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Abstract. Defining consistent calculus frameworks on discrete meshes
is useful for processing the geometry of meshes or model numerical sim-
ulations and variational problems onto them. However digital surfaces
(boundary of voxels) cannot benefit directly from the classical mesh cal-
culus frameworks, since their vertex and face geometry is too poor to
capture the geometry of the underlying smooth Euclidean surface well
enough. This paper proposes two new calculus frameworks dedicated
to digital surfaces, which exploit a corrected normal field, in a manner
similar to the recent digital calculus of [3]. First we build a corrected in-

terpolated calculus by defining inner products with position and normal
interpolation in the Grassmannian. Second we present a corrected finite

element method which adapts the standard Finite Element Method with
a corrected metric per element. Experiments show that these digital cal-
culus frameworks seem to converge toward the continuous calculus, offer
a valid alternative to classical mesh calculus, and induce effective tools
for digital surface processing tasks.
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1 Introduction

When solving differential equations on a mesh, it is often required to build a set
of differential operators for this mesh. Perhaps the most commonly found is the
Laplace-Beltrami operator as it is used in a wide variety of applications such as
mesh editing [17,14], mesh smoothing [15] or geodesic path approximation [5].
Building a simple graph Laplacian or discrete Laplacian does not suffice, since
the mesh geometry must be taken into account. Using a subdivision scheme and
building the operators on it (as done in [7]) do not suffice either, as the limit
surface does not solve the metric issues (staircase effects induced by the grid).
On triangular and polygonal surfaces, several calculus frameworks produce these
differential operators, such as the Finite Element Method (FEM) [16], Discrete
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2 C. Weill-Duflos et al.

Exterior Calculus (DEC) [9], the Virtual Element Method [18], etc (see [1] for a
comparative evaluation).

Usually these frameworks operate under the assumption that the mesh inter-
polates the underlying "true" smooth geometry. In the case of digital surfaces
made of surfels (boundary of voxels), which are frequent when processing 3D im-
ages, this assumption is false, and these frameworks fail at yielding convergent
operators. However several geometric quantities can be evaluated with conver-
gence properties, such as surface area [13], or the normal field and the curvature
tensor [10,11] on digital surfaces. We are aware of only two digital analogues
to differential operators: Caissard et al. [2] proposed a digital Laplacian based
on the heat kernel, while two of the authors have adapted in [3] the polygonal
calculus of [6], by correcting its normal vector field. The digital “Heat kernel ”
Laplacian of [2] is the only one that is proven convergent and its convergence
is observed through experiments. The digital “Projected PolyDEC ” Laplacian of
[3] is not pointwise convergent, but yet provide meaningful results in variational
problems.

This paper proposes two new digital calculus frameworks, that are con-
structed with a tangent space corrected by a prescribed normal vector field
(e.g., the II normal estimator [10]). Tangent space correction has proven to be
effective for tasks such as estimating curvatures [11] and reconstructing a piece-
wise smooth surface from a digital surface [4]. The first one, called “interpolated
corrected calculus”, embeds the digital surface into the Grassmannian with a
vertex-interpolated corrected normal vector field: the resulting surface is thus
continuous in positions and normals. It is thus more consistent than the Pro-
jected PolyDEC, whose embedding is discontinuous between surfels. The second
one, called “corrected FEM ”, adapts the Finite Element Method with metrics
tailored to a constant corrected normal vector per element. Both constructions
are consistent with classical calculus constructions, and we hope they will al-
low to prove the convergence of operators. For now, we conducted experiments
which show that these frameworks build a consistent Laplacian, convergent when
slightly diffused. We achieve results on par with [2] while retaining the ease of
build and sparsity from [3].

2 Digital calculus with corrected tangent space

We demonstrate here that the same approach of corrected lengths and areas
used in [3] can be used to build differential operators with other methods. The
approach can be summarized as a correction of lengths and areas based on
how orthogonal they are to the true normal. Assuming we have a vector v

and a normal u, the corrected length of v is given by ||v × u||. To correct
the area of a parallelogram defined by two vectors v and w with normal u is
given by det(u,v,w). These can be seen as the length/areas of the projected
vector/parallelogram onto the tangent plane.

