
A Low-Discrepancy Sampler that Distributes
Monte Carlo Errors as a Blue Noise in Screen Space

Eric Heitz
Unity Technologies

Laurent Belcour
Unity Technologies

V. Ostromoukhov
Univ. Lyon, CNRS

David Coeurjolly
Univ. Lyon, CNRS

Jean-Claude Iehl
Univ. Lyon, CNRS

Ours Random LD sampler

per-pixel samples

1 spp

Ours Random LD sampler

4 spp

Ours Random LD sampler

8 spp

Ours Random LD sampler
In
se
t

P
o
w
e
r
S
p
e
ct
ru

m

Figure 1: Our sampler distributes per-pixel sample sets such that their Monte Carlo errors is a blue noise in screen space. This

increases the visual quality of the renders in contrast to randomly distributing the sample sets.

ABSTRACT

We introduce a sampler that generates per-pixel samples achiev-

ing high visual quality thanks to two key properties related to the

Monte Carlo errors that it produces. First, the sequence of each

pixel is an Owen-scrambled Sobol sequence that has state-of-the-art

convergence properties. TheMonte Carlo errors have thus lowmag-

nitudes. Second, these errors are distributed as a blue noise in screen

space. This makes them visually even more acceptable. Our sam-

pler is lightweight and fast. We implement it with a small texture

and two xor operations. Our supplemental material provides

comparisons against previous work for di�erent scenes and

sample counts.

ACM Reference Format:

Eric Heitz, Laurent Belcour, Victor Ostromoukhov, David Coeurjolly and

Jean-Claude Iehl. 2019. A Low-Discrepancy Sampler that Distributes Monte

Carlo Errors as a Blue Noise in Screen Space. In Proceedings of SIGGRAPH ’19

Talks. ACM, New York, NY, USA, 2 pages. https://doi.org/10.1145/3306307.

3328191

1 INTRODUCTION

Georgiev and Fajardo pioneered the concept of distributing the

error of Monte Carlo rendering as a blue noise in screen space with

dithered sampling [2016]. Inspired by halftoning algorithms, they

optimize a tile whose pixels contain Cranley-Patterson rotations

(toroidal shifts) applied on an arbitrary sequence so that it becomes

di�erent in each pixel. Equivalently, each pixel of their tile can be

seen as the �rst sample of the sequence of this pixel and is optimized

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

SIGGRAPH ’19 Talks, July 28 - August 01, 2019, Los Angeles, CA, USA

© 2019 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-6317-4/19/07.
https://doi.org/10.1145/3306307.3328191

to maximize the sample-space di�erence between neighboring pix-

els. This method distributes the errors as a blue noise at one sample

per pixel but this advantagueous feature vanishes at higher sample

counts. Furthermore, toroidal shifts a�ect the equidistribution of

low-discrepancy sequences and hence their convergence rates.

In this paper, we focus onOwen-scambled Sobol sequences [1998]

that have state-of-the-art convergence properties. We distribute

their Monte Carlo errors as a blue noise in screen space without

compromising their convergence properties in the following way:

• In §2.1, we leverage the fact that the points of Sobol se-

quences can be modi�ed via scrambling (their values) and

ranking (their order) without compromising the convergence

rate. We implement these operations with bitwise xors with

integer keys. We store per-pixel keys as a lightweight repre-

sentation of per-pixel sequences and use them as degrees of

freedom to optimize the error distribution.

• In §2.2, we introduce a new energy term to optimize the

blue-noise distribution of the error. In contrast to dithered

sampling, we do not optimize a sample-space distance. Our

new energy term acts directly on the Monte Carlo errors

produced by the sequences. The optimization can thus be rig-

orously formulated for arbitrary sample counts and arbitrary

dimensionalities of the sample space.

• Combining these ideas, we use the scrambling keys to opti-

mize the blue-noise distribution for a target sample count

N , typically a high value that the renderer does not exceed.

The blue-noise distribution of the error is thus optimal at N

samples per pixel. Then, we use the per-pixel ranking keys

to optimize for all the sample counts that are powers of two

between 1 and N /2.

Lowres version

https://doi.org/10.1145/3306307.3328191
https://doi.org/10.1145/3306307.3328191
https://doi.org/10.1145/3306307.3328191


SIGGRAPH ’19 Talks, July 28 - August 01, 2019, Los Angeles, CA, USA Heitz, Belcour, Ostromoukhov, Coeurjolly and Iehl

2 OUR SAMPLER

Our sampler provides for each pixel (i, j) a D-dimensional sample

set of N samples: P i j = {p
i j
n : n in 1..N } optimized such that the

Monte Carlo errors are distributed as a blue noise in screen space

for sample counts that are powers of two smaller or equal to N .

2.1 Per-pixel low-discrepancy sample sets

Sample points. We store a uniqueD-dimensional Owen-scrambled

Sobol [1998] sample set P = {pn : n in 1..N }.

Scrambling keys. In each pixel (i, j), we store a scrambling key

si j of D integers. We use it to xor the integer representation of the

Sobol samples. This preserves their convergence properties [2002].

Ranking keys. In each pixel (i, j), we store a ranking key r i j of

one integer. We use it to xor the indices of the points (the order in

which they are used). One property of Sobol sample sets is that any

power-of-two subset aligned with the same power of two has the

same low-discrepancy properties. Hence, xoring their indices does

not change the properties of the power-of-two subsets.

