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Abstract

This paper proposes a novelmethod formodeling retinal conedistribution in humans. It is based on
Blue-noise sampling algorithmsbeing strongly relatedwith themosaic samplingperformedby cone
photoreceptors in thehuman retina.Herewepresent themethod togetherwith a series of examples of
various real retinal patches. The same samples have also been createdwith alternative algorithms and
comparedwith plots of the center of the inner segments of conephotoreceptors from imaged retinas.
Results are evaluatedwithdifferent distancemeasure used in thefield, likenearest-neighbor analysis and
pair correlation function. The proposedmethod can effectively describe features of a human retinal cone
distributionby allowing to create samples similar to the available data. For this reason,webelieve that
the proposed algorithmmay be a promising solutionwhenmodeling local patches of retina.

1. Introduction

Sampling is the reduction of a continuous signal into a discrete one, or the selection of a subset from a discrete set

of signals. For sampling to be effective, samples should be uniformly distributed in away that there are no

discontinuities; but at the same time, regular repeating patterns should be avoided, to prevent aliasing. In the

human retina, themosaic of the cone photoreceptor cells samples the retinal optical projection of the scene,

achieving thefirst neural coding of the spectral information from the light that enters the eye. To solve the

sampling problem, the human retina has adopted an arrangement of photoreceptors that is neither perfectly

regular nor perfectly random. Local analysis of fovealmosaics shows that cones are arranged in hexagonal or

triangular clusters, however, when this analysis is extended to larger areas, cones are organized into particular

patterns, such as parallel curving and circular rows, which are generally associatedwith rotated local clusters.
There are different theories regarding the regularity and development of the cone cellsmosaic.Wassle and

Riemann [1] proposed twomodels based onmechanisms that assume the self-regulation of an original random

pattern, onewith a repulsive force acting between nerve cells and the other based on competition for territory for

each neighboring cell. Later, Yellott [2] discovered that the photoreceptors in the human retina, especially the

cones, are distributed conforming to a Poisson disk distribution.He performed spectral analysis to an array of

cones treated as sampling points and observed that the spectral properties of conesmosaic are representative of a

Poisson disk array, with the additional restriction of aminimumdistance between the center of the cells and

their nearest neighbors, because of the size of the cells. This was confirmed byGalli-Resta et al, which

investigated the spatial features of the ground squirrel retinalmosaics, suggesting that aminimal-spacing rule

dmin in conjunctionwith an adequate density of receptors can adequately describe the array of rods and S cones

[3]. Poisson disk distribution is now regarded as one of the best sampling patterns, by virtue of its blue-noise

power spectrum [4]. In Figure 1 (a-f) are presented some examples of different 2-D samplers.
It is still unclear how the spatial distribution andmean density of cones can affect the sampling of a retinal

image [5]. An interesting evidence of this open issue is the experiment reported byHofer et al [6], who tested the
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perception of stimuli of small spatial scale. Showing brief,monochromatic flashes of light of half the diameter of
a cone size on previously characterized retinal areas of the subjects, authors described the same stimuli with a
large number of hue categories, includingwhite, blue and purple, indicating that the stimulation of two different
coneswith the same photopigment results in different color sensations, evenwith no stimuli in different regions
of the retina or on otherwavelength-sensitive cones.

In this study, we examined theNearest Neigbour (NN) regularity index of the population of cones in images
of real human retina.We then compared the results to anothermeasure of spatial patterning, the Pair
Correlation Function. The goal of this paper is to show that the sampling properties of the cone photoreceptor
mosaic can bemodeled by a blue-noise algorithm, and that they can be used to generate sampling arrays
characterized by the same features of the retinal conemosaics.More specifically, wewant to identify an
algorithm capable of generating sampling arrays with the same range of densities in the retina, and use specific
metrics to compare the spatial and spectral properties of the cones distribution.

2. Relatedworks

2.1. Retinal andCone samplingmodeling

In the past two decades, interesting researchworks on retinalmodeling focus on neural behavior [7–9]; as an
example,Virtual Retina byWohrer andKornprobst is a large scale simulation software that transforms a video
input into spike trains, designedwith a focus on nonlinearities and implementing a contrast gain control
mechanism.