Our data here will be defined by values at vertices, meaning that each face
has 4 degrees of freedom. We use these degrees of freedom to build a base of
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Fig. 1: Notations for the interpolations of function f values on a surfel.

functions on the mesh. These functions are bilinear on mesh elements here but
other basis functions are possible (e.g. the Virtual Elements Method [18] requires
solely the behavior of functions on edges). The methods we present, similarly to
[3], use a per face construction of sparse operators.

Notation The parameter space of each surfel is a unit square □ := [0, 1]2 pa-
rameterized by s and t. We denote by n the natural or naive normal of a surfel
σ, that can be computed with a cross product of two consequent edges. The
corrected normal field will be denoted u. Inside a surfel, we can decompose this
surfel in the natural base of the surfel into u = (ux,uy,uz).

A function f in a surfel σ is assumed to be bilinearly interpolated. We denote
then by

[
f (σ)

]
:= [f00(σ), f10(σ), f11(σ), f01σ)]

⊺ the degrees of freedom of f ,
corresponding to its values at each vertex when circulating around σ. We will of-
ten write simply

[
f

]
when the surfel is obvious from the context. We sometimes

use averages of these values, whose notations are illustrated in Figure 1.

2.1 Interpolated corrected calculus

We propose here a calculus where the corrected normal vector field u(x) is contin-
uous over the mesh: corrected normal vectors are given at vertices; these vectors
are bilinearly interpolated within each face. Hence, within a surfel, u(s, t) =
u00(1− s)(1− t)+u10s(1− t)+u01(1− s)t+u11st. Although this naive bilinear
interpolation does not respect the condition that normals need to be unitary vec-
tors, it yields much simpler formulas in calculation. Furthermore, experiments
show that a more complex interpolation yielding almost unit normals does not
improve the results, while increasing the complexity of formulas.

The construction of the calculus is similar to the polygonal calculus of [6],
building inner products, sharp and flat operators on a per face basis. However
the correction of the geometry does not follow [3], but instead use an embedding
of the mesh into the Grassmannian to correct the area/length measures. The
Grassmannian is a way to represent affine subspaces, hence tangent spaces here.
Within this space, one can define differential forms that are invariant to rigid
motions (Lipschitz-Killing forms). We exploit here the corrected area 2-form (see
[12,11]): ωu

0 (x)(v,w) := det(u(x),v,w), for v and w tangent vectors. As one
can see, thanks to the embedding in the Grassmannian, the corrected area form
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can be expressed as a simple volume form (i.e. a determinant). Note that it falls
back to the usual area measure ∥v×w∥ when v and w are indeed orthogonal to
a unit normal vector u(x), while it gets smaller if there is a mismatch between
tangent and normal information.

We first define how we integrate a quantity g defined at vertices. In the case
of a surfel σ with constant normal n aligned with z-axis wlog, and with v = ∂x

∂s

and w = ∂x
∂t

, the corrected area form reduced on □ to ωu

0 (s, t) = ⟨n | u(s, t)⟩ =
uz(s, t). We can now compute the integral of g inside a surfel:

∫∫

□

gωu

0 :=

∫∫

□

g(s, t)uz(s, t)dsdt =
[
uz

]⊺ 1

36
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[
g

]
.

We study now the integral quantity
∫∫

∇Φωu

0 , which is an integrated gradient
corrected by the normal vector field u. First of all, the scalar field Φ will generally
be defined as the bilinear interpolation of a scalar field ϕ defined over the domain.
Thus ϕ(s, t) = Φ(x(s, t)). We relate the gradient of Φ with the partial derivatives
of ϕ by writing the standard chain rule with Jacobian matrices:

Jϕ(s, t) = JΦ(x(s, t))Jx(s, t) ⇔
[
∂ϕ
∂s

∂ϕ
∂t

]
(s, t) = (∇Φ)T (x(s, t))

[
∂x
∂s

∂x
∂t

]
(s, t) .

