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Abstract. Preserving surfaces or volumes of digital objects is crucial
when applying transformations of 2D/3D digital objects in medical im-
ages and computer vision. To achieve this goal, the digital geometry
community has focused on characterizing bijective digitized rotations
and reflections. However, the angular distribution of these bijective rigid
transformations is far from being dense. Other bijective approximations
of rigid transformations have been proposed, but the state-of-the-art
methods lack the experimental evaluations necessary to include them
in real-life applications. This paper presents several new methods to
approximate digitized rotations with bijective transformations, includ-
ing the composition of bijective digitized reflections, bijective rotation
by circles and bijective rotation through optimal transport. These new
methods and several classical ones are compared both in terms of accu-
racy with respect to Euclidean rotations, and in terms of computational
complexity and practical speed in real-time applications.

1 Introduction

While rotations and translations in R
d are trivial isometric and bijective trans-

forms, their digitized cousins in Z
d have attracted a lot more attention as in

general, they do not preserve distances and are not bijective. Of course, direct
applications of such transformations in Z

d belong to the image processing or
computer vision fields (template matching, object tracking. . . ). However, the
study of digitization effects of such rigid motions in Z

d has led to interesting
number theoretic and arithmetical results. For instance, one can characterize
the set of angles for which the digitized rotation is bijective in Z

2 [1], in Z
3 [2],

on the hexagonal lattice [3]. We can also consider rigid motions from quasi-shear
transforms [4,5,6], or reflections [7,8]. For specific applications, we can even look
for an approximation of the rotation preserving the homotopy for subsets of
Z
2 [9].

In this article, we follow this line of previous works focusing on a more prac-
tical question in Z

2: for a given rotation angle, what is the best discrete bijective
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Fig. 1: 2D digitized rotations of points in blue. The digitized rotation of (a) is
not bijective since it yields holes and double points whereas the rotation of (b)
is bijective.

transformation we can have. More precisely, we are looking for a bijective trans-
formation from Z

2 to Z
2 (or subsets of Z2) that minimizes a distance-based met-

ric. In this context, we review existing bijective rotation approaches and propose
two new approaches: the first one relies on composition of discrete reflections fol-
lowing [8], the second one on bijective rotation using circular annulus [10]. We
demonstrate that the composition of four discrete reflections leads to the ro-
tation with the lowest metric error. For this last approach, we also provide a
lookup table that returns the best sequence of reflections (and their parameter)
for a large set of angles.

2 Bijectivity of digitized rigid transformation

Let us consider rigid transformations that act on the integer lattice Z
d. A digi-

tized rigid transformation is the composition of a rigid transformation T ∈ E(d)
(element of the Euclidean group) and a rounding to the nearest integer oper-
ator D : Rd → Z

d. The rigid transformation is bijective whereas the rounding
operator is not, see Figure 1.

However, there are two possibilities to ensure bijectivity of digitized rigid
transformations, either

(a) define a digitized transformation that leaves invariant lines (reflection) or
circles (rotation),

(b) or characterize rigid transformations that are bijective after digitization.
Once the characterization is known, it is not difficult to approximate any
rigid transformation with the ”nearest” bijective one.

In the following, we only consider reflections and rotations that act on the integer
lattice Z

2. We start by briefly recalling the state-of-the-art bijective approxima-
tion of rigid transformations.
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2.1 Quasi-shears

The quasi-shear approach by Andres [4] consists in the discretization of the
continuous horizontal and vertical shears that approximate rotation. This is a
one-one point mapping thus bijective. Note that the shear method is not limited
to 2D as shown by Toffoli [6] and extends well to non squared lattices as shown
by [5].

2.2 Reflection with respect to discrete lines

This method was presented by Andres [7]. This approach was designed to leave
invariant discrete lines after reflections. The reflection of a point is computed by
simply identifying its position with respect to the point of intersection between
the discrete line and its perpendicular discrete line. Again, this approach is one-
one point mapping thus bijective.

2.3 Bijective digitized reflections and rotations

We focus in this subsection on the approach that follows (b). First, let us recall
the necessary and sufficient condition for a digitized rotation and a digitized
reflection to be bijective. This condition provides the subsets

– Rk such that ∀Rα ∈ Rk, D ◦Rα is bijective for digitized rotations,
– Hk such that ∀Hm ∈ Hk, D ◦ Hm is bijective for digitized reflections (m

being the normal vector of the hyperplane used for the reflection).