However, there have not beenmany attempts tomodel the cone sampling array. As far as we are aware, the
first state-of-the-art samplingmodel for positioning cones in the retinamimicking qualities of the human
samplingwas described byAhumada [10]. It uses cones, surrounded by circular disks representing their region
of influence, and places them starting from the center of the retina, applying a random jitter to each point. There
is also an attempt at generating a space-varying parametermodel, to extend themodeling capabilities past the
foveola, by varyingwith eccentricity themean radius of the cone disk, the standard deviation of the cone disk
radius, and the standard deviation of postpacking jitter; but ultimately those parameters seem to be onlyfit for
the foveola.

After their studies on human photoreceptor topography, Curcio and Sloan continued inAhumada’s
direction proposing amodel of cones distribution based on regular arrays subjected to a spatial compression and
a jitter, tofit the actual conesmosaic [11]. Their analysis was based on the distribution of distance and angles of
neighboring cones, comparing realmosaics with artificially generated ones, and evidencing anisotropies in
retinal cell spacing.

Another attempt atmodeling the sampling properties of the conemosaic was proposed byWang [12], which
created a polar arranged array of cones and jittered the points according to the standard deviation of aGaussian
distribution, constrained by aminimal spacing rule. The comparison of power spectrumof the human foveal
cones and the generated sampling arrays show similarities, and the generated arrays exhibit some basic features
of themosaic of foveal cones.

InDeering’s [13] human eyemodel, cones aremodeled individually as a center points surrounded by points
that define a polygon constituting the boundaries of the cell, each photoreceptor is then subjected to attractive
and repulsing forces to adjust its position. This retinal synthesizer is then validated by calculating the neighbor
fraction ratio and by empiricallymeasuring the cone density in cells/mm2 and comparing it fromdata from
Curcio et al [14].

2.2. Blue noise distributions

Coined byUlichney [15], the term blue noise refers to an even, isotropic, yet unstructured distribution of points.
Blue noise wasfirst recognized as crucial in dithering of images since it captures the intensity of an image
through its local point density, without introducing artificial structures of its own. It rapidly became prevalent in
various scientific fields, especially in computer graphics, where its isotropic properties lead to high-quality
sampling ofmultidimensional signals, and its absence of structure prevents aliasing. It has even been argued that
its visual efficacy (used to some extent in stippling and pointillism) is linked to the presence of a blue-noise
arrangement of photoreceptors in the retina discovered by Yellott [2]. Over the years, a variety of research efforts
targeting both the characteristics and the generation of blue noise distributions have been conducted in
computer graphics.

Arguably the oldest approach to algorithmically generate point distributions with a good balance between
density control and spatial irregularity is through error diffusion [15, 16], which is particularly well adapted to
low-level hardware implementation in printers. Concurrently, a keen interest in uniform, regularity-free
distributions appeared in computer rendering in the context of anti-aliasing [17]. Cook [18]proposed thefirst
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dart-throwing algorithm to create Poisson disk distributions, for which no two points are closer together than a
certain threshold. Considerable efforts followed tomodify and improve this original algorithm [19–23]. Today’s
best Poisson disk algorithms are very efficient and versatile [24, 25], even running onGPUs [26–28].

Thanks to the pioneering work byDippé andWold [29],Mitchell [30], Cook [18], Shirley [31], the computer
graphics community became sensitive to the fact that noise and aliasing are tightly coupled to sampling. A large
variety of optimization-based approaches has been proposed since then. Twomain optimization-based
approaches have been developed and presented in numerous papers: (1) on-line optimization [20, 27, 24,

Figure 1.Example of 2-D samplers and their PCF. Fist row from left to right:Realizations of 1024 samples from auniform (a), a Green-
Noise sampler (b), a Pink-Noise sampler (c), a jittered (d), a Poisson-disk (e) and aBlue-Noise sampler (f). The second row shows the
Fourier specrtum (power spectrum) of each sampler ((g)–(l), spectrum computed on 4096 samples). The PCFs capture the spectral
content of each sampler as shown in (m).
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32–43], and (2) off-line optimization [44–49], where the near-optimal solution is prepared in formof lookup

tables, used in runtime. The present work uses the approach developed by deGoes et al [39], calledBlueNoise

ThroughOptimal Transport (BNOT), as reference. The reason behind our choice is that BNOT is the present best

performingmethod among those trying to reproduce BlueNoise distributions.

Table 1.μ,σ and regularity indexes of retinalmosaics. GN=Green
Noise, PN=PinkNoise, BNOT=BlueNoise throughOptimal
Transport.