We quite naturally extend ϕ as constant along the u direction. The preceding

relation can now be inverted given that (∂x
∂s

=
[
1 0 0

]T
, ∂x
∂t

=
[
0 1 0

]T
,u =

[
ux uy uz

]T
) forms a basis ((s, t) is omitted for conciseness):

∇Φ(x) =





uz 0 0
0 uz 0

−ux −uy 1





︸ ︷︷ ︸

C





∂ϕ
∂s
∂ϕ
∂t

0



 .

It follows that
∫∫

□
∇Φωu

0 =
∫∫

□
C
[
∂ϕ
∂s

∂ϕ
∂t

0
]⊺

uzdsdt . Below, we explicit the

vector
[
∂ϕ
∂s

∂ϕ
∂t

0
]⊺

involving derivatives of ϕ as





(1− t)(ϕ10 − ϕ00) + t(ϕ11 − ϕ01)
(1− s)(ϕ01 − ϕ00) + s(ϕ11 − ϕ10)

0



 =





1− t 0 −t 0
0 s 0 s− 1
0 0 0 0





︸ ︷︷ ︸

B







−1 1 0 0
0 −1 1 0
0 0 −1 1
1 0 0 −1







︸ ︷︷ ︸

D0

[
ϕ

]
.

Matrix D0 is the differential operator, and is common to all quad faces. We get:

∫∫

□

∇Φωu

0 =

∫∫

□

CBuzdsdt

︸ ︷︷ ︸

Gσ

D0

[
ϕ

]
,
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where Gσ is a 3× 4 matrix whose expression is (note the use of averages):

Gσ =
1

3





ūz 0 −ūz 0
0 ūz 0 −ūz

−ūx −ūy ūx ūy



+
1

6





ūz
0 0 −ūz

2 0
0 ūz

1 0 −ūz
3

−ūx
0 −ū

y
1 ūx

2 ū
y
3



 .

The (corrected) area aσ of such a surfel σ has a simple expression, while a
pointwise expression of the gradient Gσ is obtained by normalizing Gσ by the
corrected area leading to:

aσ :=

∫∫

□

ωu

0 =

∫∫

□

uzdsdt = ūz, Gσ :=
1

aσ
GσD0 .

Sharp and flat operators. The sharp operator transform a 1-form into a vector
field. We use the expression of the pointwise gradient to raise any 1-form as
a representative vector per surfel. Within a surfel, a 1-form associates a scalar
value to each (oriented) edge. Let β be 1-form, and

[
β (σ)

]
:=

[
β0 β1 β2 β3

]⊺
its

values on the 4 edges of σ. Omitting the differential operator D0 in the pointwise
gradient gives the representative 3D vector of β on surfel σ:

β♯(σ) :=
1

aσ
Gσ

[
β (σ)

]
.

The discrete sharp operator on σ is thus the 3× 4 matrix Uσ := 1
aσ

Gσ.
The flat operator projects a vector field onto the tangent plane and computes

its circulation along each edge. The 1-form v♭ associated with vector v is thus:

[
v♭

]
:=

∮

∂f

tT (I − uuT )v =

∫ 1

0







[
1 0 0

]
(I − u(r, 0)uT (r, 0))v

[
0 1 0

]
(I − u(1, r)uT (1, r))v

[
−1 0 0

]
(I − u(r, 1)uT (r, 1))v

[
0 −1 0

]
(I − u(0, r)uT (0, r))v






dr.

By linearity, the flat operator Vσ is a 4× 3 matrix (see appendix for details).

Inner products for discrete forms (i.e metrics). The inner product between 0-
forms is simply the integration of their product on the surfel σ. For any bilinearly
interpolated functions ϕ, ψ, we obtain on the surfel σ the scalar:

⟨ϕ | ψ⟩0 (σ) :=

∫∫

σ

ϕψω
(u)
0 =

[
ϕ (σ)

]⊺
M0,σ

[
ϕ (σ)

]
.

The associated metric matrix is a 4 × 4 symmetric matrix, called mass matrix,
whose expression is given in the appendix. If the corrected normal vector u is
consistent with the naive surfel normal n (i.e. ⟨u(s, t) | n⟩ > 0), then M0,σ is
positive definite.

