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A B S T R A C T

Recent works on data-driven sketch-based modeling use either voxel grids or nor-

mal/depth maps as geometric representations compatible with convolutional neural net-

works. While voxel grids can represent complete objects – including parts not visible in

the sketches – their memory consumption restricts them to low-resolution predictions.

In contrast, a single normal or depth map can capture fine details, but multiple maps

from different viewpoints need to be predicted and fused to produce a closed surface.

We propose to combine these two representations to address their respective shortcom-

ings in the context of a multi-view sketch-based modeling system. Our method predicts

a voxel grid common to all the input sketches, along with one normal map per sketch.

We then use the voxel grid as a support for normal map fusion by optimizing its ex-

tracted surface such that it is consistent with the re-projected normals, while being as

piecewise-smooth as possible overall. We compare our method with a recent voxel pre-

diction system, demonstrating improved recovery of sharp features over a variety of

man-made objects.

c© 2019 Elsevier B.V. All rights reserved.

1. Introduction1

As many related fields, sketch-based modeling recently wit-2

nessed major progress thanks to deep learning. In particular,3

several authors demonstrated that generative convolutional net-4

works can predict 3D shapes from one or several line drawings5

[1, 2, 3, 4]. A common challenge faced by these methods is6

the choice of a geometric representation that can both repre-7

sent the important features of the shape while also being com-8

patible with convolutional neural networks. Voxel grids form9

a natural 3D extension to images, and were used by Delanoy10

et al. [1] to predict a complete object from as little as one input11

drawing. This complete prediction allows users to rotate around12

the 3D shape before creating drawings from other viewpoints.13

However, the memory consumption of voxel grids limits their14

resolution, resulting in smooth surfaces that lack details. Al-15

ternatively, several methods adopt image-based representations,16

predicting depth and normal maps from one or several draw-17

ings [2, 3, 4]. While these maps can represent finer details than 18

voxel grids, each map only shows part of the surface, and multi- 19

ple maps from different viewpoints need to be fused to produce 20

a closed object. 21

Motivated by the complementary strengths of voxel grids 22

and normal maps, we propose to combine both representations 23

within the same system. Our approach builds on the voxel pre- 24

diction network of Delanoy et al. [1], which produces a volu- 25

metric prediction of a shape from one or several sketches. We 26

complement this architecture with a normal prediction network 27

similar to the one used by Su et al. [4], which we use to obtain 28

a normal map for each input sketch. The voxel grid thus pro- 29

vides us with a complete, closed surface, while the normal maps 30

allow us to recover details in the parts seen from the sketches. 31

Our originality is to not only use the voxel grid as a prelimi- 32

nary prediction to be shown to the user, but also as a support for 33

normal map fusion. To do so, we first locate the voxels delin- 34
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(a) Input (b) CNNs predic-

tions

(c) Candidate normals (d) Aggregated normals (e) Piecewise-smooth normals (f) Final surface

Fig. 1. Overview of our method. Our method takes as input multiple sketches of an object (a). We first apply existing deep neural networks to predict a

volumetric reconstruction of the shape as well as one normal map per sketch (b). We re-project the normal maps on the voxel grid (c, blue needles for the

first normal map, yellow needles for the second normal map), which complement the surface normal computed from the volumetric prediction (c, pink

needles). We aggregate these different normals into a distribution represented by a mean vector and a standard deviation (d, colors denote low variance

in green and high variance in red). We optimize this normal field to make it piecewise smooth (e) and use it to regularize the surface (f). The final surface

preserves the overall shape of the predicted voxel grid as well as the sharp features of the predicted normal maps.

