic 3-D images using randomly

generated spheres sets in ½0;300�3. The comparison results are

presented in Table 1. For spheres, radii are distributed between

R1 and R2;N indicates the number of spheres. In order to quantify

the difficulty of the decomposition problem, we define the ratio

q as follows:

q ¼

PN
i¼1jBij � jXj

jXj
ð8Þ

where jBij is the volume of an element in the random spheres set.

Hence, high q indicate that many geometrical elements overlap

and thus recovering each of them is more challenging.

For a better validation, we have created five sphere sets. For

each test, we count the number of decomposed grains and quantify

the percentage of misclassified voxels when a ground-truth

decomposition is known (label ‘‘i’’ in the ground-truth image is

associated to the label ‘‘j’’ in the test image if most voxels with

label ‘‘i’’ are mapped to label ‘‘j’’ in test image). In these sphere

tests, the ground-truth decomposition is given by the power map

of input spheres. We use thresholds c ¼ 0 and h ¼ �1 for MADF,

because these synthetic images are smooth and the critical point

of a sphere is exactly its center. No parameter has been used for

watershed and among the large set of parameters for CDGS (13

but 4 main parameters), we have performed a manual analysis to

select the best ones for the objects. According to the results in

α
ci

c j

ri

r j

(a)

α

ci

c j

ri

r j

(b)

Fig. 6. a Angles for two given configurations of spheres.

Fig. 7. Decomposition results after the merging step for different h values: (a) initial

digital stable manifolds, (b) – (d): several increasing h values.
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Fig. 8 and Table 1(a), watershed method with distance function

usually produces an over-decomposition around the interface

between two adjacent spheres. It results in a large number of

regions in Table 1(a). Such over-segmented regions are small or

thin since the percentage of misclassified voxels is still low. CDGS

and MADF both present good decomposition results on spheres

sets in Fig. 8. Considering the number of decomposed grains and

percentage of misclassified voxels, MADF has a more precise

decomposition than CDGS.

6.2. Decomposition of snow images

We used 3-D images of real snow samples (see Fig. 9) to

evaluate the quality of the shape decomposition provided by the

proposed algorithm.

Snow images, such as the RG sample of Fig. 9(b), are obtained by

X-ray absorption microtomography using the following technique:

the snow samples were first filled with liquid 1-chloronaphthalene

around �2 �C and frozen at �25 �C before further machining. Small

cores 9 mm in diameter were then extracted with a precision

hole-saw, sealed inside sample holders, which were then placed

into a specifically designed cryogenic cell for microtomographic

acquisition. The obtained gray-level images were contoured using

a semi-automatic procedure, leading to binary (air and ice) decom-

posed 3-D images. Complementary information can be found in

previous works of [16,17].

In addition to classical absorption tomography, an image was

obtained by Diffraction Contrast Tomography (DCT, [21,29]), a

recent experimental technique that combines X-ray diffraction

analyses and absorption tomography to provide simultaneously,

(1) the 3-D geometry of the ice-air interface, (2) the 3-D mapping

of individual grains in polycrystals, and (3) their crystalline orien-

tation. For some particular snow structures such as that of the MF

sample presented in Fig. 10(a), each geometric grain exhibits a par-

ticular crystalline orientation so that the DCT can actually provide

a physically-based shape decomposition of the granular structure.

For the MF sample (Fig. 9(a)), we chose the values c ¼ 160 and

h ¼ �0:8 of MADF to decompose the object. For the RG sample

(Fig. 9(b)), the values c ¼ 20 and h ¼ �0:5 were adopted. For the

watershed method, no parameter has been introduced. For CDGS,

among the 13 existing parameters, 4 are crucial to control the qual-

ity of decomposition. Interfaces are important to perform numeri-

cal simulations on snow grains and MADF produces better and

smoother grain-to-grain interface plans than CDGS, as can be seen

from Fig. 10(h)–(j). From the decomposition results in Fig. 10 and

Table 1(b), we can conclude that a more precise decomposition

can be achieved with MADF than with the other two numerical

methods.

In Table 2, we have performed a geometrical analysis of the

grain-to-grain interfaces. The main idea was to evaluate the quality

of the interface in terms of flatness. To do so, we processed all

interfaces and we computed several quantities: mean and

Table 1

Quantitative results for random spheres (a) and MF sample (b) compared among three decomposition approaches: watershed with distance function, CDGS and MADF.

N R1 R2 q watershed CDGS MADF

# grains % misclass. # grains % misclass. # grains % misclass.

(a)

100 20 30 0.08408 216 0.728596 100 0.707515 100 0.302259

80 25 35 0.14911 252 1.2033 80 0.765337 80 0.565739

60 30 40 0.19667 251 1.88912 59 1.51798 59 0.8645

40 35 45 0.19068 251 1.8194 39 1.51363 40 0.775526

50 20 80 0.24879 252 4.64338 49 6.11259 50 3.36936

real #grains watershed CDGS MADF

DCT # grains % misclass. # grains % misclass. # grains % misclass

(b)

93 31 17.7403 80 3.84519 99 1.83415

Fig. 8. Comparison on random sphere sets by watershed with distance function,

CDGS and MADF respectively: (a) an over-decomposition is produced by watershed,

(b) and (c) illustrate that both CDGS and MADF (with c ¼ 0; h ¼ �1) work well on

sphere sets.

(a) (b)

Fig. 9. 3-D images of snow as obtained by Diffraction Contrast Tomography (a) with

size 2703 (MF sample - all labels of physically detected grains have been set to the

same value. See Fig. 10(a) for the original DCT image) and X-ray microtomography

(b) with size 2563 (RG sample).
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Gaussian curvatures given by a fitting with high degree polynomial

surface of the interface point set [7], and flatness information by

computing the covariance matrix of the point set and returning

the smallest eigenvalues which correspond to the minimal axis

(a) DCT (b) Watershed (c) CDGS (d) MADF

(e) Watershed (f) CDGS (g) MADF

(h) Watershed (i) CDGS (j) MADF

Fig. 10. Comparisons betweenmethods: decomposition of 3-D snow samples MF (a) – (d); decomposition on sample RG (e) – (g); grain-to-grain interfaces of MF comparisons

(h) – (j).

Table 2

Comparison of the interface geometry for RG and MF sample among three decomposition approaches: watershed with distance function, CDGS and MADF.

Watershed CDGS MADF

average standard dev. average standard dev. average standard dev.

Absolute mean curvature 0.055 0.097 0.869 0.221 0.105 0.291

MF Absolute Gaussian curvature 0.042 0.313 0.057 0.757 0.027 0.171

flatness 2.861 6.023 2.094 4.452 0.608 1.815

Absolute mean curvature 0.102 0.152 0.185 1.420 0.186 0.494

RG Absolute Gaussian curvature 0.025 0.075 0.974 29.834 0.0845 0.584

flatness 0.368 0.79 0.541 1.134 0.356 0.616
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length of the ellipsoid approximating the point set. Beside the

watershed approach, which produces flat interfaces but with bad

segmentation results, we can observe that the MADF approach pro-

vides better quality interfaces than CDGS (lower average values

and lower standard deviations).

Finally, Table 3 indicates some timings of the proposed

approach.

7. Conclusion

In this paper, we proposed a novel framework for shape decom-

position based on digital critical points and the digital flow induced

by the medial axis of shape. The core of the approach relies on an

adaptation of classical flow and critical points definitions from

computational geometry to digital settings. Such an adaptation

allows us to construct a fast decomposition algorithm which is

computationally efficient and provides high quality object decom-

position on both synthetic data and real 3-D images.
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