We start by recalling the characterization of 2D bijective digitized rotation with
angle α ∈ [0, π

2 ] made by Nouvel and Rémila [1]:

Rk =

{
cos (α) =

2k + 1

2k2 + 2k + 1
, sin (α) =

2k2 + 2k

2k2 + 2k + 1
, k ∈ Z

+

}
. (1)

More recently, Roussillon and Coeurjolly [11] expressed the bijectivity condition
in the complex plane by the Gaussian integers γ ∈ Z[i] (ring of Gaussian integers)
as follows:

Rk =

{
γ · γ√
(γ · γ∗)

| γ = (k + 1) + ki, k ∈ Z
+

}
. (2)

In order to express the bijectivity condition of digitized reflections, Breuils
et al. [8] used the Geometric Algebra G

2 with basis vectors e1, e2. The resulting
subset Hk of bijective digitized reflections is

Hk = Hk
1 ∪Hk

2 ∪Hk
3 ∪Hk

4 , (3)

where

Hk
1 = {m ∈ G

2,m = −ke1 + (k + 1)e2}, H
k
2 = {m ∈ G

2,m = −(k + 1)e1 + ke2},
Hk

3 = {m ∈ G
2,m = −e1 + (2k + 1)e2}, H

k
4 = {m ∈ G

2,m = −(2k + 1)e1 + e2} .
(4)
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Note that the reflection p′ of a point p ∈ R
2 with respect to a hyperplane of

normal vector m ∈ G
2 can be written as

p′ = −mpm−1 = p− 2
m · p

m ·m
m , (5)

where mp = m ·p+m∧p represents the geometric product between the vector
m and p. Note, that the geometric product acts on basis vectors as follows

eiej =

{
1 if i = j

−eji otherwise
and eijek =

{
ei if j = k

−ej if i = k
. (6)

where eij is called a basis bivector. In geometric algebra [12], a rotation can be
expressed as the composition of two reflections. Assuming m,n be the two unit
normal vectors of the reflections, the rotation is expressed as

x′ = (nm)x(nm)−1 = (cos α
2 + sin α

2 e12)x(cos
α
2 − sin α

2 e12). (7)

Furthermore, the composition of reflections with normal vectorsm1,m2, · · · ,mn

is expressed as the reflection induced by the hyperplane defined by the geometric
product of the normal vectors

m1m2 · · ·mn . (8)

As a consequence, if n is even and each normal vector is a unit vector then the
above geometric product acts as a rotation on a point x.

3 Composition of bijective digitized reflections

These characterisations lead to bijective digitized rigid transformations. How-
ever, the resulting angular distribution of both Rk and Hk is far from being
dense, see Figure 2. When computing a rotation by an angle not in Rk and
Hk, one option would be to consider the nearest bijective rotation or reflection.
However, this leads to low quality transformations (e.g. mean squared distance
error between rotated grid points and the original subset of the grid). Since the
composition of an even number of reflections results to a rotation, an alternative
is to compose bijective digitized reflections, for instance 4 of them, to approx-
imate a given target rotation angle. More precisely, we aim at constructing a
look-up table that associates, to some prescribed rotation angles, the sequence
of reflections that miminises some error metrics.

3.1 Candidate set construction and duplicates

First of all, let us fix k = kmax and compute the composition of the elements
of Hkmax . The set of composition of 4 bijective digitized reflections Ckmax is
expressed as

Ckmax = {(m1,m2,m3,m4) | m1,m2,m3,m4 ∈ Hkmax} . (9)
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Fig. 2: Angular density distributions of bijective digitized rotations colored in
black (a), bijective digitized reflections colored in blue (b), the composition of 2
bijective digitized reflections colored in red (c) and the composition of 4 bijective
digitized reflections colored in green (d) .

From our experiments, we do not compose more reflections than 4 since the
maximum angular uncertainty is already lower than one degree 0.00015 rad for
kmax = 15. Figures 2c and 2d show the two normalised angular histograms of
Ckmax for 2 and 4 reflections.

Remark 1. card(Ckmax) = (4kmax)
4.

Proposition 1. Rkmax ⊂ Ckmax .

