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Abstract

A classical problem in many computer graphics applications consists in extracting significant zones or points on an object surface,

like loci of tangent discontinuity (edges), maxima or minima of curvatures, inflection points, etc. These places have specific local

geometrical properties and often called generically features. An important problem is related to the scale, or range of scales,

for which a feature is relevant. We propose a new robust method to detect features on digital data (surface of objects in Z
3),

which exploits asymptotic properties of recent digital curvature estimators. In [1, 2], authors have proposed curvature estimators

(mean, principal and Gaussian) on 2D and 3D digitized shapes and have demonstrated their multigrid convergence (for C3-smooth

surfaces). Since such approaches integrate local information within a ball around points of interest, the radius is a crucial parameter.

In this article, we consider the radius as a scale-space parameter. By analyzing the behavior of such curvature estimators as the ball

radius tends to zero, we propose a tool to efficiently characterize and extract several relevant features (edges, smooth and flat parts)

on digital surfaces.
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1. Introduction

When performing geometry processing on shapes, a clas-

sical problem in many computer graphic applications consists

in delineating places with specific local geometrical informa-

tion — or features — on the shape surface. Even if no clear

definition of feature on surface stands out, prior works usually

characterize a feature as a local discontinuity distinguishable

from its neighborhood. As an example, differential quantities

have been widely considered in this context as preliminary in-

formation from which features can be extracted. However, an

important problem is related to the scale (or range of scales) for

which a feature is relevant. This question leads to scale-space

analysis of shapes. Note that this concept has been widely in-

vestigated in the image processing community [3].

In this article, we propose a new robust feature extraction

technique which incorporates scale-space geometrical informa-

tion and which is dedicated to digital surfaces (boundary of ob-

jects in Z
2 or Z3). We consider raw digital data (shapes dis-

cretized on a regular grid) as input for two main reasons: First,

many acquisition devices (e.g. 3D MRI images or X-ray tomog-

raphy) provide such data and we do not want to introduce ap-

proximations or interpolations by switching to a polyhedral rep-

resentation. Second, working on digital data allows us to con-
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sider a mathematical framework — the multigrid convergence

of operators — dedicated to this digital model.

These digital surfaces are specific in

the sense that boundaries of volu-

metric objects usually lead to a large

number of surface elements. Fur-

thermore, due to the digitization ef-

fect, digital surfaces can be consid-

ered as approximations of continu-

ous manifolds with a very specific

and isothetic noise model: samples

are evenly spaced but never lie on the

surface, normals are not informative.

This kind of data could be problem-

atic if it is not carefully handled when defining differential es-

timators for instance. Finally, this case study is motivated by

accurate shape analysis of 3D volumetric porous material (mi-

crostructures of snow samples, see Fig. 7). In this context, we

want to characterize geometrical discontinuities (edges) from

smooth areas and zero curvature (flat) regions in a robust way.

Related works First of all, shape discontinuities can

be formalized as ridges and valleys with differential geometry.

In this case, such discontinuities are deduced from differential

quantities of order 3 by looking at variations of principal cur-

vature directions in a neighborhood [4, 5]. The final step con-

sists in thresholding significant angular deviation of principal

directions. Such techniques provide a formal approach to dis-

continuities extraction but are scale dependent and rely on a

robust estimation of order 3 differentials. When dealing with

noisy data or digital data, such approaches are not relevant and
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cannot be considered.

For meshes or point clouds, many approaches are based on

integral quantities computed on local patches. For instance,

Pauly et al. [6] and Clarenz et al. [7] have used Principal Com-

ponent Analysis on data points located in a given neighborhood

of the point of interest. A feature score is defined as a function

of the eigenvalues of this covariance matrix. Then, either the

feature score is simply thresholded, or the behavior of the score

as a function of the neighborhood size is analyzed. Mérigot et

al. [8] extended this approach to consider convolved covari-

ance matrices of Voronoi cells (Voronoi Covariance Measure

or VCM). Thresholding a ratio of VCM eigenvalues leads to

a robust extraction of edges on point clouds or meshes. Such

approaches produce interesting results at a fixed scale or for

smooth objects. However, scale-space analysis is not fully inte-

grated in these frameworks. Furthermore, even if ratios of co-

variance matrix eigenvalues are related to principal curvatures,

the geometrical interpretation of scores is not straightforward.