We would like the inner product between 1-forms β and γ to be defined
by emulating the continuous case. We integrate the scalar product between the
vectors associated with the 1-forms on the surfel σ:

⟨β | γ⟩1 (σ) :=

∫∫

□

〈
β♯ | γ♯

〉
ω
(u)
0 =

[
β (σ)

]⊺
Mnaive

1,σ

[
γ (σ)

]
.
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6 C. Weill-Duflos et al.

Using above relations we have:

⟨β | γ⟩1 (σ) = aσ(Uσ

[
β (σ)

]
)⊺(Uσ

[
γ (σ)

]
γ) =

[
β (σ)

]⊺
(

1

aσ
G

⊺
σ Gσ

)
[
γ (σ)

]
.

Hence Mnaive
1,σ = 1

aσ
G ⊺
σ Gσ; it is a symmetric matrix. It can be verified that, if u

is a unit constant vector over the surfel σ and ⟨u | n⟩ > 0, then this matrix is
symmetric positive. However, it is not definite. To remedy this, we follow [6] and
complement the definition to get the stiffness matrix as

M1,σ :=
1

aσ
G

⊺
σ Gσ + λ(I − UσVσ) . (1)

Calculus on the whole mesh. Let n, m and k be respectively the number of
vertices, edges and faces of the mesh. Let V be the space of all sampled functions
(an n-dimensional vector space), and E be the space of all discrete 1-forms (an
m-dimensional vector space). Global operators sharp U (size 3k × m), flat V
(size m×3k), mass matrix M0 (size n×n) and stiffness matrix M1 (size m×m),
differential D0 (size m × n) are obtained by merging the corresponding local
operators Uσ, Vσ,M0,σ,M1,σ, D0 on the corresponding rows and columns.

Codifferentials and Laplacian. We build the 1-codifferential δ1 : E → V by
adjointness in our inner products.

∀f ∈ V , ∀α ∈ E , ⟨D0f | α⟩1 = −⟨f | δ1α⟩0 ⇔ (D0f)
⊺M1α = −f⊺M0δ1α.

Being true for all pairs (f, α), it follows that δ1 := −M0
−1D

⊺
0M1. The Laplacian

operator ∆0 is the composition of the codifferential and the differential, i.e.

∆0 := δ1D0 = −M0
−1D

⊺
0M1D0.

Since it is very costly to build matrix M0
−1, we will generally not use the two

operators δ1 and ∆0 as is when solving numerical problems, but we will rather
work with their “integrated” version (M0δ1 and M0∆0). We can now see an-
other approach to compute a Laplace-Beltrami operator coming from the Finite
Elements framework.

2.2 Generalization to Finite Element Method

We show here how to adapt the standard Finite Element Method (FEM), e.g. see
[16], in order to solve a Poisson problem. The method builds a stiffness matrix L
and a mass matrix M to transform the Poisson problem into a linear problem.
We will see also that a Laplace operator can be obtained with the same method.
Our adaptation consist in correcting the metric used, changing the formulas used
for derivatives and dot products. While we only demonstrate here how to correct
FEM on a Poisson problem, other problems can also be corrected with the same
metric.
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Digital Calculus and Laplace-Beltrami operators 7

The Poisson problem is formulated as solving for g in ∆g = f , with a given
border constraint for g if the domain has a boundary, or with a fixed value
somewhere if the domain has no boundary. The weak formulation of this problem
is given by: solve for f

∫

Ω

∇g.∇Φ = −

∫

Ω

fΦ +

∫

∂Ω

Φ⟨∇g,n⟩ , (2)

for any Φ. In our case, we will evaluate against Φ the functions locally bilinear
inside each element. The third term is dependent on the boundary condition,
and we will make it vanish here for now.

The FEM approach consists in discretizating the problem at nodes and split-
ting the domain into elements bordered by nodes (quads here): functions g (say)
are discretized at these nodes as vectors g of their values at nodes. FEM assumes
bilinear interpolation of functions within elements. It builds a stiffness matrix
L and a mass matrix M such that Lg = Mb. This corresponds to the first two
terms in ( 2). Boundary constraints are integrated in this linear problem, either
by removing rows and columns or by setting equalities. We can then solve the
Poisson problem by solving the linear system Lg =Mb, but we can also deduce
a Laplacian operator ∆ :=M−1L.