Proof. Let γ = (k + 1) + ki ∈ Rkmax and since the subalgebra composed of the

scalar and bivector R⊕
∧2

R
2 is isomorphic to the complex numbers ((e12)

2 =
i2 = −1), then ∃m1,m2 ∈ Hkmax , γ = m1m2. For instance, choose m1 =
e1,m2 = (k + 1)e1 + ke2. Their product is

m1m2 = (e1)((k + 1)e1 + ke2) = (k + 1) + ke12 ∈ Rkmax .

We also observe that several compositions of bijective digitized reflections
result in the same rotation angle. This becomes critical if the value of kmax
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Fig. 3: Composition of 2 bijective digitized reflections m1,m2. (a) m1 = −2e1+
3e2, m2 = −5e1+4e2. (b) m1 = 4e1+5e2, m2 = 3e1+2e3. The angle between
the normal vectors in (a) and (b) are the same whereas their digitizations (points
in blue) are different, for example 4e1 + e2 is in the lattice of (b) but not (a).

increases (with kmax = 15, card(Ckmax) = 40.106). In order to reduce overhead
associated to the storage of this table, the duplicates must be removed. This
involves sorting Ckmax by increasing angle of the resulting rotation. Furthermore,
it is important to note that two compositions resulting in the same angle might
have different digitizations, see Figure 3. Thus, for each angle α, we choose

RefRot[α] := arg min
(m1,m2,m3,m4)∈Ckmax

∥Πn
i=1(D ◦ −mipm

−1
i )−Rα(p)∥∞. (10)

Note that Πn
i=1mi = cos

(
α
2

)
+ sin

(
α
2

)
e12. Furthermore, in practice, we

choose p ∈ Dp where Dp = Z
2 ∩ [−100, 100]2. Finally, with kmax = 15, we

reduce card(Ckmax) to 105 compositions instead of 40.106 before.

3.2 Rotation angle to the most accurate bijective composition

Given a target rotation angle α and Ckmax sorted and without duplicates, we
seek for Ckmax

i ∈ Ckmax that best approximates Rα(p). Firstly, since Ckmax is

sorted by ascending angle, finding Ckmax

i with a resulting angle α is a binary
search operation. However, this element is not necessarily the composition that
is the most accurate, meaning that minimizes the distance with the Euclidean
rotation Rα(p). For instance, let us consider a target rotation angle ϵ near 0,
there might be a composition of 4 bijective reflections resulting in ϵ whereas the
most accurate one is simply the composition of the two trivials reflections with
normal vectors m1 = m2 = e1. To address this issue, we start by computing the
K compositions of bijective digitized reflections nearest to Ckmax

i where Ckmax

i

is the composition of bijective digitized reflections whose resulting angle is the
closest to the target angle. We call this subset NN(Ckmax

i , α). We then seek for
the composition of digitized reflections that minimizes either

R̃α = arg min
(m1,m2,m3,m4)∈NN(Ckmax

i
,α)

∥Π4
i=1(D ◦ −mipm

−1
i )−Rα(p)∥∞ (11)
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or

R̃α = arg min
(m1,m2,m3,m4)∈NN(Ckmax

i
,α)

∥Π4
i=1(D ◦ −mipm

−1
i )−Rα(p)∥2 . (12)

3.3 Computational complexity

The computational cost of sorting the Ckmax and remove duplicates is

O(max(card(Dp), card(C
kmax) log(card(Ckmax)). (13)

Note that card(Dp) = 201×201. Since this latter operation can be computation-
ally expensive, we choose to pre-compute Ckmax . In practical implementation, we
go a step further by precomputing the table of the most accurate composition of
bijective digitized reflections for each angle and for the points of Dp. It is worth
mentioning this table remains reusable as the number of points increases. There-
fore, if we consider an image of size N×N , the complexity of the approach is the
complexity of applying bijective digitized reflections to each point of the image.
Thus, the overall complexity is O(N2). Figure 6 shows 2 figures of the compo-
sition of digitized reflections applied to an image. The resulting implementation
of this approach is available in DGtal [13].

4 Bijective rotation by circles

We build a bijective approximation of a rotation by decomposing the plane
into concentric digital circles around the center of rotation. The points along
each digital circle are sorted according to the angle they form with the center
of rotation and the x-axis. Then the global transformation is constructed by
mapping circles onto themselves, shifting the points according to the desired
angle α.

