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Abstract. This paper studies how well we can infer the geometry of a
(smooth or not) convex shape X from the convex hull Yh of its Gauss
digitization with a given gridstep h. Without smoothness constraint, we
first present results concerning the proximity of facet normal vectors to
the shape normal vectors, as well as a relation between the number of
lattice points just above a facet and its area. Then, further results can
be obtained when X is smooth, that are valid in arbitrary dimension d.
More precisely, we show that the boundary of Yh is Hausdorff-close to
the boundary of X with distance less than

√
dh, and that the vertices

of Yh are even much closer (some O(h
2d

d+1 )). Finally we show that the
geometric normal vectors to the facets of Yh tend to the smooth shape
normals with a speed O(h

1
2 ), and the bound is tight.

Keywords: Geometric inference · Gauss digitization · Convex hull ge-
ometry · Digital normal estimation · Digital geometry

1 Introduction

Many works aim at inferring a shape geometry from sampled data. We study
here the Gauss digitization, which is the sampling on a regular grid of step h. For
instance, in 2D, when h is sufficiently small, the digitized boundary is shown to
have the same topology as the input smooth shape [28,29]. Classical results from
Huxley [10] relate the area of a smooth strictly convex shape with the number of
lattice points of its digitization. Klette and Žunić [13] extend these convergence
results to moments estimation. For results valid in arbitrary dimension d, we can
mention that the boundary of a smooth shape and its digitized boundary are at
a Hausdorff distance no greater then

√
d
2 h [14].

For the local geometry, understanding the discrete affine geometry of digi-
tized shapes has been a widespread approach [12,3]. Hence recognizing pieces of
digital straight lines or planes is a common way to determine the local tangential
geometry of digitized shapes, with however few theoretical results on geometric
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2 J.-O. Lachaud et al.

convergence (see related works below). Straightness is also related to convexity
[11], has very nice arithmetic and combinatorics properties [8], while its charac-
teristics are related to the local tangent plane. Recent plane-probing algorithms
[16,19] analyzes the local affine geometry of digitized boundaries using separation
properties.

The common feature between all these discrete methods is that their holy
grail is to recover the geometry of the convex hull when the shape is (at least
locally) digitally convex, while hopefully keeping an interesting behavior in non-
convex parts. The objective of this paper is precisely to determine if the convex
hull of the digitization of a convex shape is an accurate approximation of the
geometry of the convex shape. In some sense, this work indicates the best one
can hope for when using digital linear geometry to analyze digitized shapes.

Related works on affine geometry estimation. The local affine geometry of the
digitized boundary is clearly related to the shape tangential characteristics. If
most methods ignore the specificities of lattice data and rely on regression,
smooth approximations or kernel convolutions and offer a priori no convergence
results, several methods do take into account those specificities. We recall that
an estimator has order β > 0 whenever its estimation presents an error bounded
by some O(hβ), and hence the error tends to 0 with finer sampling. In 2D, bi-
nomial derivatives achieves convergence with order 2

3 [6]. Using Taylor-Lagrange
inequality and a roughness criterion gives derivate estimates with order 1

2 [25].
Both methods require a user given scale parameter. The maximal digital straight
segment (MDSS) approach [18] is a parameter-free 2D method with a conver-
gence order of 1

3 worst case and 2
3 on average. In 3D, on-surface convolutions [9]

are more effective than digital straightness methods [30,17], but with no theoret-
ical guarantees. The only methods achieving proven normal convergence in 3D
for smooth enough shapes are a discretization of Voronoi covariance measure [22]
with order 1

8 [5] and digital integral invariants [24] with the better order 2
3 [15]:

both methods require an optimal scale parameter and behave quite similarly in
practice.

Contributions and outlines. After recalling some essential notions in Section 2,
Section 3 studies the general case of digitizing an arbitrary compact convex shape
and of inferring its affine geometry from the convex hull of the sampled points.
Lemma 1 links the facet normal vectors to the shape normal vectors. Theorem 2
relates the number of lattice points just above a facet and the facet area, which
tells on which facet the previous lemma is significant. Section 4 studies the case
of smooth convex shapes, which happens to be more fruitful. We can then sand-
wich the original shape between the digitized convex hull and its dilation by a
ball of radius

√
dh (Theorem 4). Vertices of the convex hull are shown asymptot-

ically much closer to the smooth shape boundary than expected (Theorem 5).
This explains a posteriori why the convex hull is a “nice” approximation of the
underlying smooth convex shape (see Figure 1). Finally, Theorem 6 shows the
convergence of the normal vectors to the facets of the convex hull toward the
normal vectors of the input smooth convex shape with tight order 1