The matrices are built quad by quad, so here per surfel. We start by defining
a metric G per surfel, since it depends on the corrected normal u, then using
this metric in the formulas for derivatives and scalar products when building the
matrices. Our reference element is a unit square in the plane □. We obtain:

G =

[
1− (ux)2 −uxuy

−uxuy 1− (uy)2

]

.

Since we assume now that our corrected normal field is constant on the
surfel, the metric is also constant. This is an arbitrary choice we make in order
to keep formulas simple. It becomes easy to compute the gradient and Laplacian.
We use the formula df(w) = ⟨∇f,w⟩G for any vector w, with ⟨·, ·⟩G the inner

product. It follows that ∇f = G−1
[
∂f
∂s

∂f
∂t

]T
. For the Laplacian, since the metric

is constant, we use ∆f = ∇ · ∇f . We write them more explicitly as:

∇f =
1

(uz)2

[
(1− u2y)

∂f
∂s

+ uxuy ∂f
∂t

uxuy ∂f
∂s

+ (1− (ux)2)∂f
∂t

]

(3)

∆f =
1

(uz)2

(

(1− (uy)2)
∂2f

∂s2
+ 2uxuy ∂

2f

∂s∂t
+ (1− (ux)2)

∂2f

∂t2

)

(4)

We choose a basis of bilinear functions on the square as our basis functions.
This choice can be disputed: while linear functions are still harmonic regarding
to the Laplacian in (4), bilinear functions are no longer harmonics in this setting.
However, finding a way to build hat functions that stay harmonic in this setting
is not obvious. Yet bilinear functions are still used on quad meshes that are not
rectangular and where the same reasoning can be applied to show that they
are not harmonic. We define the four basis functions as f0 = (1 − s)(1 − t),
f1 = s(1− t), f2 = st, f3 = (1− s)t.
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8 C. Weill-Duflos et al.

In order to build our stiffness matrix we evaluate:
∫

□
⟨∇f,∇p⟩G for any f

and p bilinear. The local stiffness matrix is then:

LM =
1

6uz









3ux
u

y + 2 + 2(uz)2 2(uy)2 − 1−(ux)2 1 − 3ux
u

y − (uz)2 2(ux)2 − 1−(uy)2

2(uy)2 − 1−(ux)2 2 − 3ux
u

y + 2(uz)2 2(ux)2 − 1)−(uy)2 3ux
u

y + 1 − (uz)2

2 − 3ux
u

y − (uz)2 2(ux)2 − 1 − (uy)2 3ux
u

y + 2 + 2(uz)2 2(uy)2 − 1−(ux)2

2(ux)2 − 1−(uy)2 3ux
u

y + 1 + (uz)2 2(uy)2 − 1−(ux)2 2 − 3ux
u

y + 2(uz)2









.

(5)

The global stiffness matrix is then obtained by summing over all the local
stiffness matrices. The mass matrix is computed from

∫

Ω
fp , with f and p bi-

linear:

MM =
uz

36







4 2 1 2
2 4 2 1
1 2 4 2
2 1 2 4






. (6)

We recognize the standard mass matrix for quad mesh with a factor correcting
the area of the surfel. It is the same as M0 for constant u. We now have two ways
of building a sparse Laplace-Beltrami operator. We see now how they compare
against operators from previous works.

3 Evaluations and comparisons

We compare the resulting operators and the ones from previous works on several
use cases : first on the sphere, with forward evaluation (compute the laplacian
of a function), backward evaluation (solve a Poisson problem to get a function
back from its laplacian), eigenvalue comparisons, and then on a standard mesh
by comparing with the results obtained on an underlying triangle mesh. Plots
related to digitized spheres are the means of the results of 32 computations for
each step, each conducted with a different center to better take into account the
variability in sphere discretizations.