eating the object’s boundary, and re-project the normal maps on1

the resulting surface to obtain a distribution of candidate nor-2

mals for each surface element. We then solve for the smoothest3

normal field that best agrees with these observations [5]. Fi-4

nally, we optimize the surface elements to best align with this5

normal field [6]. We evaluate our approach on the dataset of6

Delanoy et al. [1], on which we recover smoother surfaces with7

sharper discontinuities.8

2. Related work9

Reconstructing 3D shapes from line drawings has a long10

history in computer vision and computer graphics. A num-11

ber of methods tackle this problem by geometric means, for12

instance by detecting and enforcing 3D relationships between13

lines, like parallelism and orthogonality [7, 8, 9, 10, 11]. How-14

ever, computing these geometric constraints often require ac-15

cess to a clean, well-structured representation of the drawing,16

for instance in the form of a graph of vectorial curves. In addi-17

tion, geometric methods often require user annotations to dis-18

ambiguate multiple interpretations, or to deal with missing in-19

formation.20

Data-driven methods hold the promise to lift the above limi-21

tations by providing strong priors on the shapes that a drawing22

can represent. In particular, recent work exploit deep neural23

networks to predict 3D information from as little as a single24

bitmap line drawing. However, convolutional neural networks25

have been originally developed to work on images, and several26

alternative solutions have been proposed to adapt such architec-27

tures to produce 3D shapes.28

A first family of methods focuses on parametric shapes such29

as buildings [12], trees [13], and faces [14], and train deep net-30

works to regress their parameters. While these methods pro-31

duce 3D shapes of very high quality, extending them to new32

classes of objects require designing novel parametric models33

by hand.34

A second family of methods target arbitrary shapes and rely35

on encoder-decoder networks to convert the input drawing into36

3D representations. Among them, Delanoy et al. [1] rely on a37

voxel grid to represent a complete object. Users of their sys- 38

tem can thus visualize the 3D shape, including its hidden parts, 39

as soon as they have completed a single drawing. Their sys- 40

tem also supports additional drawings created from different 41

viewpoints, which allow the network to refine its prediction. 42

Nevertheless, their system is limited to voxel grids of resolu- 43

tion 643, which is too little to accurately capture sharp features. 44

Alternatively, Su et al. [4] and Li et al. [3] propose encoder- 45

decoder networks to predict normal and depth maps respec- 46

tively. While these maps only represent the geometry visible 47

in the input drawing, Li et al. allow users to draw the object 48

from several viewpoints and fuse the resulting depth maps to 49

obtain a complete object. A similar image-based representa- 50

tion has been proposed by Lun et al. [2], who designed a deep 51

network to predict depth maps from 16 viewpoints, given one 52

to three drawings as input. In both cases, fusing the multiple 53

depth maps requires careful point set registration and optimiza- 54

tion to compensate for misalignment. Our approach combines 55

the strength of both voxel-based and image-based representa- 56

tions. On the one hand, per-sketch normal maps provide high- 57

resolution details about the shape, while on the other hand, the 58

voxel grid provides an estimate of the complete shape as well as 59

a support surface for normal fusion. By casting normal fusion 60

as the reconstruction of a piecewise-smooth normal field over 61

the voxel surface, our method alleviates the need for precise 62

alignment of the normal maps. 63

Line drawing interpretation is related to the problem of 3D 64

reconstruction from photographs, for which numerous deep- 65

learning solutions have been proposed by the computer vi- 66

sion community. While many approaches rely on voxel-based 67

[15, 16] and image-based [17] representations as discussed 68

above, other representations have been proposed to achieve 69

finer reconstructions. Octrees have long been used to effi- 70

ciently represent volumetric data, although their implementa- 71

tion in convolutional networks requires the definition of custom 72

operations, such as convolutions on hash tables [18] or crop- 73

ping of octants [19]. Point sets have also been considered as an 74

alternative to voxel-based or image-based representations [20], 75

and can be converted to surfaces in a post-process as done for 76
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depth map fusion. More recently, several methods attempted to1

