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ABSTRACT

Much e�ort has been put into developing samplers with speci�c
properties, such as producing blue noise, low-discrepancy, lattice
or Poisson disk samples. These samplers can be slow if they rely
on optimization processes, may rely on a wide range of numeri-
cal methods, are not always di�erentiable. The success of recent
di�usion models for image generation suggests that these models
could be appropriate for learning how to generate point sets from
examples. However, their convolutional nature makes these meth-
ods impractical for dealing with scattered data such as point sets.
We propose a generic way to produce 2-d point sets imitating exist-
ing samplers from observed point sets using a di�usion model. We
address the problem of convolutional layers by leveraging neighbor-
hood information from an optimal transport matching to a uniform
grid, that allows us to bene�t from fast convolutions on grids, and
to support the example-based learning of non-uniform sampling
patterns. We demonstrate how the di�erentiability of our approach
can be used to optimize point sets to enforce properties.
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1 INTRODUCTION

A wide range of samplers have been designed in the past, for quasi-
Monte Carlo integration, rendering, image stippling, positionning
objects or generally, to uniformly or non-uniformly cover some
space. The generated samples can have various properties, such
as being low discrepancy or strati�ed, having a blue noise spec-
trum, producing low integration error, with high packing density,
satisfying a Poisson disk criterion, or high inter-point distances
[Pharr et al. 2016; Singh et al. 2019]. Di�erentiability can also be
desirable in contexts involving further optimizations, but may be
problematic for speci�c samplers, for instance when considered in
a di�erential renderer [Jakob et al. 2022b]. The large set of avail-
able samplers makes sample generation lacking genericity, with
methods involving smooth non-convex optimization, integer linear
programming, number theory, bruteforce approaches with clever
data structures, etc. Finally, it may happen that sample distribu-
tions are known only through a set of examples, without a known
dedicated sampler, hence the need for an example-based method
able to generate point sets from a set of examples, while capturing
the �ne-grained properties of the point distribution.

Recently, di�usion models have become extremely popular in
the context of image generation [Sohl-Dickstein et al. 2015; Ho et al.
2020; Rombach et al. 2022]. By learning how to denoise an image
that initially only contains random values, these models have been
able to produce impressive results, i.e., to learn the very �ne struc-
ture of the manifold of realistic images. It hence seems judicious
to take advantage of these models to learn the very �ne structure
of sample points produced by existing samplers. However, these
models heavily rely on convolutions, which makes it impractical to
e�ciently handle point sets.

In this paper, we propose to learn the distribution of 2-d sam-
ples produced by a wide range of samplers using a di�usion model.
When point sets are not strati�ed, we resort to an optimal transport
matching to a uniform grid that mostly preserves neighborhood
information so as to bene�t from e�cient convolutional layers.
We demonstrate that a single architecture is able to learn sample
points produced by di�erent methods, and even allows to repro-
duce non-uniform point sets. The di�erentiability of our network
allows us to add properties to a given samplers, e.g., allowing to
add low discrepancy properties to a given optimal transport-based
sampler. We also demonstrate that a mild change in our architecture
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– adding distribution class conditioning – allows to train a single
network for a whole set of samplers. Hence a single network can
provide di�erent types of point sets, and produce points of a desired
distribution.

While our network is currently limited to generating 2-d or 3-d
samples, it produces samples beyond the range of samples count
it has been trained on. We provide trained networks alongside the
paper and believe this exciting step will open the door to further
applications. Code is provided in supplementary material.

2 RELATED WORKS

Existing samplers have a wide range of properties. We enumerate
importants classes of samplers below.

Blue Noise. Blue noise samples have a characteristic “ring-like”
Fourier power spectrum, with low frequencies converging to zero.
They are interesting forMonte Carlo integration purposes [Subr and
Kautz 2013; Pilleboue et al. 2015], digital halftoning [Ulichney 1987]
or stippling [Deussen et al. 2000] and well describe arrangements
of natural phenomenas that have been optimized through evolu-
tion such as the retinal distribution of cones [Yellott 1982]. They
are often costly obtained through optimization, for instance using
kernel approaches [Fattal 2011; Ahmed et al. 2022], pair-correlation
function [Öztireli and Gross 2012] or optimal transport [De Goes
et al. 2012; Qin et al. 2017; Paulin et al. 2020], though fast approxi-
mations exist [Nader and Guennebaud 2018]. Tile-based approaches
pre-compute tiles for fast synthesis, but arememory demanding [Os-
tromoukhov et al. 2004; Ostromoukhov 2007; Ahmed et al. 2017;
Kopf et al. 2006; Wachtel et al. 2014].