3.1 Forward evaluation

Several previous works tried to evaluate the quality and convergence of the
Laplacian operator when used in a forward manner: from f defined on the mesh,
we compute ∆f both analytically and with a discrete Laplacian, then compare
the two results. In other words, if our stiffness matrix is called L and our mass
matrix M , we solve the equation LF =MX where X is the unknown.

A naive approach consists in computing X = M−1LF . This is the one that
was used for evaluation in previous works, and was not convergent when using
sparse operators. We reproduce this behavior by computing the Laplacian of
f(x) = ex using various methods, none of which seem to converge (see figure
2). This is disappointing since we expect the Laplacian operator to have linear
convergence when evaluated in forward manner, as observed in [2] and proven
for the mesh Laplacian on triangle mesh.

Our idea for improving the convergence consists of adding a small diffusion
step to the result. It suffices to replace the mass matrix M by M −dtL. In other

Lowres version



Digital Calculus and Laplace-Beltrami operators 9

words, instead of evaluating X = M−1LF , we evaluate X = (M − dtL)−1LF .
The result depends on the choice of parameter dt: we found that we approach
linear convergence when dt is in the order of h, and the best quality for dt =
0.035h. This means that we add a diffusion with a characteristic length of order
h

1

2 , which is coherent with results from other works. Using this method, we
achieve what seems to be linear convergence on different functions (Figure 2),
with results comparable or even higher quality than in [2]. We run the same
experiment as figure 2, with evaluated normals (using Integral Invariant [10])
instead of ground truth. Results are shown in figure 3, and also approach linear
convergence.

3.2 Backward evaluation

A Laplacian is often built to solve a Poisson problem. We evaluate a function on
our digital surface, we also evaluate its Laplacian using an exact formula, then
we compute an approximation of the original function that we compare to the
exact original. It is a criterion used for Laplacian evaluation (see [1]), which has
not yet been done for digital Laplacians. It also makes more sense to evaluate
the Finite Element Methods in this case than in forward evaluation, as this is
the problem the operator is built for and is proven (in the case of standard
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Fig. 2: Forward evaluation of the mesh Laplacian on quadratic, exponential func-
tions and the sixth spherical harmonic. Adding diffusion significantly improves
the results, achieving linear convergence on the sphere. We achieve similar rates
of convergence as Heat Kernel [2], with a better quality on less smooth functions.
Note that the Heat Kernel method is limited to a gridstep of h ≥ 0.03, due to
its enormous memory usage.
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Fig. 3: Comparison on evaluation of the Laplacian using the true normals and
using the Integral Invariant estimators. Estimated normals give slightly worse
results than with true normals, but still seem to converge. The estimated normals
values are limited to a gridstep of h ≥ 0.008 due to their time to evaluate.
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Fig. 4: Error when solving a Poisson problem with different Laplacians. We ap-
proach a quadratic convergence rate.

regular meshes) to converge. We find that all methods give roughly the same
results (figure 4). They seem to be convergent, with a rate around h1.9, which
is coherent with the theoretical quadratic rate. Again, we run the experiment
using the Integral Invariant estimators and approach similar rate of convergence.
(figure 5)
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Fig. 5: Comparison of results using true normals and estimated normals for solv-
ing a Poisson problem.
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3.3 Eigenvalues

We follow the evaluation of eigenvalues on the spherical harmonics used in [1].
Since the spherical harmonics have analytic expressions, we can compare the
eigenvalues of our operator to the exact eigenvalues of the Laplace-Beltrami op-
erator on the sphere. To obtain these eigenvalues, we solve for λ in the following
generalized eigenvalue problem Lu = λMu. Figure 6 shows the first eigenval-
ues of our Laplacians on the unit sphere with discretization steps h = 0.1 and
h = 0.01. The PolyDEC method [6] is not accurate, but corrected methods are,
with accuracy increased at finer resolutions.
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Fig. 6: Smallest 49 eigenvalues of the Laplacian on unit sphere with discretization
step 0.1 (left) and 0.01 (right). Relative error is given by λ̂ − λ, where λ̂ is the
approximated eigenvalue and λ the correct value.