directly predict surfaces. Pixel2Mesh [21] relies on graph con-2

volutional networks [22] to predict deformations of a template3

mesh. However, this approach is limited to shapes that share the4

same topology as the template, an ellipsoid in their experiments.5

In contrast, Groueix et al. [23] can handle arbitrary topology by6

predicting multiple surface patches that cover the shape. Since7

these patches do not form a single, closed surface, their ap-8

proach can also be used to generate a dense point set from9

which a surface can be computed as a post-process. In contrast10

to the above approaches, we chose to combine voxel-based and11

image-based representations because both can be implemented12

using standard convolutional networks on regular grids.13

3. Overview14

Our method takes as input several sketches of a shape drawn15

from different known viewpoints (Figure 1a). We first use exist-16

ing deep neural networks [1, 24] to predict a volumetric recon-17

struction of the shape, along with one normal map per sketch18

(Figure 1b). We then project the normal maps on the surface19

of the volumetric reconstruction and combine this information20

with the initial surface normal to obtain a distribution of nor-21

mals for each surface element (Figure 1c,d). While the normals22

coming from different sources are mostly consistent, some parts23

of the shape exhibit significant ambiguity due to erroneous pre-24

dictions and misalignment between the input sketches and the25

volumetric reconstruction. Therefore in the next step of our26

approach we reconstruct a piecewise-smooth normal field by a27

variational method [5] that filters the distribution of normals28

and locates sharp surface discontinuities (Figure 1e). The re-29

construction energy is weighted by the variance of the distri-30

bution of normal vectors within each surface element, which31

acts as a confidence estimate. Finally, we regularize the ini-32

tial surface such that its quads and edges align with this normal33

field [6], resulting in a piecewise-smooth object that follows the34

overall shape of the volumetric prediction as well as the crisp35

features of the predicted normal maps (Figure 1f).36

4. Volumetric and normal prediction37

Our method builds on prior work to obtain its input volumet-38

ric and image-based predictions of the shape. Here we briefly39

describe these two types of prediction and refer the interested40

reader to the original papers for additional details.41

4.1. Volumetric prediction42

We obtain our volumetric prediction using the method of De-43

lanoy et al. [1]. Their approach relies on two deep convolutional44

networks. First, the single-view network is in charge of pre-45

dicting occupancy in a voxel grid given one drawing as input.46

Then, the updater network refines this prediction by taking an-47

other drawing as input. When multiple drawings are available,48

the updater network is applied iteratively over the sequence of49

drawings to achieve a multi-view coherent reconstruction. Both50

networks follow a standard U-Net architecture [25] where the51

drawing is processed by a series of convolution, non-linearity52

and down-scaling operations before being expanded back to 53

a voxel grid, while skip-connections propagate information at 54

multiple scales. This method produces a voxel grid of resolu- 55

tion 643 from drawings of resolution 2562. 56

4.2. Normal prediction 57

We obtain our normal prediction using a U-Net similar to the 58

one we use for volumetric prediction. The network takes as in- 59

put a drawing of resolution 2562 and predicts a normal map of 60

the same resolution. Lun et al. [2] and Su et al. [4] have shown 61

that this type of architecture performs well on the task of nor- 62

mal prediction from sketches. We base our implementation on 63

Pix2Pix [24], from which we remove the discriminator network 64

for simplicity. 65

5. Data fusion 66

The main novelty of our method is to combine a coarse vol- 67

umetric prediction with per-view normal maps to recover sharp 68

surface features. However, these different sources of informa- 69

tion are often not perfectly aligned due to errors in the predic- 70

tions as well as in the input line drawings. Prior work on multi- 71

view prediction of depth maps [2, 3] tackle a similar challenge 72

by aligning the corresponding point sets using costly iterative 73

non-rigid registration. We instead implement this data fusion in 74

two stages, each one being the solution of a different variational 75

formulation that is fast to compute. 76

In the first stage, we project the normal predictions onto the 77

surface of the volumetric prediction, and complement this infor- 78

mation with normals estimated directly from the voxel grid. We 79

then solve for the piecewise-smooth normal field that is most 80

consistent with all these candidate normals, such that sharp sur- 81

face discontinuities automatically emerge at their most likely 82

locations [5]. In the second stage, we optimize the surface of 83

the voxel grid such that it respects the normal field resulting 84

from the first stage, while staying close to the initial predicted 85

voxel geometry [6]. 86

5.1. Generation of the candidate normal field 87

We begin by thresholding the volumetric prediction to ob- 88

tain a binary voxel grid. The boundary of this collection of 89

voxels forms a quadrangulated surface Q made of isothetic unit 90

squares, which we call surface elements in the following. We 91

then project the center of each surface element into each normal 92

map where it appears to look up the corresponding predicted 93

normal. We compute this projection using the camera matrix 94

associated to each sketch, which we assume to be given as in- 95

put to the method. Interactive sketching systems like the one 96

described by Delanoy et al. [1] provide these matrices by con- 97

struction. We use a simple depth test to detect if a given surface 98

element is visible from the point of view of the normal map. 99

We also compute the gradient of the volumetric prediction us- 100

ing finite differences, which we use as an additional estimate of 101

the surface normal. We aggregate these various estimates into 102

a spherical Gaussian distribution, with normalized mean n̄ and 103

standard deviation σn. For surface elements not visible in any 104

normal map, we set n̄ to the estimate given by the volumetric 105

prediction. 106
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5.2. Reconstruction of a piecewise-smooth normal vector field1