Poisson Disk. As an alternative way to tackle the blue noise point
pattern construction and as coined by Ulichney [1987], Poisson
disk samples have the property that no point fall within a distance
smaller than a threshold from another point [Yuksel 2015; Gamito
andMaddock 2009;Wei 2008; Bridson 2007; Dunbar andHumphreys
2006; Dippé and Wold 1985; Cook 1986]. Their spectra resemble
those of blue noise distributions, except that they do not decrease
towards zero as the frequency decreases [Pilleboue et al. 2015].
They naturally occur in other natural process such as the placement
of trees in a forest. In low dimensions, they are relatively fast to
compute.

Low Discrepancy Sequences. Discrepancy is a uniformity measure
directly related to Monte Carlo integration error. Low discrepancy
sequences (LDS) thus have several advantages. First they are se-
quences, so that samples can be progressively added. Second, they
are low discrepancy, hence guaranteeing good numerical integra-
tion error [Niederreiter 1992; Lemieux 2009]. Samplers achieving
low discrepancy usually rely on arithmetic and number theory
constructions leading to extremely fast generators (e.g. in base 2,
the 8-th sample using [Sobol’ 1967] is given by a matrix/vector
multiplication in�� (2) on the bitwise representation of 8). Alterna-
tively, lattices produce low discrepancy sequences. A rank-1 lattice
repeatedly translates an initial point by a given amount in a given
direction in a toric domain [Keller 2004]. Rank-n lattices similarly
use multiple independent vectors. Good lattices can be similarly
hard to optimize for [L’Ecuyer and Munger 2016].

Designing Complex Point Processes. Aside global point set proper-
ties such as blue-noise, Poisson disk or low discrepancy, the problem
of designing a point process matching some exemplars or satisfying
additional constraints has been addressed in several ways. One can
design sampler mixing global properties such as low discrepancy
and blue-noise [Ahmed et al. 2016; Ahmed andWonka 2021; Perrier
et al. 2018], or one can use a pro�le-based approach to generate LDS
samplers with adjustable or with scriptable properties, such as blue-
noise properties or strati�cation on some projections [Paulin et al.
2022; L’Ecuyer and Munger 2016]. Mixing point process properties
can also be achieved by interpolating their high order statistics
such as their pair-correlation functions [Öztireli and Gross 2012].
Focusing on spectral properties, Zhou et al. [2012] have proposed
an energy formulation and a gradient descent approach to optimize
samples targeting a given Fourier spectrum. Leimkühler et al. [2019]
have followed a similar approach using a neural network to target
speci�c pro�les de�ned as combinations of radial power spectra.
In a texture-synthesis like manner, Huang et al. [2022] proposed
to extend point set patterns by using a set of Gabor �lter results
as input to a CNN and matching resulting feature maps. Tu et al.
[2019] follow a similar approach of point pattern upscaling using
irregular convolutions by evaluating the convolution operator on a
grid. Targeting repetitive patterns, Roveri et al. [2015] use a mul-
tiscale local-global optimization that they applied repetitive point
set synthesis.

Point sets through deep learning. Perhaps the closest to our work
is that of Leimkühler et al. [2019]. They learn arbitrary dimensional
point sets by matching point statistics such as power spectra or
distance statistics. There is a number of important di�erences with
respect to our work. First, they require statistics (e.g., a power
spectrum) as input while we require examples from a given sampler.
This allows us to capture all characteristics of samplers and not
just selected statistics). Second, our network is able to produce
point sets of signi�cantly di�erent sizes without re-training. Third,
we propose a way to bene�t from e�cient convolutions on grids.
While this restricts us to low-dimensional settings (we demonstrate
our approach in two and three dimensions), this allows us to use
thousands of convolution layers at di�erent scales and to bene�t
from recent advances in di�usionmodels. These di�erences allow us
to �nely capture the structure of point sets (see Sec. 4.2). Point sets
generated by our method can be used for Monte Carlo integration
purposes. In this context, deep learning has been used to learn a
control variate [Müller et al. 2020], though this does not directly
address the location of point samples. Deep learning has also been
used for importance sampling [Müller et al. 2019].