More precisely, assuming the origin of the frame lies at the center of rotation,
let Cr := {p ∈ Z

2, r ⩽ ∥p∥2 < r+1}. It is clear that (Cr)r∈Z,r⩾0 forms a partition
of Z2. We then sort the points of each circle Cr according to their angle with
the x-axis: let (Cr

i )i=0,...,nr−1 be the induced sequence of points, where nr is the
cardinal of Cr. We have thus ∀0 ⩽ i < j < nr,∠(Cr

i Ox) < ∠(Cr
jOx). Denoting

by ⌊·⌉ the nearest integer rounding operator, we define the rotation along circles

RC
α of angle α as:

∀p ∈ Z
2, RC

α (p) = q, with

{
p = Cr

i , q = Cr
j

and j =
(
i−

⌊
α
2πn

r
⌉)

mod nr.

This transformation is clearly bijective: it maps the points of a circle onto the
same circle, and the shift of indices is a one-one mapping. This transformation
also preserves circles and minimizes the radial error in some sense.

From a computational point of view, rotating a whole image of size N ×N

takes a time Θ(N2). It suffices to proceed circle by circles, each shift takes a
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time linear in the number of points of the circle. If one is interested in rotating
just one point p = Cr

i , the complexity is then O(logN): it takes O(1) to find the
correct circle radius r, then O(logN) worst case to find the index i of p in the
sequence, and finally O(1) to get the shifted point.

5 Optimal Transport method

In recent years, Optimal Transport (OT for short) has become a key mathe-
matical framework for manipulating generalized probability density functions
(e.g. [14]). The most general way to describe the interest of OT is that it allows
quantifying meaningfully how costly it is to move masses from a generalized
probability density function to another one, so-called the Wasserstein distance.
Depending on the nature of the measures, discrete-to-discrete, semi-discrete, or
continuous-to-continuous, a huge literature exists on numerical methods to ef-
ficiently solve OT problems [15,16]. When dealing with discrete measures with
unit masses, the OT problem boils down to an optimal assignment problem:
given two sets of points X = {xi}n and Y = {yi}n in R

d, and a cost function
c : Rd × R

d → R
+, we are looking for the permutation σ in {1..n} such that

n∑

i=1

c(xi, yσ(i))

is minimal. Back to our setting, if X and Y are two discrete sets and c the
squared Euclidean distance, the OT approach allows us to construct a bijective
map X → Y that minimizes the mean squared l2 error between X and Y . If X
is a finite disk of Zd and T ∈ E(d) any continuous rotation, one can define the
OT variant of T (e.g. OT based rotations) as the optimal assignment between X

and T (X) for the (squared) l2 cost. On the computational side, the Hungarian
method can be used to compute the optimal assignment (see for example [15])
with a O(n4) computational cost, for n the number of pixels. In this paper, we
rely on a fast network simplex algorithm [17,18]. The worst-case computational
cost remains highly polynomial in n (i.e. O(N8) for an image N ×N), but the
bound is not reached in practice. To get an idea of computation times, rotating
a 100× 100 image takes several minutes on an Apple M2 processor.

6 Optimal Transport by circles

Since the OT of an image is very costly and impracticable for nowadays image
resolutions, we construct a new bijective transformation by mixing rotation by
circles and OT. More precisely, for a constant k ⩾ 2, we group concentric circles
Cr by k-tuples, leaving only C0 alone. We thus build digital sets Di that are
grouped concentric circles:

D0 := C0 ∀i ⩾ 0, Di+1 :=

k⋃

j=1

Cki+j . (14)
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Then, given a rotation Tα of angle α, for each circular ring Di, we perform the
optimal transport between Tα(D

i) and Di to find the best (as of L2) bijective
rotation within each ring. Note that the computational cost is now N×O(k4N4),
since the number of points within a ring is proportionnal to kN . Finally, we can
build a look-up table for a fixed number of angles (like 360) that gives the
assignment for each ring.

7 Experimental results and discussions

We consider the following bijective approximations approaches

– Quasi-shears (QSH)
– Rotation as the composition of discrete line reflections (CDLR)
– Bijective digitized rotations (BROT)
– Composition of bijective digitized reflections (CBDR)
– Bijective rotation by circles (RBC)
– Optimal transport (OT)
– Optimal transport by circles (OTC)

The next subsections present the result of these approaches both in terms of
computational complexity and accuracy.