For each surface element, we now have a unique normal vec-2

tor n̄ as well as an estimate of its standard deviation σn. We3

obtain our final piecewise-smooth normal field n∗ by minimiz-4

ing a discrete variant of the Ambrosio-Tortorelli energy [5].5

On a manifold Ω, the components {n∗
0
, n∗

1
, n∗

2
} of n∗ and a

scalar function v that captures discontinuities are optimized to

minimize

ATε(n
∗
, v) :=

∫
Ω

α

∑
i

|n∗i − n̄i|
2 +
∑

i

v2|∇n∗i |
2

+ λε|∇v|2 +
λ

ε

(1 − v)2

4
ds , (1)

for some parameters α, λ, ε ∈ R. Note that the scalar function v6

tends to be close to 0 along sharp features and close to 1 else-7

where.8

The first term ensures that the output normal n∗ is close to9

the input n̄. The second term encourages n∗ to be smooth where10

there is no discontinuity. The last two terms control the smooth-11

ness of the discontinuity field v and encourage it to be close to12

1 almost everywhere by penalizing its overall length. Note that13

fixing all the n∗
i

(resp. v), the functional becomes quadratic and14

its gradient is linear in v (resp. all the n∗
i
), leading to an ef-15

ficient alternating minimization method to obtain the final n∗16

and v. Parameter α controls the balance between data fidelity17

and smoothness. A high value better preserves the input while18

a low value produces a smoother field away from discontinu-19

ities. Parameter λ controls the length of the discontinuities –20

the smaller it is, the more discontinuities will be allowed on21

the surface. We use the same value λ = 0.05 for all our re-22

sults. The last parameter ε is related to the Γ-convergence of23

the functional and decreases during the optimization. We used24

the sequence (4, 2, 1, 0.5) for all our results. Please refer to [5]25

for more details about the discretization of Equation (1) onto26

the digital surface Q and its minimization.27

We further incorporate our knowledge about the distribution

of normals at each surface element by defining α as a func-

tion of the standard deviation σn. Intuitively, we parameter-

ize α such that it takes on a low value over elements of high

variance, effectively increasing the influence of the piecewise-

smoothness term in those areas:

α(s) := 0.2(1 − σn(s))4
.

at a surface element s ∈ Q. This local weight allows the28

Ambrosio-Tortorelli energy to diffuse normals from reliable ar-29

eas to ambiguous ones. We set α(s) to 0.8 for surface elements30

not visible in any normal map.31

5.3. Surface reconstruction32

Equipped with a piecewise-smooth normal field n∗, we fi-33

nally reconstruct a regularized surface whose quads are as close34

to orthogonal to the prescribed normals as possible. We achieve35

this goal using the variational model proposed in [6]. As il-36

lustrated in Figure 2, this surface reconstruction guided by our37

piecewise-smooth normal vector field effectively aligns quad38

edges with sharp surface discontinuities.39

Fig. 2. Surface reconstruction obtained from the normal field regularized

with our weighted Ambrosio-Tortorelli functional (see Fig.1b for the input

voxel grid). The insets show how the quadrangulation perfectly recovers

the surface singularities.