Data μ σ RI

7-A 4.03456374 0.50612555 7.971 468 099

7-B 9.04250728 1.06718420 8.473 239 435

5 12.73315988 1.44799613 8.793 642 161

4–6 7.22426840 0.79458918 9.091 828 225

4–4 3.83590555 0.41681003 9.203 006 761

8-G 1.50767654 0.15854224 9.509 620 334

1-G 8.58240715 0.88831701 9.661 423 858

4–5 6.00671254 0.61540511 9.760 582 792

3-B 1.97490585 0.20006784 9.871 180 871

3-F 5.05986062 0.51204539 9.881 664 061

3-A 2.14670807 0.20446813 10.498 985 71

6 4.59784100 0.42302628 10.868 925 11

1-F 6.82704837 0.62173280 10.980 679 1

1-A 3.93220536 0.35599814 11.045 578 35

3-C 1.46598239 0.12902791 11.361 746 22

2-A 5.05899348 0.43416187 11.652 321

8-J 1.63116540 0.13651109 11.948 958 88

8-I 1.63433522 0.13589955 12.026 053 02

8-K 1.85141910 0.15104864 12.257 105 34

GN_512 0.01656738 0.01266479 1.308 143 909

GN_1024 0.01213441 0.00876178 1.384 925 079

PN_512 0.01873769 0.01319843 1.419 690 795

PN_1024 0.01340864 0.00933317 1.436 664 256

BNOT_1050 0.02969981 0.00138443 21.452 712 05

BNOT_2050 0.02132946 0.00093060 22.919 909 97

BNOT_4050 0.01514123 0.00064959 23.308 644 05

Table 2. ¥l distances between pairs of PCFs. If this
difference is under 0.1, the two distribution can be
considered to be the same. It is clearly visible that the
Dart Throwing andBNOT samplers are the closest from
themeasured distribution.

Data BNOT1024 DT 1024 Jitter 1024

1-A 0.507644 0.525371 0.945 527

1-F 0.52156 0.566554 0.912 223

1-G 0.778872 0.309411 0.663 769

2-A 0.298435 0.764314 1.134 42

3-A 0.408852 0.851508 1.1428

3-B 0.549172 0.518775 0.886 055

3-C 0.484184 0.597551 0.948 338

3-D 0.401644 1.1555 1.417 47

3-F 0.856925 0.484083 0.633 278

4-4 0.472629 0.598528 0.959 664

4-5 0.917283 0.262972 0.597 261

4-6 0.642895 0.525127 0.806 347

5 0.920215 0.383484 0.578 448

6 0.264755 0.809063 1.1713

7-A 0.778203 0.248315 0.761 941

7-B 0.803054 0.245291 0.686 117

8-G 0.826069 0.331142 0.638 697

8-I 0.301428 0.768822 1.133 56

8-J 0.297661 0.797065 1.146 51

8-K 0.327341 0.737896 1.106 08
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In an effort to allow fast blue noise generation, the idea of using patterns computed offline was raised in [29].
To remove potential aliasing artifacts due to repeated patterns, Cohen et al [50] recommended the use of non-
periodicWang tiles, which subsequently led to improved hierarchical sampling [45] and a series of other tile-
based alternatives [44, 46, 51, 52].Wachtel et al [47] propose a tile-basedmethod that incorporates spectral
control over sample distributions.More recently, Ahmed et al [49] proposed a 2-D square tile-based sampling
methodwith one sample per tile and controllable Fourier spectra. However, all precalculated structures used in
this family of approaches rely on the offline generation of high-quality blue noise.

3.Methods

The conemosaics used for this work are frompreviously published images of patches of real human retinas, as
shown in the leftmost boxes offigures 2 through 6; theywere acquired from the pdf versions of the papers or
html, if available, and saved as png images. The pictures are fromdifferent subjects of various ages andwere
obtainedwith different techniques, ranging fromhistological techniques, where sample tissues are depictedwith
electronicmicroscopic imaging [14, 53–55], tomore recent in vivo imaging techniques, which exploit adaptive
optics like deformablemirrors coupledwith awavefront sensor to compensate for the ocular aberrations of the
eye [56–59]. The x and y coordinates of the cells inner segments weremanually plotted usingWebPlotDigitizer
[60]. This preliminary work has been based on a relatively small dataset sue to the difficulty offindingwide
collections of retinal images.We understand these difficulties related alsowith problemof the use of different
imaging techniques and tissue preparation andwe hope to have larger datasets in the future.When analyzing the
points distribution, the distance between the cone centers was converted in realμmon the retina bymultiplying
themwith the appropriate scale factor of the image, determined by the size of the sample window’s side.
Conversion fromdegrees was performed according to themodel from [61], with one degree of visual angle equal
to 288 μmon the retina. Cone spacing values are compatible withWyszecki and Styles [62], with the exception of
the data from [55] exhibiting lower values, probably due to postmortem shrinkage. It is worth noting that the
last retina fromfigure 4 and retinas from figure 5 have been cropped during analysis because they didn’t fullyfill
the samplingwindow, andwould have included uncharacterized areas.