2 . The result
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Geometry of Gauss digitized convex shapes 3

input shape X Xh seen as voxels digitized convex ∂hX with facet
(i.e. ∂hX) hull Yh normals

Fig. 1. 3D illustration of notations and concepts, from left to right: input convex shape
X, its digitization Xh := X ∩ hZd seen as a collection of cubes (visually equivalent to
the h-boundary ∂hX), its digitized convex hull Yh := CvxH (Xh), the h-boundary ∂hX
with the normals of the closest facet on Yh. The three left images are rendered with
material “normal”, i.e. the displayed color corresponds to the normal vector direction.

is valid in arbitrary dimension and the constant is explicitly related to the reach
of the shape. Section 5 concludes and gives some perspectives. This paper is a
fundamental study of the geometric properties of digitized convex hulls. Com-
paring its practical accuracy to state-of-the-art digital normal estimators is an
essential next step, but for space reasons could not be developed here.

2 Basic notions

We are only concerned with convex sets of the Euclidean space that are compact.
Hence compact or bounded is implicit in all statements. The topological bound-
ary of a compact set S is denoted ∂S, its interior S̊ := S \∂S. The d-dimensional
volume of S is written Vold (S) (here taking the Lebesgue or the Hausdorff mea-
sure is equivalent in our context). The scalar product of two vectors u,v of Rn

is denoted by u ·v and the Euclidean norm of u is ∥u∥ :=
√
u · u. The Euclidean

distance between a point x and the set S is dE(x, S) := mins∈S ∥s− x∥.

Support function, normal cone, normal vector. Given a convex set S, we denote
by ϕS its support function, such that ϕS : w ∈ R

d 7→ maxx∈S w · x ∈ R. We
recall the main property of the support function [27, §1.7.1]:

Theorem 1. For S ⊂ T two convex sets of Rd, ∀w ∈ R
d, ϕS(w) ⩽ ϕT (w).

For a given unit vector w ∈ R
d, assume the point p ∈ S satisfies p · w =

ϕS(w), then p ∈ ∂S and we say that w is a normal vector to S at p. For any
p ∈ ∂S, the normal cone to S at p is the set of normal vectors to S at p, and
is denoted by NS(p). Note that the normal cone is reduced to one vector when
∂S is twice differentiable at p and we speak of the normal vector to S at p.

Gauss digitization, digitized boundary, digitized convex hull. The gridstep is a
real positive number denoted by h. The lattice hZd is denoted by Lh. The set X
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∂X

X

Xh

∂hX

Yh

Yh ⊕Hh

Yh ⊕Hh

⊕B√
d

2
h

∂X

Fig. 2. 2D illustration of the main notations: the convex shape X, its Gauss digitization
Xh, the convex hull of the digitization Yh and convex sets used in Theorem 4, Section 4
(Yh ⊕Hh, and Yh ⊕Hh ⊕B√

d
2

h
).

always designates a non-empty compact convex subset of Rd. Its Gauss digitiza-
tion at step h is the finite set Dh (X) := Lh ∩X. Following standard notations,
the number of lattice points hitting X is written Lh(X) := # (Dh (X)).

Let Hh be the hypercube h[− 1
2 ,

1
2 ]

d. For any digital set Z ⊂ hZd, the voxel
representation of Z is QhZ := Z⊕Hh (and is a union of axis-aligned cubes with
edge length h centered on each digital point of Z). The (digitized) h-boundary
of a subset S ⊂ R

d is ∂hS := ∂QhDh (S) (e.g. see [14]). Let (ei)i=1,...,d be the
canonical orthonormal basis of Zd. For any z ∈ Z, and if z′ := z ± hei is not in
Z, we call the pair (z, z′) a surfel of Z. Clearly, the segment [z, z′] crosses ∂hZ at
exactly a point, which is the center of the face of z⊕Hh common with z′ ⊕Hh.

Finally, the digital set Dh (X) is written Xh to shorten notations. The dig-
itized convex hull Yh of X is Yh := CvxH (Xh) (where CvxH (·) stands for the
convex hull). The objective of the paper is to show how we can infer the geometry
of X from the geometry of Yh. Refer to Fig. 2 and 1 for 2D and 3D illustrations.

3 Properties for digitized general convex shapes

This section focuses on geometric properties of digitized convex shape, without
specific assumptions on the input convex shape. Let X be a compact convex
shape of Rd (smooth or not). The next lemma states that if the shape boundary
∂X is close to a facet of an included polyhedron, then the normal of this facet
and the normal of a nearby point x of ∂X are close to each other, and, the closer
the points, the closer the normals. Besides, the further the projection of x is
from the boundary of the facet, the closer are the normals.