Probabilistic Denoising Di�usion. Our method is based on Proba-
bilistic Denoising Di�usion, a concept introduced by Sohl-Dickstein
et al. [2015] in the context of unsupervised learning. The core idea
of denoising di�usion is to gradually remove any structure in an
input image by progressively adding noise and to train a neural
network to invert the degradation process. This allows to capture
the data distribution and sample from it. This idea has been exten-
sively used for image synthesis [Ho et al. 2020] with impressive
results, either by working directly in pixel space or in the latent
space [Rombach et al. 2022]. Denoising di�usion models have been
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extended to 3D shape point sets, by conditioning on a shape la-
tent using a PointNet encoder [Luo and Hu 2021], or by relying
on a Point-Voxel CNN [Zhou et al. 2021]. A hierarchical approach
combining both a global latent representation and a point latent
representation using denoising di�usion models for both represen-
tation and Point-Voxel CNN for encoding and decoding the shape
has also been proposed [Zeng et al. 2022]. While these architec-
tures are able to sample coarse 3d shapes, and are related to our
context since they address irregular data, they fail at capturing the
�ne-grained point distribution properties we are interested in. In
this paper, we propose to exploit the capacity of these denoising
di�usion models to learn structure from a set of examples to learn
point distributions.

3 DENOISING DIFFUSION MODEL

3.1 Architecture

The denoising process involves a sequence of denoising operations
which operate at given timesteps. Each denoising is achieved by
a forward pass in a single denoising network Y\ , which takes as
input both the noisy image G̃C and the embedded timestep C .

Our network architecture is very similar to the one of Ho et al.
[2020]. It corresponds to a U-Net [Ronneberger et al. 2015], where
each level is composed of two convolutional residual blocks (ResNet)
and the feature maps are downsampled by a factor 2 between each
level. While the original architecture included attention blocks
between the convolutional blocks at some levels, we found that
removing this attention led to comparable or better results and re-
duced the training time. We trained the model using 1000 di�usion
time steps but used only 50 time steps at inference time, which
allowed for faster synthesis for comparable results (see the supple-
mentary material for an ablation study an our network architecture
details).

The network learns a time-dependent noise model Y\ (G̃C , C) given
a noise YC added to the input data, G̃C = GC + YC at each time step C .
In our setting, G0 is the o�set between strata centers and the input
point set as obtained in Sec 3.2. The network thus predicts noise,
that can then be progressively removed from a gaussian white noise
point set to denoise it according to the learned data distribution.

3.2 Convolutions on grids

While computing the required convolutions used in the di�usion
model is possible on unstructured point sets [Groh et al. 2019;
Simonovsky and Komodakis 2017; Hua et al. 2018], this comes
at a prohibitive cost in our context, due to the large number of
convolutions involved. Fortunately, our point sets are not arbitrary
but may uniformly cover the unit square. In certain cases, they can

be strati�ed, i.e., each stratum of size 1√
=
× 1√

=
contains a single

sample. This is notably the case for the large class of (0,<, B)-nets
samplers [Niederreiter 1992]. In that case, we use a pixel grid of

√
=×√

= pixels, and store in each pixel the 2-d o�set between the stratum
center and its corresponding sample location. When this is not
the case, we compute a linear assignment using optimal transport
between the strata centers and the set of samples (Fig. 1) [Bonneel
et al. 2011], and similarly store in each pixel the 2-d o�set between
the stratum center and its corresponding sample location. This

assignment is done only once, upon loading a point set at training
time, and is not needed at inference time. Doing so allows towork on
2-d grids and bene�t from optimized convolutions. In our settings,
the grid acts as an approximate nearest neighbor acceleration data
structure, such that, when a convolution is performed, neighboring
samples approximately correspond to neighboring pixels, and are
thus appropriately weighted. We evaluate this property with non-
uniform sampling in Sec. 4.3. This remapping further allows to
remain invariant under re-ordering of samples. This encoding can
be extended to point sets of any dimension following the same
principle.
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Figure 1:When input point sets are not strati�ed, we compute

a linear assignment problem between strata centers (red) and

sample points (blue) using optimal transport. Each stratum

stores its assigned point o�set (green arrows). The grid thus

serves as an approximate nearest neighbor acceleration data

structure and bene�ts from e�cient convolutions.