7.1 Computational complexity

We evaluate the computational complexity of rotating a whole image of size
N × N . As for the quasi-shear approach, we consider the algorithm of [4] pre-
sented in page 313, namely Final QSR. Applying a shift to a point is a constant
time algorithm thus the complexity is O(N2). Concerning the rotation as the
composition of discrete line reflections approach, we rely on Algorithm 1 of [7].
The function X(y) defined in line 2 computes a rounding operation and this
operation is a constant-time operation. The table 1 summarizes the complexity
of both the image transformation and the table precomputation for the methods
presented in this paper.

7.2 Accuracy

The accuracy of each method is given in terms of Euclidean distance between
the Euclidean rotation and the digital approximation method. More precisely,
we compute both the L2 and L∞ norms of the error between the Euclidean
rotation and the approximation method. As for method CDLR, we improve it
by modifying Algorithm 1 [7], where we choose the first reflection such that the
L∞ norm of the error is minimized. Figures 4 and 5 displays respectively the
L2-error and L∞-error for each method as a function of the angle of rotation.

Overall, bijective rotations (BROT) constitute the worst trade-off, because
their angle density is too scarce. Quasi-shears (QSH) have quite regular errors
but remain less interesting than a few other methods. Composition of discrete
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Method QSH CDLR BROT CBDR RBC OT OTC-k

Image transf. Θ(N2) Θ(N2) Θ(N2) Θ(N2) Θ(N2) O(N8) O(N2 log(N))
Precomp. n.a. n.a. n.a. Eq.(13) O(N2) n.a. O(k3

N
5)

OTC-2 OTC-3 OTC-4
Image transf. (ms) 2.7 43.5 3.8 3.8 3.5 3.6 · 105 7.2 · 105 12.7 · 105

Precomp. (ms) 0 0 0 5300 20 0 time 2 time 3 time 4

Table 1: For the main approaches, the first two lines describe the time complexity
and the precomputation time complexity to apply each bijective transformation
method to a N × N image. The remaining lines present both the time (ms) to
transform a 201× 201 image (Image transf.) as well as the precomputation time
required for the same image (Precomp.). For CBDR, we choose kmax = 15.
Methods proposed in this paper are emphasized in bold font. For OTC-k, k
stands for the width of each ring (see Eq. (14)).

L
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Fig. 4: Plots of L2-errors for the different bijective transformations as a function
of the angle (90 angles betweeen [0, π

2 ]), y-range is between 0 and 2 pixels.
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Fig. 5: Plots of L∞-errors for the different bijective transformations as a function
of the angle (90 angles betweeen [0, π

2 ]), y-range is between 0 and 8 pixels.

line reflections (CDLR) is among the best methods (both in worst-case or av-
erage error). Rotations by circles (RBC) induce quite large errors (especially in
worst-case). However their optimal transport extensions (OTC-k) present lower
and lower errors as the width k of each ring is increased. Indeed method OTC
with rings of width 4 is only outperformed by CBDR, and not for all angles. In-
creasing the ring width would probably induce the method with lowest average
error, but its precomputation is very costly (several days). Last, compositions
of bijective reflections (CBDR) provide generally the best results on average
and in worst-case, while staying fast to compute. Figure 6 in appendix gives a
visual comparison of each approximation method for both the worst case and
a fixed angle (61◦). For both the worst case and the fixed angle, we also show
the L2 norm error field with respect to the Euclidean rotation. Note that all
implementations are available in DGtal [13]3.

8 Conclusion

In this paper, we presented multiple approaches for handling bijective rigid trans-
formations and conducted a comparative analysis against state-of-the-art meth-
ods. Our experimental results highlight the performances of both optimal trans-
port with circles and the composition of bijective digitized reflections. Extending
to 3D the proposed approximation methods is one of our perspectives. A major

3 https://github.com/DGtal-team/DGtal
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problem with the extension is the computational complexity. Furthermore, in
3D, the angular density of bijective digitized rotations and reflections is even
sparser than in 2D, see [2]. Finally, we are also interested in investigating other
mixes of optimal transport and bijective approximation approach.
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Fig. 6: Comparison of worst case results, norm of the error with respect to the
Euclidean rotation (red), and 61-degree rotation for each approximation method
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