Lemma 1. Let Y ⊂ X be a convex polyhedron (i.e. Y = CvxH (V ), where V is
a finite subset of X). Let x be an arbitrary point of ∂X, and n ∈ NX(x). Let y
be the closest point of x on ∂Y (which is unique). Assume y is contained in only
one facet (say σ) of Y , with unit normal vector nσ. Then the normal vector nσ
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Geometry of Gauss digitized convex shapes 5

to Y and the normal vector n to X are related as:

n · nσ ⩾ 0,

sin2 ∠(n,nσ) ⩽
ϵ2

ϵ2+r2 ,
with

{

ϵ := ∥x− y∥,
r := dE(y, ∂σ).

Proof. Since y ∈ Y ⊂ X and using the support function of X, we have imme-
diately (see Theorem 1): y · n ⩽ ϕY (n) ⩽ ϕX(n) = x · n. But x = y + ϵnσ by
construction. Substituting above gives

y · n ⩽ (y + ϵnσ) · n ⇒ 0 ⩽ ϵnσ · n.

Either ϵ > 0 and we conclude for the relation n · nσ ⩾ 0, or ϵ = 0 and x = y

which implies σ ⊂ ∂X and NX(x) = NY (x) = {nσ}, hence nσ = n and we also
conclude.

For the second relation, let us project n onto the plane containing σ. This
gives the vector n′ := n− (n · nσ)nσ. If n′ = 0 then n = nσ and the relation is
obvious. Otherwise, by the convexity and compactness of σ, the ray from point y
in direction n′ hits the boundary of σ at one point a. We can write a = y+s n′

∥n′∥
with s the (positive) distance from y to a ∈ ∂σ. Note that s ⩾ r by hypothesis.

Since a ∈ σ ⊂ Y ⊂ X, we have a ∈ X and using the support function of X,
we get: a · n ⩽ supp∈X p · n = ϕX(n) = x · n. It implies (x− a) · n ⩾ 0. We can
decompose x− a = x− y + y − a = ϵnσ − s n′

∥n′∥ . It follows that

−s
n′ · n
∥n′∥ + ϵnσ · n ⩾ (x− a) · n ⩾ 0 ⇒ − s

√

1− (nσ · n)2 + ϵnσ · n ⩾ 0,

since simple calculations give n′ · n = n′ · n′ = 1− (nσ · n)2 (both n and nσ are
unit vectors). Posing c = nσ · n and recalling that the first relation implies that
c ⩾ 0, we derive

ϵc ⩾ s
√

1− c2 ⇒ c2 ⩾
s2

s2 + ϵ2
⇒ 1− c2 ⩽

ϵ2

s2 + ϵ2
.

Now sin∠(nσ,n) =
∥n′∥
∥n∥ =

√
1− c2. The result follows since r ⩽ s. ⊓⊔

In the following corollary (proof is in Appendix A), we consider as convex
polyhedron Y the convex hull Yh of Xh := Dh (X).

Corollary 1. Let (z, z′) be a surfel of Xh. Let y be the nearest point on ∂Yh to
z′ and let σ be a facet of Yh containing y, with normal vector nσ. We have:

– there exists x ∈ ∂X ∩ [y, z′[, that is at a distance less than h from y,
– for any n ∈ NX(x), sin2 ∠(n,nσ) ⩽

1
1+(r/h)2 , if r := dE(y, ∂σ).

The previous corollary looks like a proof of convergence of normal vectors
of Yh towards normal vectors of X. It means that the point where the best
estimation will be obtained is around the center of the inscribed circle/sphere of
the facet. However it leaves unclear where the exterior lattice points of boundary

Lowres version

Lowres version



6 J.-O. Lachaud et al.

Fig. 3. Digitizations of arbitrary convex shapes: ∂Yh (in red) can be very far away
from ∂X (in black, left figure); however there are exterior points close to long enough
edges, depending on the x- (middle, in green) or y-component (right, in blue) of the
edge vector, so ∂X is at a distance less than h near these points.

surfels are projected onto their nearest facet: perhaps no such point exists above
this center, especially if the facet is small or elongated. The following theorem
shows that there are indeed exterior lattice points just above the interior of facets
of Yh, for long enough edges in 2D or wide enough triangles in 3D.

We say that a d-simplex σ of vertices (p1, . . . , pd) in hZd is primitive if
CvxH (σ)∩hZd = {p1, . . . , pd}. The d−1-dimensional measure of the projection
of σ onto a plane orthogonal to the axis i ∈ {1, . . . , d} is denoted by Ai(σ) (in-
formally the length or the area of the projected simplex). See Figure 3 for a 2D
illustration of where the lattice points are not in X but close to Yh.