6. Evaluation 40

We first study the impact of the different components of our 41

method, before comparing it against prior work. For all these 42

results, we use the dataset provided by Delanoy et al. [1] to 43

train the neural networks. This dataset is composed of abstract 44

shapes assembled from cuboids and cylinders, along with line 45

drawings rendered from front, side, top and 3/4 views. Note 46

however that we only train and use the normal map predictor on 47

3/4 views because the other views are often highly ambiguous. 48

6.1. Ablation study 49

Figure 3 compares the surface reconstructions obtained with 50

different sources of normal guidance, and different strategies 51

of normal fusion. We color surfaces according to their orienta- 52

tions, as shown by the sphere in inset. As a baseline, we first ex- 53

tract the surface best aligned with the gradient of the volumetric 54

prediction, similarly to prior work [1]. Because the volumetric 55

prediction is noisy and of low resolution, this naive approach 56

produces bumpy surfaces that lack sharp features (second col- 57

umn). Optimizing the normal field according to the Ambrosio- 58

Tortorelli energy removes some of the bumps, but still produces 59

rounded corners (third column). Aggregating the volumetric 60

and image-based normals into a single normal field produces 61

smoother surfaces, but yield bevels where the normal maps are 62

misaligned (fourth and fifth column). We improve results by 63

weighting the aggregated normal field according to its confi- 64

dence, which gives the Ambrosio-Tortorelli energy greater free- 65

dom to locate surface discontinuities in ambiguous areas (last 66

column). 67

We further evaluate the importance of our local weighting 68

scheme in Figure 4. We first show surfaces obtained using a 69

constant α in the Ambrosio-Tortorelli energy. A low α produces 70

sharp creases and smooth surfaces but the final shape deviates 71

from the input, as seen on the cylindrical lens of the camera that 72

becomes conic (Figure 4b). On the other hand, a high α yields 73

a surface that remain close to the input, but misses some sharp 74

surface transitions (Figure 4d). By defining α as a function of 75

the confidence of the normal field, our formulation produces a 76

surface that is close to the input shape and locates well sharp 77
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Input voxel surface {ng} {ng} + AT {n̄} {n̄} + AT n∗ =

{n̄}+ weighted AT

Fig. 3. Ablation study showing the surface obtained using various normal fields as guidance. The volumetric gradient ng produces bumpy surfaces that

lack sharp features (second column), even after being optimized according to the Ambrosio-Tortorelli energy (third column). Our aggregated normal field

n̄ yields multiple surface discontinuities where the normal maps are misaligned, such as on the arms and the seat of the armchair (fourth and fifth column).

We obtain the best results by reducing the influence of the aggregated normals in areas of low confidence (last column, n∗).

transitions even in areas where the normal maps are misaligned1

(Figure 4e).2

(a) Input

(b) α = 0.02 (c) α = 0.05

(d) α = 0.1 (e) ours

Fig. 4. Ambrosio-Tortorelli with a fixed α deviates from the input shape

(b) or misses sharp discontinuities (d). Our spatially-varying α allows the

recovery of sharp features in areas where the aggregated normal field has

a low confidence (e).