3.3 Training

The bene�t of a convolutional approach is that the same convolution
weights can be used for di�erent grid sizes. It thus becomes possible
to train the same network with point sets of di�erent sizes, and
hope that it generalizes. We explore in Sec. 4.2 how it succeeds
in generalizing. However, within a single batch, the sample count
should remain the same, due to the way batches are processed. For
a given batch of size �, we thus build a loss that sums contributions
for di�erent input grid sizes S stored in di�erent batches:

L(n\ , nC ) =
∑

9∈S

1

�

�∑

8=1

∥n\ (G̃C8 , C8 ) − nC8 ∥2 ,

for randomly chosen {C8 }. We typically use S = {8× 8, 16× 16, 32×
32}, hence learning from sample sizes {64, 256, 1024}. We obtain
one trained network, of the same architecture but di�erent training
weights, per type of sampler, each able to produce point sets of
di�erent sample sizes.

3.4 Conditioning

Our vanilla architecture allows to learn the characteristics of a
set of observations of sample distributions. However, it requires to
train a di�erent network for each distribution class. To alleviate this
requirement, we propose a simple extension of our method to train
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a single network for several sampler classes. In practice, all pixels
in the image are concatenated with a vector giving the encoding of
the desired sampler class. See the supplementary material for more
details and results.

4 VALIDATION AND APPLICATIONS

4.1 Implemenation

We train networks to reproduce Sobol’ samples with Owen’s scram-
bling [Sobol’ 1967; Owen 1998] as a representative LDS matrix-
based sampler, LatNetBuilder [L’Ecuyer and Munger 2016] samples
as a representative LDS lattice-based sampler, a Poisson disk sam-
pler (classical dart throwing approach), SOT [Paulin et al. 2020]
as a representative blue noise sampler using optimal transport,
GBN [Ahmed et al. 2022] as a representative kernel-based blue
noise sampler, LDBN [Ahmed et al. 2016] as a sampler that com-
bines low discrepancy properties and blue noise spectrum, and
Rank-1 [Keller 2004] as a representative of lattice based sampler.
We train all our models using 64k point sets of each sample count
in S, except for the SOT sampler trained with only 32 (not 32k)
point sets to assess robustness to small training datasets. We train
for a constant time of 3 hours, and synthesis time is typically
0.1s for a point set of 4096 points using 50 di�usion steps (2 sec-
onds for 1000 di�usion steps) on an Nvidia V100. As a compari-
son, optimization-based samplers usually need several seconds to
sample a point set of the same size (multithreaded CPU SOT and
GPU-based GBN require 3.0s on AMD Ryzen 7 1700X and 4.5s on
Nvidia V100 respectively). The source code is available at https:
//github.com/BDoignies/ExampleBasedSamplingWithDi�usion.

4.2 Properties of generated samples

We study power spectra, optimal transport energy, discrepancy,
integration errors and minimum distance statistics of generated
point sets, and verify that they match properties they were trained
for. We also verify how our network generalizes as we increase
the number of samples outside the range it was trained for. For
these comparisons, we compare to the approach of Leimkühler et al.
[2019] (DC for short in the graphs). For stationary and isotropic
point processes (Poisson disk and GBN), we have used their publicly
available implementation with a 1d radial mean power spectrum
loss (same learning parameters as the one provided by the authors
for similar experiments). Non-stationary or anisotropic point pat-
terns (SOT, LDBN, Sobol’+Owen and Rank1), fall outside of the
scope of the approach of Leimkühler et al. [2019] as it considers
anisotropic samplers de�ned by isotropic properties on axis pro-
jections (for instance a 3d point set with blue-noise characteristics
on the XY subspace and a step pro�le on the XZ subspace). We
also include in our experiments a comparison to the Point Pattern
synthesis approach [Huang et al. 2022] (PPS for short). This method
being dedicated to point pattern upsampling, we use it to upscale
point sets from 1024 samples to 4096. Additional upscaling results
compared with Tu et al. [2019] are available in supplementary mate-
rials. On some violin plot �gures we omit Sobol’+Owen or Rank1 as
either their implementation fails to produce a point set, or the error
values are above the others which would hinder the readability of
the �gure.