Theorem 2. For d ∈ {2, 3}, let σ be a primitive edge (d = 2) or a primitive
triangle (d = 3) of ∂Yh. Then there are (at least) k lattice points of hZd not in
X at a distance less than h from σ, where k follows:

– d = 2: then k = maxi∈{1,2}(Ai(σ)/h)− 1,

– d = 3: then k ⩾
−7+

√
25+48maxi∈{1,2,3} Ai(σ)/h2

2 .

Otherwise said, a segment of ∂Yh with one component greater or equal to 2h,
and a triangle with one projected area greater or equal to 7

6h
2, have at least one

close exterior lattice point not in X that projects in σ̊ along some ±ei.

Proof. Let us start with the case d = 2. Let σ = (p, q) be a primitive edge of
∂Yh. Let t = ±hei, i ∈ {1, 2} be an axis lattice vector such that p′ := p+ t ̸∈ X
and q′ := q + t ̸∈ X (at least one such vector exists, otherwise p and q are not
vertices of Yh). Let P be the parallelogram CvxH ({p, q, p′, q′}) and we denote
by k the number of lattice points in the interior of P . We use Pick’s theorem to
bound k from below:

Vol2
(

1

h
P

)

= Lh(P̊ ) +
1

2
Lh(∂P )− 1 (Pick’s theorem)

= k + 1 (since ∂P hits 4 points exactly)

These k interior points are necessarily outside X, otherwise they would be in Yh

and (p, q) would not be an edge of ∂Yh. Noticing that Vol2
(

1
hP
)

= 1
h2 | det(q −

p, t)| = 1
h |(q−p)i| = Ai(σ)/h and using both directions i ∈ {1, 2}, we have found
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Geometry of Gauss digitized convex shapes 7

k lattice points not in X but strictly inside a parallelogram touching Yh with
width at most h. This concludes.

The case d = 3 is harder, especially because there are lattice polyhedra with
infinite volume that hits a few lattice points.3 Let σ = (p, q, r) be a primitive
triangle of ∂Yh. Let t = ±hei, i ∈ {1, 2, 3} be an axis lattice vector such that
p′ := p+ t ̸∈ X, q′ := q + t ̸∈ X and r′ := r + t ̸∈ X (at least one exists for the
reason mentioned above). Let P be the triangular prism CvxH ({p, q, r, p′, q′, r′})
and we denote by k the number of lattice points in the interior of P . We ex-
ploit here Reeve’s result [26, Theorem I], valid for any integer n ⩾ 1 and full-
dimensional lattice convex polyhedron P :

2(n3 − n)Vol3
(

1

h
P

)

= 2
(

L h
n
(P )− nLh(P )

)

−
(

L h
n
(∂P )− nLh(∂P )

)

, (1)

and 2(1− n2) = L h
n
(∂P )− n2Lh(∂P ). (2)

Note that we have L h
n
(P ) = Lh(nP ) (where nP stands for homothety of P

centered at the origin by the factor n). We use the relations above with the
dilation factor n = 2.

Lh(P ) = 6+k and Lh(∂P ) = 6 are obvious from the fact that the triangular
face is primitive and k is the number of interior lattice points. Dilating by two the
lattice prism creates 5 lattice points per quadrangular face, and 3 per triangular
face, but most are shared between two faces (except one per quadrangle). We
have 3 quadrangular faces, so 3( 42 + 1) new lattice points. We have 2 triangular
faces, so 2( 32 ) new lattice points. Summing with the initial 6 lattice points gives
Lh

2
(∂P ) = Lh(∂2P ) = 6 + 9 + 3 = 18. We can already check (2).
Finally, each of the k interior lattice points of P can be combined with any

lattice point of ∂P and their middle point gives an interior lattice point of
Lh(2P ), hence at most 6k points. The middle point of any pair of interior lattice
points of P is also a lattice point of Lh(2P ) and there are at most

(

k
2

)

of them
that are distinct (some of them could be the same). We get Lh

2
(P ) = Lh(2P ) ⩽

18 + 6k +
(

k
2

)

. Inserting the found values in (1):

12Vol3
(

1

h
P

)

⩽ 2

(

18 + 6k +
k(k − 1)

2
− 2(6 + k)

)

− (18− 12) = 6 + 7k + k2.

Otherwise said, k satisfies k2 + 7k + 6− 12Vol3
(

1
hP
)

⩾ 0. A short computation

gives k ⩾ (−7 +
√

25 + 48Vol3
(

1
hP
)

)/2.