In the experimental section, we provide a more details on this

approach.

In a similar way, Park et al. [9] have proposed a Tensor-

Voting strategy on local surface patches. They used the scale-

space behavior of the tensor vote when the neighborhood size

increases, in order to extract edges on point clouds. As shown

in the experiments, this technique is very sensitive and does not

provide sufficiently robust results on digital surfaces. Mellado

et al. [10] have introduced a fast least square spherical fitting

approach to a point cloud to create a multi-scale feature score.

Again, the scale-space parameter is the neighborhood size con-

sidered in the fitting. Even if this feature score is qualitatively

relevant, it is not directly related to some geometrical informa-

tion. Furthermore, when used on digital data, such technique

fails to provide a precise localization of features.

Finally, features can be extracted following a spectral anal-

ysis of the shape from eigenvalues of the surface Laplacian ma-

trix [11, 12, 13]. In this context, features are characterized by

spectral quantities which are locally stable and distinguishable

from its neighborhood. Such techniques are very promising but

drawbacks exist for digital surfaces. First, since our surfaces

have a large number of elements, computing the eigenvalues

of the Laplacian matrix could be very computationally expen-

sive. Another bottleneck relies on the fact that for digital sur-

faces, the isothetic nature of the Euclidean embedding (digiti-

zation on axis aligned grid) makes the metric not well embed-

ded in the discrete Laplacian operator. Indeed, if we consider

the DEC formulation or simply the cotan approach to define a

discrete Laplacian operator on the digital surface embeddings,

the staircase effect of the digitization makes the metric not well

described by the geometrical embedding of the surface. For

example, a consequence is that heat diffusion obtained by this

operator produces anisotropic artifacts (ellipsoidal isocontours

on a digital plane with normal vector (1, 1, 0)T for instance).

On digital surfaces, a discrete Laplacian operator with correct

intrinsic metric information has to be defined.

Contributions We propose a robust scale-space feature

selector that classifies digital surface elements into three cat-

egories: edge, smooth or flat. This feature selector is built

upon digital curvature estimators and relies on their theoreti-

cal multigrid convergence properties. Since these estimators

are parametrized by the size of their ball of integration, i.e. a

kind of scale, the feature selector analyses curvature estimated

as function of scales. Since we know the theoretical behavior of

models edge, smooth and flat, the feature selector chooses the

model that best fits its input data. We compare our approach

on a large class of shapes with the other above-mentioned ap-

proaches to feature detection, and we evaluate their robustness

to noise. Finally, we apply this feature selector to the analysis

of microstructures of 3D snow samples.

2. Preliminaries

In Geometry Processing, integral invariants have been

widely investigated to construct estimators of differential quan-

tities on smooth surface [14, 15]. The main idea is to move a

ball BR of radius R on points x of the boundary ∂X of shape

X. Then, integrals are computed on the intersection between

this ball and the shape, i.e. on BR(x) ∩ X (see Fig. 1-a for no-

tations). More formally, by Taylor expansion of the area and

volume around the point x, 2D curvature estimator κ̃R(x) and

3D mean curvature estimator H̃R(x) can be defined respectively

as [14]:

κ̃R(X, x)
de f
=

3π

2R
−

3AR(x)

R3
, H̃R(X, x)

de f
=

8

3R
−

4VR(x)

πR4
, (1)

where X ⊂ R
2 (resp. R

3) is a sufficiently smooth shape. Here

AR(x) is the area and VR(x) the volume of BR(x) ∩ X (i.e. we

integrate the unit constant function on BR(x) ∩ X). κ̃R(X, x) and

H̃R(X, x) values converge to expected ones (respectively curva-

ture κ and mean curvature H) as R tends to zero [14], since:

κ̃R(X, x) = κ(X, x) + O(R), H̃R(X, x) = H(X, x) + O(R). (2)

Similarly, principal curvatures can be estimated by comput-

ing the two greatest eigenvalues λ1 and λ2 of the covariance

matrix of BR(x) ∩ X [14]:

κ̃1(X, x)
de f
=

6(λ2 − 3λ1)

πR6
+

8

5R
+ O(R), (3)

κ̃2(X, x)
de f
=

6(λ1 − 3λ2)

πR6
+

8

5R
+ O(R). (4)

Using similar integration principles, several estimators of var-

ious differential quantities can be defined. Please refer to

[15, 16] for an overview.