Evaluation. Table 1 shows the data and storage requirements of

our sampler. The evaluation of the n-th sample of a pixel (i, j) is

shown in Algorithm 1. We compute the indexm of the sample in

the point set P by xoring n with the ranking key r i j and we xor pm
with the scrambling key si j .

Table 1: Data and storage requirements of our sampler. Fol-

lowing Georgiev and Fajardo we use 1282 wrappable tiles.

description symbol storage

Sample points P = (p1, ...,pN ) N × D integers

Scrambling keys si j 1282 × D integers

Ranking keys r i j 1282 × 1 integers

Algorithm 1 Evaluation of the n-th sample at pixel (i, j)

m = xor
(

n, r i j
)

// xor the index of the sample

p
i j
n = xor

(

pm , s
i j
)

// xor the value of the sample

return p
i j
n

2.2 Distributing the errors as a blue noise

Our objective is to optimize the keys si j and r i j such that the Monte

Carlo errors computed by the sample sets are as di�erent as possible

between neighboring pixels.

A family of integrand functions. Our idea is to maximize for the

errors computed for a set of functions (f1, .., fT ) that are represen-

tative of typical rendering integrands. We use the space of oriented

Heaviside functions ft that are de�ned by a (D − 1)-dimensional

normalized direction vector and 1-dimensional phase. We randomly

choose a �nite set of T = 65536 functions from this space. For each

pixel (i, j), we compute a vector Ei j =
(

e
i j
1 , .., e

i j

T

)

that contains the

errors produced by its sample set P i j on the integrands (f1, .., fT ):

e
i j
t =

1

N

N
∑

n=1

ft (p
i j
n ) −

∫

[0,1]D
ft (p)dp. (1)

Optimizing at N samples per pixel using the scrambling keys.

The goal is to �nd the values of the scrambling keys si j such that

the distance between the error vectors of neighboring pixels is

maximized. We measure the screen-space proximity of two pixels

(i, j) and (k, l) with the Gaussian kernel recommended by Georgiev

and Fajardo with σ = 2.1 and obtain:

Es =
∑

(i, j),(k,l )

e
−

(i−k )2+(j−l )2

σ 2








Ei j − Ekl









2
. (2)

We initialize each pixel with a unique random scrambling key si j

and swap them to maximize Es using simulated annealing.

Optimizing below N samples per pixel using the ranking keys. We

optimize each power-of-two sample count from N down to 1 by

iteratively halving the sample set. Each time we halve, in each pixel

we can choose to use either the �rst or the second half of the sample

set. This choice is represented by one bit in the ranking key r i j . For

instance, the �rst bit of r i j swaps {p
i j
1 } and {p

i j
2 }, the second bit

swaps {p
i j
1 ,p

i j
2 } and {p

i j
3 ,p

i j
4 }, etc. For each power-of-two sample

count, the goal is to �nd how to set the associated bit in r i j such

that the error vectors E
i j

�rst
and E

i j

last
obtained with the �rst and last

halves maximize:

Er =
∑

(i, j),(k,l )

e
−

(i−k )2+(j−l )2

σ 2

(








E
i j

�rst
− Ekl�rst










2
+








E
i j

last
− Ekllast










2
)

,

(3)

Note that this energy term maximizes for the �rst and the last

subsets together. Maximizing for the �rst subset only tends to put

high-error subsets �rst and arti�cially increases the variance at

lower sample counts. Maximizing for the �rst and last subsets at

the same time keeps the errors of both halves to their statistical

average. We repeat this operation until the sample count gets down

from N to one sample per pixel. After this operation, we obtain

per-pixel samples that distribute the error as a blue-noise for any

sample count that is a power of two between 1 and N .

3 DISCUSSION

Although the method presented in this paper works reasonably well

for a large class of integrands, we observed that it works particularly

well with low-dimensional and smooth integrands, typically the

direct illumination of an area light. We noticed that optimizing for

high dimensions (largeD) decreases the quality in lower dimensions.

We found the best compromise in optimizing pairs of dimensions

separately, i.e. D = 2 multiple times. Using our approach has no

signi�cant drawbacks. In terms of convergence, each pixel uses

an Owen-Scrambled Sobol sequence, which is state-of-the-art. In

terms of blue-noise distribution of the error, our method is as good

as dithered sampling at 1spp and achieves better results at higher

sample counts. Finally, our approach is extremely fast using only

three memory fetches and two integer xors per sample.

REFERENCES
Iliyan Georgiev and Marcos Fajardo. 2016. Blue-noise dithered sampling. In ACM

SIGGRAPH 2016 Talks. ACM, 35.
Thomas Kollig and Alexander Keller. 2002. E�cient multidimensional sampling. In

Computer Graphics Forum, Vol. 21. Wiley Online Library, 557–563.
Art B Owen. 1998. Scrambling Sobol’and Niederreiter–Xing Points. Journal of com-

plexity 14, 4 (1998), 466–489.

Lowres version


	Abstract
	1 Introduction
	2 Our sampler
	2.1 Per-pixel low-discrepancy sample sets
	2.2 Distributing the errors as a blue noise

	3 Discussion
	References