We notice again that Vol3
(

1
hP
)

= 1
2h3 | det(q − p, r − p, t)| = 1

h2Ai(σ) to
conclude the argument. ⊓⊔

The results in this section show that there are points on Yh where the nor-
mal vector of the underlying shape can be pretty well estimated, and we know
where the estimation will be good: above large enough facets and near their in-
scribed sphere center. However we have no control on the radius of the inscribed
3 For instance the tetrahedron {(0, 0, 0), (1, 0, 0), (0, 1, 0), (1, 1, j)} with j ∈ Z.
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8 J.-O. Lachaud et al.

sphere. The purpose of the next section is to get better estimates by considering
digitization of convex shapes with smoothness properties.

4 Properties for digitized smooth convex shapes

If we assume smoothness of the convex shape X, we can use the previous result
to show the convergence of normal vectors in 2D around most edges of Yh.

Theorem 3. If X is a convex shape of R2 with C3-smooth boundary and positive
curvature, then any edge σ of ∂Yh having at least the average length of edges of
∂Yh has a normal nσ close to the normal n of the closest point of ∂X to the
edge center, and more precisely ∠(n,nσ) ⩽ Θ(h

1
3 ).

Proof. [1, Theorem 2] tells that the number of vertices N(Yh) of Yh is some
Θ(h− 2

3 ). So the average length L(Yh) of the edges of Yh is the perimeter of
X divided by N(Yh), so L(Yh) = Θ(h

2
3 ). According to Theorem 2 in the case

d = 2, there are almost as many exterior lattice points as the discrete length
of the nearby edge. Except for a constant number of edges (maximum 8, the
ones having directions (1, 0) and (1, 1) and their 4 rotations), all the other edges
have an exterior lattice point close to the center of the edge. For an edge σ with
approximately the average length L(Yh), the estimation error between nσ and the
closest point on ∂X is (Corollary 1): sin2 ∠(n,nσ) ⩽

1
1+(L(Yh)/2h)2

= 1
1+Θ(h−2/3)

.

Taylor expansion of the previous relation gives ∠(n,nσ) ⩽ Θ(h
1
3 ). ⊓⊔

Unfortunately, this result cannot be easily extended to higher dimensions, since
there exist small or elongated facets starting from 3D. In fact, by using a com-
pletely different approach, we achieve below a much stronger result on normal
convergence.

Before that, let us try to better understand how the geometry of Yh and
the geometry of X exhibit more relations in the case where X has a smooth
boundary. The reach of S ⊂ R

d, denoted reach(S), is the infimum of the distance
of the set S to its medial axis [7] (the medial axis gathers points that have at
least two nearest neighbors on S). From now on, we change the smoothness
condition on X and we assume that reach(∂X) is greater than some ρ > 0. In
our context, it means that ∂X has its principal curvatures between 0 (included)
and 1/ρ (excluded).

We start by sandwiching X between Yh and Yh ⊕ Hh ⊕ B√
d

2 h
, where Br is

the ball centered on 0 and of radius r. Note that it is not true in general that
X ⊂ Yh ⊕Hh, as illustrated by Figure 2.

Theorem 4. Assume X ⊂ R
d, compact, convex with reach(∂X) > ρ. For all

gridsteps h, 0 < h < 2ρ√
d
, we have Yh ⊂ X ⊂ Yh ⊕ Hh ⊕ B√

d
2 h

. It follows that

the convex boundary ∂X lies in the strip Yh⊕Hh⊕B√
d

2 h
\ Int(Yh). Furthermore

dH(X,Yh) = dH(∂Yh, ∂X) ⩽
√
dh.

Lowres version

Lowres version



Geometry of Gauss digitized convex shapes 9

Proof. We have Xh ⊂ X so Yh = CvxH (Xh) ⊂ CvxH (X) = X and the first
inclusion follows. By definition, the h-boundary ∂hX of X is the topological
boundary of Xh ⊕Hh, i.e. ∂hX = ∂(Xh ⊕Hh). It implies

CvxH (∂hX) = CvxH (∂(Xh ⊕Hh)) = CvxH (Xh ⊕Hh) = Yh ⊕Hh. (3)

According to [14, Theorem 1], dH(∂hX, ∂X) ⩽
√
d
2 h for h < 2ρ√

d
. Hence

∂X ⊂ ∂hX ⊕B√
d

2 h
. (4)

By convexity X = CvxH (∂X). The second inclusion follows from

CvxH (∂X) ⊂ CvxH
(

∂hX ⊕B√
d

2 h

)

(using (4))

⊂ CvxH (∂hX)⊕B√
d

2 h
(commutativity of ⊕ and CvxH (·))

⊂ Yh ⊕Hh ⊕B√
d

2 h
. (using (3))

It remains to establish the Hausdorff distance between ∂X and ∂Yh. Since Yh,
X and Yh ⊕Hh ⊕B√

d
2 h

are all convex, we have these relations for their support

functions, for any w ∈ R
d:

ϕYh
(w) ⩽ ϕX(w) ⩽ ϕYh⊕Hh⊕B√

d
2

h
(w) = ϕYh

(w) + ϕHh
(w) + ϕB√

d
2

h
(w).