2.1. Integral based Digital Curvature Estimators

In our context, we consider digital shapes (any subset of

Z
d) and boundaries of digital shapes. We denote by Dh(X) the

Gauss digitization of X in a d−dimensional grid with grid step

h, i.e. Dh(X) = X ∩ (hZ)d. For such digitized set Z, Bd(Z)

denotes its topological boundary, seen as a cellular Cartesian

complex (See Fig. 1-b). It is thus composed of 0-cells and 1-

cells (resp. pointels and linels), and, for d = 3, with 2-cells

(surfels), embedded in the digital grid.

2
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Figure 1: Integral invariant computation (a) and notations (b) in dimension 2

[1].

Before going further, we define the 2D digital curvature es-

timator κ̂R, the 3D digital mean curvature estimator ĤR and the

3D digital principal curvature estimators κ1
R

and κ2
R

on Z ⊂ Z
2

or Z ⊂ Z
3:

Definition 1. Given Z ⊂ Z
2 (or Z3 for 3D estimators) and h a

gridstep, digital curvature estimators are defined for any pointel

p ∈ Bd(Z) as:

κ̂R(Z, p)
de f
=

1

h

(

3π

2Rd

−
3ARd

(p)

Rd
3

)

, (5)

ĤR(Z, p)
de f
=

1

h

(

8

3Rd

−
4VRd

(p)

πRd
4

)

, (6)

κ̂1(Z, p)
de f
=

1

h

(

6(λ̂2 − 3λ̂1)

πRd
6

+
8

5Rd

)

, (7)

κ̂2(Z, p)
de f
=

1

h

(

6(λ̂1 − 3λ̂2)

πRd
6

+
8

5Rd

)

, (8)

where Rd =
R
h

is the digitized radius of the ball, and ARd
(p)

and VRd
(p) are the number of digital points in the intersection

between Z and the ball. Similarly, λ̂1 and λ̂2 are the two greatest

eigenvalues of the covariance matrix of the digital points in the

intersection between Z and the ball.

Multigrid convergence results have been established in [1]

for convex shapes with at least C3-boundary and bounded cur-

vature. The idea of multigrid convergence is that when we

define a geometric quantity estimator on Dh(X), the estimate

should converge (theoretically and experimentally) to the ex-

pected geometric quantity on X when the digitization step h

gets finer and finer (i.e. tends to zero). Proofs of convergence

for these digital curvature estimators rely on the fact that both R

and h tends to zero, but at a well chosen speed. Authors of [1]

have proved the convergence of these estimators when setting

the ball radius dependent on the grid step h: R = kh
1
3 , where

k is a constant related to the maximal curvature of the shape.

Figure 2: Top: Mean curvature using Eq. 6 for different ball radii: 4, 7, 14

and 30. Bottom: 2D flower and curvature values on its boundary using Eq. 5 (x-

axis) for a range of decreasing ball radii (y-axis, from top to bottom). Curvature

values are mapped from blue (lower) to yellow (higher), discrete gray lines

illustrate curvature isovalues.

More formally, we get:

κ̂R(Dh(X), p) = κ(X, x) + O(h
1
3 ), (9)

ĤR(Dh(X), p) = H(X, x) + O(h
1
3 ), (10)

κ̂1R(Dh(X), p) = κ1(X, x) + O(h
1
3 ), (11)

κ̂2R(Dh(X), p) = κ2(X, x) + O(h
1
3 ), (12)

when the ball radius is R = kh
1
3 .