3.4 Comparison to the cotan Laplacian

Until now all our comparisons were made on a digitized sphere: this is because
there are some closed form expressions of Laplacians, and its eigen decomposition
is well studied. However, the sphere is a very specific case, and our evaluations
may not reflect well more general cases. We compare here our operators to the
results obtained on a regular, high quality triangle mesh with the standard cotan
Laplacian. To do so, we use a refined version of a triangle mesh (at 100000 ver-
tices), and equivalent digital surfaces at different resolutions (1283, 2563, 5123).
Then we built a projection operator allowing us to map values on the high res-
olution mesh to the digital one (orthogonal projection and linear interpolation).
We also use this projection operator to map the normal vector field computed on
the mesh to the surfels or vertices in the calculus frameworks. We then compute
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12 C. Weill-Duflos et al.

a function on the triangle mesh as well as its Laplacian using the cotan Laplacian
on the triangle mesh [14], and then their projection on the digital surface, which
we use as "ground truth". Forward evaluation results are shown on figure 7.
We use the same diffusion constant as previously (0.035h). Error is significantly
reduced with the discretization step of the digital surface, suggesting that our
operator is convergent toward the result given by the cotan Laplacian.

resolution: 128 l1 error resolution: 256 l1 error resolution: 512 l1 error
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Fig. 7: Comparison between classical cotan Laplacian of a function defined on
a triangle mesh and the digital Laplacian operators. All three operators have
comparable performances. The error decreases as the resolution increases, sug-
gesting that all three operators are convergent.

4 Conclusion

We show that, similarly to the corrected PolyDEC method [3], a corrected nor-
mal field can be inserted within discrete calculus frameworks yielding different
Laplace-Beltrami operators. All these operators seem to converge when solving
Poisson problems, and when used in a forward evaluation, the addition of a slight
diffusion also seems to make them convergent. A limit of our study is that these
results are only experimental: only the Heat kernel Laplacian of [2] is yet proven
to converge on digital surfaces (strong consistency). However, since results on a
common framework (the finite element method) seem promising, it may be in-
teresting to see if the proof of convergence from this framework can be adapted
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to digital surfaces. The same type of calculus construction could also be tested
outside digital surfaces, for instance on a triangle mesh with a corrected normal
field or a normal field of much higher resolution such as a normal map (as done
in [12]). The idea of adding diffusion and modifying the mass matrix can be seen
as similar to the approach of [8]. However Caissard et al. [2] were not able to
reproduce their experiments and expected convergence, probably because digital
surfaces do not have the mesh regularity required by the proof. Indeed, from our
metric G it is easy to find that mesh regularity means that 1

|uz| is bounded. Such

a condition can be fulfilled for some specific meshes (such as a digital plane),
but is not guaranteed on surface digitizations in general (such as a sphere).

Acknowledgments This work is supported by the French National Research
Agency in the framework of the « France 2030 » program (ANR-15-IDEX-
0002), by the LabEx PERSYVAL-Lab (ANR-11-LABX-0025-01) and by the Sta-
bleProxies project (ANR-22-CE46-0006).

References

1. Bunge, A., Botsch, M.: A survey on discrete Laplacians for general polygonal
meshes. Computer Graphics Forum 42(2), 521–544 (2023)

2. Caissard, T., Coeurjolly, D., Lachaud, J.O., Roussillon, T.: Laplace–Beltrami op-
erator on digital surfaces. Journal of Mathematical Imaging and Vision 61(3),
359–379 (2019)

3. Coeurjolly, D., Lachaud, J.O.: A simple discrete calculus for digital surfaces. In:
Étienne Baudrier, Naegel, B., Krähenbühl, A., Tajine, M. (eds.) IAPR Second
International Conference on Discrete Geometry and Mathematical Morphology.
Springer, LNCS (October 2022)

4. Coeurjolly, D., Lachaud, J.O., Gueth, P.: Digital surface regularization with guar-
antees. IEEE Trans. Vis. Comput. Graph. 27(6), 2896–2907 (2021)

5. Crane, K., Weischedel, C., Wardetzky, M.: The heat method for distance compu-
tation. Commun. ACM 60(11), 90–99 (Oct 2017)