Subtracting ϕYh
(w) to the three terms above, and assuming ∥w∥2 = 1 gives:

0 ⩽ ϕX(w)− ϕYh
(w) ⩽ ϕHh

(w) + ϕB√
d

2
h
(w) ⩽

√
d

2
h+

√
d

2
h.

Since supw∈S ∥ϕX(w) − ϕYh
(w)∥ ⩽

√
dh for S the unit sphere of Rd, we have

that dH(X,Yh) ⩽
√
dh.

We finally use [31, Theorem 20], which states that “If A and B are non-
empty, closed, bounded convex sets, dH(A,B) = dH(∂A, ∂B)”, to conclude that
dH(∂X, ∂Yh) ⩽

√
dh. ⊓⊔

Corollary 2. For all gridsteps h, 0 < h < 2ρ√
d
, for y ∈ ∂Yh and any normal

vector w ∈ NYh
(y), define P as the plane orthogonal to w and containing y.

then for any point y′ ∈ P , we have that y′ + tw is outside X for t ⩾
√
dh.

Proof. Proof is in appendix. ⊓⊔
We now show that vertices of ∂Yh are much closer to ∂X than the upper

bound on dH(∂X, ∂Yh) suggests, ie. some Θ(h
3
2 ) instead of

√
3h in 3D. This

result is not really new. Most of the proof relies on the so called Macbeath
region of a point x ∈ X, that is MX(x) := X ∩ (2x − X) (intersection of X
with its central symmetry around x). Macbeath [20] introduced them to count
lattice points in-between two convex bodies. Similar arguments can be found
in the proof of the upper bound of [1, Theorem II], or from [2, Theorem 4.3
and discussion]. Our proof below has the advantage of expliciting precisely the
constant in the upper-bound with respect to the reach.
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10 J.-O. Lachaud et al.

Theorem 5. Assume the convex set X ⊂ R
d has reach(∂X) > ρ. Let y be a ver-

tex of Yh. It holds that, for gridsteps h, 0 < h ⩽ ρ, dE(y, ∂X) < αdρ
− d−1

d+1 h
2d

d+1 ,
where the constant αd depends on the dimension. If h is sufficiently small, we

have α2 ≈
(

3
2
√
2

)
2
3

and α3 ≈ 2√
π
.

Proof. Any vertex y of Yh is at a distance less than h from ∂X (one of y±hei, i ∈
{1, . . . , d}, must be outside X). So dE(y, ∂X) ⩽ h and y is within the reach of
∂X by hypothesis. Let x be the projection on ∂X of y and n := x−y

∥x−y∥ the unit
outward normal to X at x. The open ball B of center x − ρn and radius ρ is
contained in X. Furthermore, y belongs to the straight segment [x− ρn,x].

Let SX := MX(y) = X ∩ (2y −X) and SB := MB(y) = B ∩ (2y − B) (see
Figure 4). Since B ⊂ X we have SB ⊂ SX , hence Vold (SB) ⩽ Vold (SX). We
explicit Vold (SB) as a function of δ := ∥x− y∥ = dE(y, ∂X).

It is clear that SB is the union of two caps of a d-ball of radius ρ. Each slice
of each cap is itself a d−1-ball of radius s, denoted by Bd−1(s), where s depends
on the distance t to x. It is also known that Vold−1

(

Bd−1
)

(s) = π(d−1)/2

Γ ((d+1)/2)s
d−1.

Besides Pythagoras theorem indicates ρ2 = (ρ− t)2 + s2, so s =
√

2ρt− t2. We
compute:

Vold (SB) = 2

∫ δ

0

Vold−1
(

Bd−1(
√

2ρt− t2)
)

dt = 2

∫ δ

0

π
d−1
2

Γ
(

d+1
2

)

(

√

2ρt− t2
)d−1

dt.

Standard integral computations gives:

– for d = 2, we have Γ ( 32 ) =
1
2

√
π, and Vol2 (SB) =

8
√
2ρ
3 δ

3
2 +O

(

δ
5
2√
ρ

)

,

– for d = 3, Γ (2) = 1, and Vol3 (SB) = 2πρδ2 − 2
3πδ

3,

– for d = 4, Γ ( 52 ) =
3
4

√
π, and Vol4 (SB) =

32π
√
2ρ

3
2

15 δ
5
2 +O

(

δ
7
2
√
ρ
)

.