When estimating a differential quantity, we usually have to

specify either a window, a kernel size or a ball radius in which

the computations are performed ([15, 10] for example). In other

words, to process a shape at a given resolution, we need to

choose a suitable radius R to capture relevant geometrical fea-

tures. In figure 2-top we display the mean curvature estimations

(cf. Eq. 6) on a digital object with different ball sizes. As ex-

pected, small radii are more sensitive to noise or digitization

effects while large radii smoothen results. Therefore, the radius

R specifies at which scale the quantity becomes relevant ac-

cording to a given noise level. It follows that we should study a

shape at several scales to obtain more representative geometric

information.

To sum up, recent digital curvature estimators are well

suited to digital data and contain interesting mathematical prop-

erties when processing digitizations of shapes with at least C3-

boundary and bounded curvature. In next section, we combine

curvature estimations in a range of scales and these multigrid

convergence properties to construct a feature selector for digi-

tal objects, which decides whether a point of its boundary falls

into either edge (non−C1 parts), smooth (smooth C3 parts) or

flat (zero curvature parts) categories.

3. Feature detection

We propose to study the behavior of integral invariant dig-

ital curvature estimators with the ball radius as a scale-space

parameter. Figure 2, bottom row, shows the curvature values

along the boundary of a ”flower” shape, estimated with Eq. 5

(x-axis is curvilinear abscissa) with decreasing radii R (y-axis,

from top to bottom). We observe that, around corner points,

estimated curvatures tends to change according to the radius,

3
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Figure 3: Scale-space analysis on a spherical shape (a) and a shape with a

singularity (b).

while in smoother zones (low curvature), estimated curvatures

are relatively insensitive to the radius.

To analyze this scale-space behavior, we propose to classify

points of our input shapes into three categories: edge, smooth

or flat regions.

3.1. Smooth and edge detection

Definition 2. From Eq. 1, for any point x on the boundary of a

Euclidean shape X in R
2 (resp. R3), we define the scale-space

feature estimator GX,x(R) (resp. GX,x(R)) as follows:

GX,x(R)
de f
=

3π

2R
−

3A(R, x)

R3
, GX,x(R)

de f
=

8

3R
−

4V(R, x)

πR4
, (13)

where R is the radius of a Euclidean ball centered on x, and

A(R, x) is the area (in 2D) and V(R, x) is the volume (in 3D) of

the intersection between this ball and the shape X.

In the following, we assume X to have a C3 piecewise

boundary, i.e. a smooth object with some singularities (locus

of non-C1 points). First, we study its behavior on a smooth part

of the shape boundary (Fig.3-a). Then, we study its behavior at

a singular point of the shape boundary (Fig.3-b).

Smooth case. In smooth case, i.e. when ∂X is C3 at x, GX,x(R)

is exactly the definition of curvature estimators of Eq. 2. We

use another notation because at singular point x, GX,x(R) does

not estimate the curvature but the angle between the two halves-

tangents at x. Let us denote by κ0 the curvature at x (Fig.3-a),

and by H0 its mean curvature in the 3D case. Since we are in the

conditions of Eq.1, we know that GX,x(R) = κ̃(R, x) = κ0 +O(R)

and GX,x(R) = H̃(R, x) = H0 +O(R) when decreasing R to zero.

So GX,x(R) gives us a constant term associated to the curvature

at point x.

Singularity. We now consider a point x on a singularity

(non−C1 part) of ∂X (Fig.3-b). Following [15], we can perform

Taylor expansion of the area and volume at x:

Proposition 1 (Eq. 12 from [15]). Let X be a Euclidean shape

in R
2 (resp. R

3) with at least C3-smooth boundary piecewise,

and let x ∈ ∂X be a singularity. Then, if α0 is the angle between

halves-tangents at x and κ− and κ+ are left and right limit cur-

vatures (resp. α0 the opening angle of the sharp edge, H− and

H+ the mean curvatures on either side of the edge), we have:

A(R, x) =
α0R2

2
−
κ− + κ+

6
R3 + O(R4) , (14)

Figure 4: Left: Cube + Sphere of different size with feature mapped on surface

elements. Green color is for flat parts, blue color for smooth parts and red color

for edges. Right: Graphs in logarithmic scale of curvature value in a range

of ball radii (from right to left, bigger to smaller radius) on a flat part (top), a

smooth part (middle) and an edge (bottom).