Finally, we have also tested point set dedicated denoising dif-
fusion models [Luo and Hu 2021; Zhou et al. 2021] in Figure 2,
showing that both methods fail at capturing the point distribu-
tion properties. The resulting point sets are very far from both the
reference and our results.

Original Our

[Luo and Hu 2021] [Zhou et al. 2021]

Figure 2: Comparisons with alternative deep models ded-

icated to point cloud processing ([Luo and Hu 2021] and

[Zhou et al. 2021]). For this experiment, we have considered

an LDBN point set target with 256 samples.

While we trained our network on small set of sample sizes
({64, 256, 1024}), we assess the performance of these metrics for
other sample sizes ({576, 4096}). Its ability to generalize to unseen
sample counts shows that our network did not merely memorize
point sets from the training set. For most of these properties, we
illustrate them with violin plots (Fig. 3, 4, 5, 6), that show the dis-
tribution of values in the form of vertical histograms (similar to a
population pyramid). We compute them using 128 point sets.

Power spectra. In Fig. 13, we �rst show performances of the
method of Leimkühler et al. [2019] and our approach to recover
spectral properties of the training sets (either through 1d radial
mean power spectra for stationay and isotropic point sets, or 2d
spectra for other ones). As discussed above, capturing anisotropic
spectra with the method of Leimkühler et al. [2019] is very challeng-
ing using a 2d spectra loss function. Our approach fully captures
such characteristics.

Optimal transport energy. Optimal transport (OT) provides a
way to characterize the uniformity of a point set by computing
the (squared) semi-discrete optimal transport distance between the
point set and a uniform distribution [Mérigot 2011]. Fig. 3 illustrates
how we match the OT energy.

Discrepancy and integration error. Fig. 4 and 5 show how our net-
work matches integration errors and discrepancy of point sets. For
discrepancy, we used the generalized L2 discrepancy [Niederreiter
1992; Heinrich 1996]. For integration error, we compute the average
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Figure 3: We verify that the point sets predicted by our net-

work match the semi-discrete optimal transport distance to

a uniform distribution of the original point sets. These plots

show these statistics distributions for 128 point sets from

the training set and produced by our network, for sample

counts of 64, 256, 576, 1024 and 4096 (top to bottom). The

network has only been trained with point sets of 64, 256 and

1024 samples, but successfully predicts point sets of 576 and

4096 samples (results highlighted in an orange frame). Labels

pre�xed by DC refer to Deep Point Correlation [Leimkühler

et al. 2019] (on 1d radial power spectral, unless 2d is speci�ed),

while NN refers to results produced by our Neural Network.

We upsampled 1024 sample point sets to 4096 using the ap-

proach of Huang et al. [Huang et al. 2022] (PPS). For Owen,

this resulted in values above our graph ranges. For R1, this

produced NaN values.

MSE on the integration of wide anisotropic Gaussians (anisotropic
ratio between 1:1 and 1:9, and Gaussian sizes ranging from 0.1 to
0.333 for its largest axis) or Heaviside distributions randomly lin-
early dividing the unit square. We randomly chose 64k integrands
among 1 million, whose integral has been estimated with maximum
precision as reference. These statistics also often match for sample
sizes not seen during training ({576, 4096}).

Minimum distance. For distributions such as Poisson Disk, the
minimum distance between any pair of samples can be important.
We assess this statistics in Fig. 6. This property is highly sensitive as
it only depends on the location of 2 points within the entire point set.
For this property, the approach of Leimkühler et al. [2019] performs
remarkably well, due to the repulsion of points introduced during
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Figure 4: Our network matches integration errors on Gauss-

ian integrands (top 4 plots) and Heaviside integrands (bot-

tom 4 plots), even beyond the sample sizes it was trained for

({64, 256, 1024}). Sample counts are 64, 256, 576, 1024 and 4096

(top to bottom for each integrand). For PPS, we upsampled

1024 sample point sets to 4096: for Owen, this resulted in val-

ues above our graph ranges; for R1 we obtained NaN values.
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Figure 5: Our network matches the generalized L2 discrep-

ancy of the original point sets. Sample counts are 64, 256, 576,

1024 and 4096 (top to bottom). For PPS, we upsampled 1024

sample point sets to 4096: for Owen, this resulted in values

above our graph ranges; for R1, this produced NaN values.

learning. In our approach, we tend to produce points with lower
minimum distance value.