For a bound generic in d, it is enough in our context — and simpler — to
compute the volume of the bi-cone within SB , hence:

Vold (SB) ⩾ 2

∫ δ

0

Vold−1

(

Bd−1(
t

δ

√

2ρδ − δ2)

)

dt

⩾ 2

∫ δ

0

π
d−1
2

Γ
(

d+1
2

)

(

t

δ

√

2ρδ − δ2
)d−1

dt = Θ
(

ρ
d−1
2 δ

d+1
2

)

.

We may now use Minkowski’s theorem [23] on SX . The volume of SX cannot
exceed (2h)d. Indeed, if this is the case, then SX must contain at least two other
lattice points z and z′ symmetric around y (y−z = z′−y). But both z, z′ ∈ X,
so z and z′ belong to Xh and thus Yh. Yet y is a vertex of the convex polyhedron
Yh and cannot be in the middle of two other points of Yh. It follows that

(2h)d > Vold (SX) ⩾ Vold (SB) ⩾ Θ
(

ρ
d−1
2 δ

d+1
2

)

.
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y
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w
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c

ρ

B

c
′
p

p
′

Fig. 4. Illustrations for the proofs of Theorem 5 (left) and Theorem 6 (right).

We achieve this upper bound for vertex distance δ < αdh
2d

d+1 /ρ
d−1
d+1 . Constants

α2 and α3 are derived from the more precise formula above. ⊓⊔

One can check in practice that these theoretical bounds are indeed reached in
2D and 3D, on digitizations of ellipses for instance, and that the constants are
quite tight (see Figure 5, page 15).

Theorem 6 below is our main result: it shows that the normal vectors to
the facets of the digitized convex hull converge towards the normal vectors of
the smooth convex shape, for small enough gridstep h, and that the speed of
convergence is proportional to

√

h/ρ.

Theorem 6. Assume the convex set X ⊂ R
d has reach(∂X) > ρ. Let y be any

point on the boundary ∂Yh. The point x := π∂X(y) is its closest point on ∂X,
and it is well known that the outer normal n to X at x is aligned with x − y.
Let w ∈ NYh

(y) be any normal vector to Yh at y. Let δ := ∥x − y∥. Then for
gridsteps h, 0 < h < ρ√

d
, it holds that 0 ⩽ δ <

√
dh and:

n ·w ⩾
1−

√
dh
ρ

1− δ
ρ

⩾ 1−
√
d
h

ρ
> 0 i.e. ∠(n,w) ⩽ O

(
√

h

ρ

)

.

Proof. See Figure 4 (right) for an illustration. Let B be the ball centered on
c := x − ρn and of radius ρ. Since ∂X has positive reach ρ, B lies inside X.
Let P be the plane containing y and orthogonal to w and let c′ := πP (c) =
c− ((c−y) ·w)w, i.e. the projection of c onto P . Letting δ := ∥x−y∥, we have
∥c− y∥ = ρ− δ since c,y,x are aligned.

(c′ − c) ·w = (c− ((c− y) ·w)w − c) ·w
= (y − c) ·w = (ρ− δ)n ·w. (5)

On one side, we know that p := c + ρw belongs to B hence also to X. On the
other side, Corollary 2 entails that p′ := c′ +

√
dhw does not belong to X and
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12 J.-O. Lachaud et al.

more precisely that ϕX(w) < p′ ·w. We have

p ·w = (c+ ρw) ·w ⩽ ϕX(w) < p′ ·w = (c′ +
√
dhw) ·w

⇒ ρ−
√
dh < (c′ − c) ·w = (ρ− δ)n ·w. (using (5)) (6)

Corollary 2 also implies that δ <
√
dh (otherwise x would be outside X). Since

h < ρ/
√
d by hypothesis, we have δ < ρ and

√
dh < ρ, so the left hand side of

(5) is positive, and so is its right hand. This entails n ·w > 0. Moreover

n ·w >
ρ−

√
dh

ρ− δ
=

1−
√
dh/ρ

1− δ/ρ
⩾ 1−

√
d
h

ρ
. (7)

Let α := ∠(n,w). So cosα > 1−
√
dh
ρ . From the above expression, it can be seen

that α tends to zero as h tends to zero. Taylor expansion of arccos(1 −
√
dh
ρ )

around h = 0 gives α <
√

2
√
d

ρ h+O(h
3
2 ), which concludes. ⊓⊔

The result is tight in convergence order, and we can exhibit a simple example
where the constant is almost reached (gap is less than 21/4 ≈ 20%). Just take
a disk X of radius ρ = h(k + 1 − ϵ), k a positive integer, ϵ an arbitrary small
positive real number. The convex hull Yh has a vertical edge symmetric about
the x-axis going through the lattice point (hk, 0). Due to Pythagoras theorem,
its two vertices are close to ±(hk, h

√
2k) (up to negligible terms). Let x be the

closest point on ∂X to the upper vertex, its normal is n ≈ (k,
√
2k)√

k2+2k
. The normal

to edge is w = (1, 0). We get n ·w = 1√
1+2/k

, thus ∠(n,w) ≈
√

2
k ≈

√

2h
ρ , to

compare with
√

2
√
2h
ρ of the theorem.