3.1. Analysis of point process

In this section, we briefly introduce basic notions fromStochastic Point Processes [63]. A point processS is a
stochastic generating point in a given domainΩ (here, [0,1)s).We denote by Ì WP x x x, , ,n

n1 2≔ { }( ) ( ) ( ) a
realization of a point process with n samples. A point processS is stationary if it is invariant by translation, and
isotropic if it is invariant by rotation.More formally, if we assumeP a probability measure,S is stationary if
" Î x

s

W = W -P P x , 1S S( ( )) ( ( )) ( )

and isotropic if any rotation or translation ofS have the same statistical properties.We also define the density of
a point set as the average number of samples inside a regionB of volumeVB around a sample x.

l x
B x

V
. 2

B

( ) ≔
( )

( )

This density is constant for isotropic and stationary point processes. A sampler generating sets with a non
constant density is sometimes called anon-uniform sampler. To characterize isotropic stationary point processes,
the Pair Correlation Function (PCF) is a widely used tool. Such function is a characterization of the distribution of
pair distances of a point process. Oztireli [41] devised a simplified estimator for thismeasure in the particular
case of isotropic and stationary point processes. The PCF of a pointset Pn in the unit domain 0, 1 s[ ) is given by

år = -s-
¹

r
n r

k r d x x
1

, , 3
s

i j

i j
2 1

( ) ( ( )) ( )( ) ( )

where d x x,i j( )( ) ( ) is a distancemeasure between x
i( ) and x

j( ). The factor kσ is used to smooth out the function.
Oztireli relies on this smoothing to assume ergodicity for all sets. He uses theGaussian function as a smoothing
kernel, but one could use a box kernel or a triangle kernel instead. To compute a PCF,we use this estimator with
3 parameters, theminimal r, rmin, themaximal r r, max and the smoothing valueσ. Those values are usually
chosen empirically. Note that as the number of samples increase, the distances between samples becomes very
different for similar distributions. To reduce this effect, we normalize the distances in our estimations using the
maximum radius for n samples ([64], equation (5)).

Infigure 1, we illustrate how the PCF of several point processes captures the spectral content of the point
distribution: a pure uniform sampling, Green-Noise and Pink-Noise samplers obtained using [52], a jittered
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sampler (forN samples, subdivision of the domain into regular ´N N square tile and a uniform random
sample is drawn in each tile), a Poisson-Disk sampler [22] and a Blue-noise sampler (BNOT) [39].

4. Results and discussion

The regularity index, or conformity ratio is a quantitativemethod used for assessing spatial regularity of
photoreceptor distributions [1, 65, 66]. Spatial regularity in local patches is computed by numerically expressing
the concentration of the nearest neighbor distances, that is by computing the inverse of the coefficient of
variation (CV, also called coefficient of dispersion) of the distribution of nearest neighbor distances. Obviously,
the highest/lower theCV (dispersion) of local neighborhoods sizes, the lowest/highest is the regularity index. In
detail, to compute the regularity index, a k-d tree structure has been used tofind the nearest-neighbor for each
point, the distances between nearest neighbors are computed through the euclidean norm, and the distribution

Figure 2. From left to right: The point samples of the cones’ location obtained frompicture of the patch of retina, Nearest neighbor
analysis withmean and standard deviation, Pair Correlation Function. (a)–(c). Retinal locations fromfigure 3 of Scoles et al [58] (d).
Retinal locations fromfigure 1 of Roorda&Williams [56].
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of all the computed nearest-neighbor distances is visualized through the normalized histogram. Each
distribution of nearest-neighbours can be described by a normalGaussian distribution described by the
equation

s p
= m s- -P x e

1

2
. 4x 22 2

( ) ( )( )

whereμ is themean of the distribution andσ the standard deviation of themeasurements. The regularity index
is therefore expressed by the ratio of themeanμ by the standard deviationσ. This index is reported to be 1.9 for a
full random sampling, where the standard deviation is higher. Anyhow, asmentioned above, themore regular
the arrangement, the higher the value of the conformity index, usually 3–8 for retinalmosaics.