Conditioning. Finally, Fig. 7 evaluates the performances of the per
class conditioning as discussed in Sect. 3.4. When compared to our
vanilla model learned on each class, our conditioned model learned
for all classes performs slightly worse than the vanilla models
trained separately for each class, but it still provides a reasonable
approximation. In the supplementary material, we provide further
comparisons for all metrics and sample counts.

Di�usion model in 3d. Using optimal transport in 3d and convo-
lutions on 3d grids, our model can be extended to process 3d point
sets. In Fig. 8, a preliminary performance evaluation is given for
the heaviside integration test on 4096 samples. Additional results
are also given in supplementary material.

4.3 Non-uniform distributions

The goal of our optimal transport matching to a uniform grid is
to infer neighborhood information on the point sets from neigh-
borhood information on the grid, that is, neighboring points on
the grid are expected to correspond to neighboring samples. In
Fig. 9, using a non-uniform linear ramp sliced optimal transport
sampling, we show that, even for non-uniform sampling, our net-
work successfully learns from examples and preserve spectral noise
characteristics of the sampler. As a stress test, we also learn to sam-
ple a blobby function shown in Fig. 12. In this example, we learn
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Figure 6: We evaluate the minimum pairwise distance be-

tween samples. This property is highly sensitive as it only

depends on the location of 2 samples. Our network tends

to produce smaller values, while the sample repulsion of

Leimkühler et al. [2019] better preserve minimum distances.

Sample counts are 64, 256, 576, 1024 and 4096 (top to bottom).

For PPS, we upsampled 1024 sample point sets to 4096: for

Owen, this resulted in values above our graph ranges; for R1,

this produced NaN values.
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Figure 7:We compare the vanilla per class trainedmodel with

the global conditioned one for the integration error metric

on Gaussian integrands for 1024 samples.
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Figure 8: Extension to 3D - Results of our network on inte-

gration errors for 3d Heaviside integrands and 4096 samples.

from importance sampled GBN point sets obtained by rejection
sampling. Our network reproduces the sampling density well, and
mostly preserves important characteristics of the GBN sampler
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despite inaccuracies in neighborhood information due to the grid
embedding. As a failure case, for highly non-uniform point sets
with many voids and clusters, e.g. pink noise of Fig. 10, the optimal
transport matching may lead to suboptimal results. Clusters and
voids in the pink noise distribution are located at di�erent random
locations in each training point set, which can render distribution
learning more di�cult. Our approach thus fails when the local
density of samples varies among examples of the training set.

Figure 9: We sample from a learned sliced OT linear ramp.

Top row, left. One example point set used for training (among

66,035). Top row, right. One synthesized point set. Bottom row.

Unwarping example and synthesized point sets to recover

a uniform distribution shows that their spectra match. The

uniformity of the unwarped samples can also be measured:

the semi-discrete optimal transport energy averaged for 128

realizations of 256 samples is 7.24.10−4 for the neural network

output, compared with 7.16.10−4 for the original sliced OT

uniform samples.

4.4 Application to constrained point set
optimization

Aside from the fast generation of point sets, we also bene�t from
the di�erentiability of our network to further optimize point sets
within their class.

We illustrate how the di�erentiability of our network can be
used to add properties to generated point sets. Here, we wish to
add low discrepancy properties to a sliced optimal transport sam-
pler [Paulin et al. 2020], to bene�t from both low discrepancy and
low optimal transport energy. This is made feasible since our net-
work is di�erentiable and produces point sets of a single class it
is trained from. First, we train the network on SOT point sets and
then freeze the weights of the network. Next, we optimize the in-
put gaussian noise o�set grid such that the synthesized point set
minimizes the L2 discrepancy while the network ensures that it
remains SOT-like. As backpropagation requires signi�cant memory
overhead, we reduce the number of di�usion steps to 100 (instead
of 1000) in the di�usion model. In Fig. 11, we illustrate the result

Original Our

0 1 2 3 4

0

1

2

3

4

0 1 2 3 4

0

1

2

3

4

Figure 10: On a higly non-uniform pink noise point pattern

(128 realizations of 1024 samples), our approach can only

capture partial properties of the point pattern.

of our optimization in terms of discrepancy and optimal transport
energy, and illustrate with an example generated point set.