5 Conclusion

In this paper, we have explored links between geometrical quantities estimated
at the boundary of a convex set X ⊂ R

d and similar quantities on the boundary
of the convex hull of the digitization of X. We have shown the proximity of the
digitized convex hull to X in terms of Hausdorff distance and highlighted that
convex hull vertices are much closer to ∂X than their incident faces, explaining
the visual quality of convex hulls. Our main result is that the normal vector
to each facet of the digital convex hull converges towards the normal vectors of
the convex shape, for small enough gridstep h, with explicit convergence speed
(proportional to

√

h/ρ for smooth convex shapes). This result indicates that the
normal vector to facets of the digitized convex hull could be used as a discrete
normal estimator on digitized convex shapes, and more generally in convex or
concave parts of digitized shapes.

This result is related to the properties of the projection function πK onto the
nearest point on a compact set K, where the difference between πK and πK′ is
shown proportional to the square root of their Hausdorff distance [4,22]. Even if
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we have shown that vertices are closer than O(h), this is not the case elsewhere
on the shape. Our achieved result is then tight, with a constant much better
than the one of Voronoi Covariance Measure [21,22], which also requires kernel
integration.

The next step is to evaluate the practical accuracy of this normal estimator
with respect to state-of-the art approaches [9,5,15]. Furthermore, normal vectors
to facets could be combined, convolved or interpolated to design more accurate
normal estimators. We intend to pursue this line of work in an extension or a
subsequent paper.
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Fig. 5. Distance of digitized convex hull vertices to input sphere9 shape (left) and
ellipsoid shape (right), as a function of the gridstep h: convex hull vertices are much
closer to the smooth input shape boundary than most digitized points, i.e. O(h

3
2 ). The

expected constant is 2/
√
πρ, that is 2/

√
9π ≈ 0.376 for sphere9 and 2/

√

45π/
√
30 ≈

0.394 for ellipsoid. Lightest green zone indicates min/max values, medium green zone
indicates the standard deviation around the median value.

A Proofs of some properties

Corollary 1 Let (z, z′) be a surfel of Xh. Let y be the nearest point on ∂Yh to
z′ and let σ be a facet of Yh containing y, with normal vector nσ. We have:

– there exists x ∈ ∂X ∩ [y, z′[, that is at distance less than h from y,
– for any n ∈ NX(x), sin2 ∠(n,nσ) ⩽

1
1+(r/h)2 , if r := dE(y, ∂σ).

Proof. We have ∥y − z′∥ ⩽ ∥z − z′∥ = h since y is the closest point of Yh to
z′ and z belongs also to Yh. Since y ∈ Yh = CvxH (Xh) ⊂ CvxH (X) = X
and z′ ̸∈ Xh so z′ ̸∈ X, there must be a point x on the boundary of X on the
straight segment joining y to z′. It follows that ∥y−x∥ < ∥y−z′∥ ⩽ h, the strict
relation coming from x ̸= z′. The relation between normal vectors follows from
Lemma 1, replacing ϵ with the distance h, if y lies in the interior of the facet σ.
However if y ∈ ∂σ, then r := dE(y, ∂σ) = 0, and the angle relation reduces to
sin2 ∠(n,nσ) ⩽ 1, which is always true. ⊓⊔

Corollary 2 For all gridsteps h, 0 < h < 2ρ√
d
, for y ∈ ∂Yh and any normal

vector w ∈ NYh
(y), define P as the plane orthogonal to w and containing y.

then for any point y′ ∈ P , we have that y′ + tw is outside X for t ⩾
√
dh.

Proof. Indeed w ∈ NYh
(y) implies by definition that ϕYh

(w) = y · w. The
Hausdorff distance between Yh and X is less than

√
dh (Theorem 4), so

ϕX(w) < ϕYh
(w) +

√
dh. (8)

Let y′′ := y′ + tw, for t ⩾
√
dh. Observe that y′ ·w = y ·w since y′ belongs to

P . It follows that y′′ ·w = y′ ·w+ tw ·w = y ·w+ t ⩾ ϕYh
(w)+

√
dh. Using (8),

we get y′′ ·w > ϕX(w) and y′ ̸∈ X by definition of the support function. ⊓⊔
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