Regularity indexes for retinal data are shown in table 1. In contrast with previous claims, our calculated
indexes range from8 to 12. In the lower boundwe showdata obtained from [54], which instead of a retinal
image shows themarked locations of the inner segments of photoreceptors;meanwhile in the upper bound,

Figure 3. From left to right: The point samples of the cones’ location obtained frompicture of the patch of retina, Nearest neighbor
analysis withmean and standard deviation, Pair Correlation Function. Retinal locations from figure 2 of Curcio et al [14].
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Figure 4. From left to right: The point samples of the cones’ location obtained frompicture of the patch of retina, Nearest neighbor
analysis withmean and standard deviation, Pair Correlation Function. (a)–(d). Retinal locations fromfigures 4, 5, 6 of Jonas et al [53]
(e). Retinal locations fromfigure 10 of Curcio et al [54].
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close to 12,most of the data is from foveal centers in [55], with the exception of retina 8-G, where the different
sizes of the photoreceptor profiles reflect different levels of sectioning through the inner segments.

The indexes for data generatedwithGreen noise, Pink noise andBNOT samplers are presented in the same
table. As expected, the indexes forGreen andPink noise, which, on average, equal 1.3 and 1.4 respectively, are
lower than those that would have been obtained by a full random sampling; on the other side, for the BNOT
data, the indexes values aremuch higher,more than two times of the highest values for retinal RIs. It is not very
surprising that, thanks to the the uniformity optimization of BNOT, the indexes are so high; however, they are
anyway distant from the infinite RI of regular lattices. Given the fact that fully regular hexagonal or square
patterns are proven to have poor sampling properties and are therefore not suitable for simulating cone
distributions, we believe that, for what regards the scope of this paper, a higher RI indicates that BNOT is better
at generating point processes than the other analyzed point samplers.

Amore recent and reliablemethod for assessing the goodness of these processes is the previouslymentioned
Pair Correlation Function (PCF). In table 2, we present the ¥l distance, between our generated point sets and the
measured PCF. From twoPCFs r and r

2
, we denote their ¥l distance as themaximal distance between the two

functions:

r r r r= -¥l r r, max , 5r2 2
( ) ∣ ( ) ( )∣ ( )

where r is a given radius.We rely on thismeasure as it was already used in [41] to compare PCFs, andwe consider
two PCFs similar if ¥l is less than 0.1. Using such evaluationmeasure, the closest results are obtainedwhen
comparing BNOT toDart Throwing samplers.Moreover, the higher themeasuredRI for the retinal distribution
of photoreceptors, the lower the distance fromBNOTPCF. The opposite happenswhen comparing retinal data
withDart throwing algorithm, the closer to the reported RI of 8, the lower the ¥l distance. This evidences that
not only the indexes are actually higher than the ones previouslymeasured, but also that themost effective
method to simulate these distributions comes fromBlue-noise samplers.

5. Conclusions

Blue noise sampling can describe features of a human retinal cone distributionwith a certain degree of similarity
to the available data and can be efficiently used formodeling local patches of retina.We hope this work can be
useful to understand how spatial distribution affects the sampling of a retinal image, or themechanisms
underlying the development of this singular distribution of neuron cells and the implications it has on human
vision. Given the nature of blue-noise algorithms, it should be possible to develop an adaptive samplingmodel
that spans thewhole retina.However, therewould be issues in validating the cone sampling, since imaging of the

Figure 5. From left to right: The point samples of the cones’ location obtained frompicture of the patch of retina, Nearest neighbor
analysis withmean and standard deviation, Pair Correlation Function. Retinal locations from figure 10 of Curcio et al [54].
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whole retina is difficult to obtain and analyze. All validations should in fact be local. Futureworkswill explore
the possibility of applying a smooth sampling across the retina to obtain an adaptive sampling, given the PCF and
spectra of local patches, the patches can be reproduced [67] and correlatedwith a heatmap that represents
interpolation in space [68].

6. Compliancewith ethical standards

The authors declare that they have no conflict of interest. This reasearch does not involve humanparticipants
and/or animals. Informed consent is not appliable.

ORCID iDs

Matteo Paolo Lanaro https://orcid.org/0000-0001-6191-4621

Figure 6. From left to right: The point samples of the cones’ location obtained frompicture of the patch of retina, Nearest neighbor
analysis withmean and standard deviation, Pair Correlation Function. Retinal locations from figure 1 ofGao&Hollyfield [55].
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