Before Optim
(SOT)

After Optim Sobol' + Owen

3 × 10 3

4 × 10 3

5 × 10 3

L2-Discrepancy

Before Optim
(SOT)

After Optim Sobol' + Owen

7 × 10 4

8 × 10 4

9 × 10 4

OT Energy

⇒

Figure 11: We used a trained SOT sampling network to opti-

mize the discrepancy of the generated point sets among the

class of SOT point sets. We illustrate the OT energy and dis-

crepancy value for 10 point sets before and after the optimiza-

tion process and show Sobol’ + Owen as reference value for

both metrics. After the optimization, discrepancy matches

that of Sobol’ + Owen while retaining OT energy properties

of SOT sampler.

5 DISCUSSIONS & PERSPECTIVES

We showed that di�usion models provide a powerful tool for learn-
ing how to generate point sets directly from examples across a wide
range of samplers and they generalize well with sample size. Gener-
alization hints at the fact that the network is correctly learning the
general principles that make each point set so particular. The capac-
ity of our network to produce possibly non-uniform example-based
point sets may open the door to syntheses where sampling data
are only available through a small number of measurements (e.g.,
distribution of trees, cells, etc.) and optimizing only for summarized
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statistics (power spectrum or PCF) is not desired. This is a promis-
ing direction as we have successfully trained our network with
32 examples of each class (see supplementary material). Another
promising direction lies in other types of network conditioning,
such as property conditioning. Such a model would allow the user
to specify numerical values for all or a subset of well-chosen prop-
erties (discrepancy, minimum distance, spectra...) and the network
would design a point set �tting these properties. However, this
would require heavy architecture changes and we leave it as a
possible future work.

While in principle our method would work in arbitrary dimen-
sion, the e�ciency gained through our convolutions on grids would
be lost as storing higher dimensional grids becomes impractical,
both in terms of storage (that exponentially grows with dimension)

and supported sample size (in the form :3 for some : , similarly
to strati�ed samplers). To date, higher dimensional data would be
better supported by the approach of Leimkühler et al. [2019] that
does not rely on grids. Still, we believe our use of optimal trans-
port matching for adapting a widespread convolutional network
to the unstructured setting could bene�t other low-dimensional
applications.

In the settings we focus on, in most cases our samples preserve
characteristics of major samplers well, including their power spec-
trum, Monte Carlo integration quality, distance statistics, optimal
transport energy and discrepancy. Our di�usion-based sampler
allows to generate point sets much faster than some optimization-
based samplers by learning from their output. However, sampling
speed remains an issue for time-critical applications, notably com-
pared to fast samplers such as Sobol’ or LDBN. Aside for the fast
generation of diverse point sets, we have shown use for our net-
work’s di�erentiability by adding a low discrepancy property to
an optimal transport-based sampler. Rendering applications could
bene�t from our samplers, e.g., through di�erentiable rendering
pipelines [Jakob et al. 2022a] or for generating point sets nicely
distributing Monte Carlo error in a blue noise fashion in screen
space [Salaün et al. 2022].
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Figure 12: As a stress test, we sample 1024 points from the density 0.24−20(G
2+~2 ) + 0.2 sin(cG)2 sin(c~)2 [Balzer et al. 2009] by

importance sampling using 256 GBN stippling pointset as a training set (�rst row). Our sampler reproduces the density well

and mostly preserves important characteristics of the sampler (second row). We also illustrate an image stippling experiment

(1024 samples, trained using GBN stippling, image from [Secord 2002]).
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Figure 13: For various input samplers and their spectral content (Fourier power spectrum and radial mean power spectrum), we

compare our approach (last three rows) with that of Leimkühler et al. [2019] (1d radial mean power spectrum loss for Poisson

disk and GBN).
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