6.2. Performances3

We implemented the deep networks in Caffe [26] and the4

normal field and surface optimizations in DGtal1. Both the5

1https://dgtal.org/

prediction and optimization parts of our method take approxi- 6

mately the same time. The volumetric prediction takes between 7

150 and 350 milliseconds, depending on the number of input 8

sketches [1]. The normal prediction takes around 15 millisec- 9

onds per sketch. In contrast, normal field optimization takes 10

around 700 milliseconds and surface optimization takes around 11

30 milliseconds. Note that we measured our timings using GPU 12

acceleration for the deep networks, while the normal field and 13

surface optimizations were performed on the CPU. 14

Our approach is an order of magnitude faster than prior 15

image-based approaches [3, 2], which need around ten seconds 16

to perform non-rigid registration and fusion of multiple depth 17

maps. However, our fast normal aggregation strategy is best 18

suited to objects dominated by smooth surface patches delin- 19

eated by few sharp discontinuities, while it is likely to average 20

out information in the presence of misaligned repetitive details. 21

6.3. Comparisons 22

Figure 5 compares our surfaces with the ones obtained by 23

Delanoy et al. [1], who apply a marching cube algorithm on the 24

volumetric prediction. Our method produces much smoother 25

surfaces while capturing sharper discontinuities. While our 26

method benefits from the guidance of the predicted normal 27

maps, it remains robust to inconsistencies between these maps 28

and the voxel grid, as shown on the armchair (top right) where 29

one of the normal maps suggests a non-flat back due to a miss- 30

ing line in the input drawing. 31

We also provide a comparison to feature-preserving denois- 32

ing methods [27, 28] applied on the results of Delanoy et al. 33

[1]. Without normal guidance, these methods either maintain 34

low-frequency noise, remove important features, or introduce 35

spurious discontinuities. 36

6.4. Robustness 37

Figure 6 evaluates the robustness of our method to noisy vol- 38

umetric predictions, showing that our combination of normal 39

map guidance and piecewise-smooth regularization yields sta- 40

ble results even in the presence of significant noise. We also 41

designed our method to be robust to normal map misalignment, 42

common in a sketching context. Figure 7 demonstrates that our 43

method is stable in the presence of global and local misalign- 44

ment. We simulate a global misalignment by shifting one of the 45
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Input sketches [1] [1] + [28] [1] + [27] Ours Normal maps

Fig. 5. Comparison to Delanoy et al. [1] on a variety of objects. Applying marching cube on the volumetric prediction results in noisy surfaces that

lack sharp discontinuities (second column). Denoising these surfaces with L0 minimization [28] introduces spurious discontinuities as curved patches are

approximated by planes (third column). Guided denoising [27] produces piecewise-smooth surfaces closer to ours (fourth column) but maintains low-

frequency noise and tends to misplace discontinuities, like on the arm of the armchair (second row) or on the wings and front of the airplane (fourth row).

Our formulation based on the Ambrosio-Tortorelli energy can be seen as a form of guided filtering that benefits from extra guidance from the predicted

normal maps (fifth column). We included close-ups on the input drawings and output surfaces to show that our method better captures the intended shape.
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Voxel surface {ng} ours
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Fig. 6. Robustness to noisy volumetric prediction. Adding gaussian noise

to the input volumetric prediction has little impact on the final result.

{n̄} {n̄} + AT ours

N
o
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o
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e
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L
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l
sh

if
t

Fig. 7. Robustness to misaligned normal maps. Here we simulate global

misalignment by shifting an entire normal map by the same amount (sec-

ond row) or by shifting each normal by a random amount (third row).

While these perturbations degrades the result of the baseline methods, our

method remains stable.

normal maps by 5 pixels, and a local misalignment by replacing1

each normal by another normal, sampled in a local neighbor-2

hood.3

6.5. Limitations4

Figure 8 illustrates typical limitations of our approach. Since5

our method relies on normal maps to guide the surface recon-6

struction, it sometimes misses surface discontinuities between7

Input sketches [1] ours normal maps

Fig. 8. Limitations of our method. Our method cannot recover surface

discontinuities that are not captured by the normal maps, such as the top

of the locomotive. The surface optimization tends to shrink the object, as

seen on thin structures like the wings of the airplane and the toothbrush.

Fig. 9. Since normal maps only capture visible surfaces, the back and bot-

tom of this camera is solely defined by the volumetric prediction. Never-

theless, the method reconstructs a smooth surface in such cases as it still

benefits from the piecewise-smoothness of the Ambrosio-Tortorelli energy.

co-planar surfaces, as shown on the top of the locomotive. An 8

additional drawing would be needed in this example to show 9

the discontinuity from bellow. A side effect of the surface op- 10

timization energy is to induce a slight loss of volume, which is 11

especially visible on thin structures like the wings of the air- 12

plane and the toothbrush. Possible solutions to this issue in- 13

cludes iterating between regularizing the surface and restoring 14

volume by moving each vertex in its normal direction. Another 15

limitation of our approach is that normal maps only help re- 16

covering fine details on visible surfaces, while hidden parts are 17

solely reconstructed from the volumetric prediction, as shown 18

on the back of the camera in Figure 9. Finally, because we 19

favor piecewise-smooth surfaces, our approach is better suited 20

to man-made objects than to organic shapes made of intricate 21

details. 22
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7. Conclusion1

Recent work on sketch-based modeling using deep learning2

relied either on volumetric or image-based representations of3

3D shapes. In this paper we showed how these two represen-4

tations can be combined, using the volumetric representation to5

capture hidden parts and the image-based representation to cap-6

ture sharp details. Furthermore, we showed how the volumetric7

representation can serve as a support for normal map fusion by8

solving for a piecewise-smooth normal field over the voxel sur-9

face. This method is especially well suited to man-made objects10

dominated by a few sharp discontinuities.11
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