6. De Goes, F., Butts, A., Desbrun, M.: Discrete differential operators on polygonal
meshes. ACM Transactions on Graphics (TOG) 39(4), 110–1 (2020)

7. de Goes, F., Desbrun, M., Meyer, M., DeRose, T.: Subdivision exterior calculus
for geometry processing. ACM Trans. Graph. 35(4) (jul 2016)

8. Hildebrandt, K., Polthier, K.: On approximation of the Laplace-Beltrami operator
and the Willmore energy of surfaces. Computer Graphics Forum (2011)

9. Hirani, A.N.: Discrete Exterior Calculus. Ph.D. thesis, USA (2003), aAI3086864
10. Lachaud, J.O., Coeurjolly, D., Levallois, J.: Robust and convergent curvature

and normal estimators with digital integral invariants. In: Laurent Najman, P.R.
(ed.) Modern Approaches to Discrete Curvature, Lecture Notes in Mathematics,
vol. 2184. Springer-Verlag (2017)

11. Lachaud, J.O., Romon, P., Thibert, B.: Corrected curvature measures. Discrete &
Computational Geometry 68(2), 477–524 (2022)

12. Lachaud, J.O., Romon, P., Thibert, B., Coeurjolly, D.: Interpolated corrected
curvature measures for polygonal surfaces. Comput. Graph. Forum 39(5), 41–54
(2020)

Lowres version



14 C. Weill-Duflos et al.

13. Lachaud, J.O., Thibert, B.: Properties of Gauss digitized shapes and digital surface
integration. Journal of Mathematical Imaging and Vision 54(2), 162–180 (2016)

14. Lévy, B., Zhang, H.: Spectral mesh processing. In: ACM SIGGRAPH 2010 Courses,
pp. 1–312 (2010)

15. Nealen, A., Igarashi, T., Sorkine, O., Alexa, M.: Laplacian mesh optimization.
In: Proceedings of the 4th International Conference on Computer Graphics and
Interactive Techniques in Australasia and Southeast Asia. p. 381–389. GRAPHITE
’06, Association for Computing Machinery, New York, NY, USA (2006)

16. Reddy, J.N.: Introduction to the finite element method. McGraw-Hill Education
(2019)

17. Sorkine, O.: Laplacian mesh processing. In: Chrysanthou, Y., Magnor, M. (eds.)
Eurographics 2005 - State of the Art Reports. The Eurographics Association (2005)

18. Veiga, L., Brezzi, F., Cangiani, A., Manzini, G., Marini, L., Russo, A.: Basic prin-
ciples of virtual element methods. Mathematical Models and Methods in Applied
Sciences 23 (11 2012)

A Details on the interpolated corrected calculus

Let σ be a surfel aligned with x and y and with normal aligned with z. The flat
operator has the following expression:

Vσ :=
1
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The metric matrix for 0-forms is defined as the matrix such that, for any bilin-
early interpolated functions ϕ, ψ, we obtain on surfel σ the scalar:

⟨ϕ | ψ⟩0 (σ) :=

∫∫

σ

ϕψω
(u)
0 = [ϕ (σ)]

⊺
M0 [ϕ (σ)] .

Let us now define weighted sums for components of u over the quad. We number
the edges when turning along the boundary of the surfel σ from 0 to 3, such
that edges 0,1,2,3 connect vertex pairs (x00,x10), (x10,x11),(x01,x11),(x01,x00),
respectively. We define

ū00 := 9u00 + 3u10 + u11 + 3u01 ū10 := 3u00 + 9u10 + 3u11 + u01

ū11 := u00 + 3u10 + 9u11 + 3u01 ū01 := 3u00 + u10 + 3u11 + 9u01

ū00,10 := 3u00 + 3u10 + u11 + u01 ū10,11 := u00 + 3u10 + 3u11 + u01

ū11,01 := u00 + u10 + 3u11 + 3u01 ū01,00 := 3u00 + u10 + u11 + 3u01

By integration of left-hand side, we obtain for a surfel with normal z:

M0 =
1
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ū
z
00

ū
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ū
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z
10

ū
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