V(R, x) =
2α0R3

3
−
π(H− + H+)

8
R4 + O(R5) . (15)

Therefore, quantities GX,x(R) and GX,x(R) are functions of

the ball radius R and the angle α0 as:

GX,x(R) =
3

2

1

R
(π − α0) +

κ− + κ+

6
+ O(R) , (16)

GX,x(R) =
8

3

1

R
(1 −

α0

π
) +

H− + H+

2
+ O(R) . (17)

In other words, both quantities GX,x(R) and GX,x(R) are mono-

mials of exponent −1 whose coefficient is related to α0.

In conclusion, GX,x(R) (and GX,x(R)) has two different be-

haviors when we set the ball radius as a scale-space parameter

whether we are on a smooth point or a singularity of the sur-

face. At a point x on a smooth surface, the feature estimator

GX,x(R) tends to the curvature at point x as R tends to zero. So

the quantity is constant regardless of R (in fact, R has a limited

impact on error terms). On a singularity, the feature estimator is

a quantity that increases linearly as R decreases. In 3D, GX,x(R)

follows the same pattern.

So, for all surface elements, we compute the curvature on a

range of decreasing ball radii (R0 to Rn). To avoid issues in log-

arithmic scale with concave parts, we take the absolute value of

curvature values. Figure 4 shows GX,x(R) graphs for a given

range of radii (abscissa), from right to left, on an edge (red

graph) and a smooth region (blue graph). Flat region (green

graph) will be discussed in the following section. The classifi-

cation (color map) will be described in Section 3.3.

3.2. Influence of digitization

When digitizing BR(x) ∩ X, for a given ball radius R and a

grid step h, there are infinitely many curves ∂X with different

curvature values at x which lead to the same value A(R, x) and

thus the same quantity GX,x(R). It is also true in 3D. More pre-

cisely, we are interested in the possible curvature range when

4
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R

h

Figure 5: Digitization effect and notations for Property 1.

x lies in a flat or nearly flat area. The maximal curvature that

may be misinterpreted as a flat region is given by the following

Property:

Property 1. Let X be a spherical Euclidean shape in R
2 (resp.

R
3), R be the radius of ball and h be the grid step, for x ∈ ∂X,

the maximal curvature value at x leading to the same quantity

GX,x(R) (resp. GX,x(R)) is:

κmax(R, h) =
2h

R2 + h2
,

(

resp. Hmax(R, h) =
2h

R2 + h2

)

. (18)

A geometrical illustration of the worst case inducing the

bound is given in Figure 5.

As a consequence, if the quantity GX,x(R) is below

κmax(R, h) (or Hmax(R, h) for the 3D case), we cannot decide if

x belongs to a very soft smooth surface or a flat region. Hence,

ball radius R (or the range of ball radius R in scale-space analy-

sis) controls the size of the feature that can be recognized with

respect to digitization artifacts. For instance in Figure 4, we ob-

serve the three principal cases in logscale: in green, all GX,x(R)

values are below the dashed line representing Hmax(R, h), which

is characteristic of flat regions. In red, all values are above the

dashed line with a slope −1, which is the expected behavior of

edges. In blue, values are below the dashed line only for small

radii R, which means that these radii are too small to capture

the smoothness of the shape. For bigger radii, values are above

the dashed line and constant, which means that this is a smooth

region. As described in Section 3.3, the final classification will

only consider radii for which values are above the κmax(R, h)

curve (or Hmax(R, h) in 3D), points below are either considered

as flat region or as outliers.

3.3. Distance to linear model based classification

We have two scale-space information we can use to define

our classification: First, we have a flat region/outlier detector

using κmax(R, h). Then, on remaining values, we know that

GX,x(R) values and GX,x(R) values behave differently on smooth

region or at singular points as R decreases. Since 2D and 3D

cases are similar, the following discussion applies indifferently

for GX,x(R) values and GX,x(R).

For a range of decreasing radii Ri, 0 ≤ i ≤ n, we compute

the feature estimator GZ,p(R) at point p ∈ Bd(Z), the digital

analog to GX,x(R). In a first pass, we remove outlier points from

the graph of the function GZ,p(R) (i.e., points whose curvature

Figure 6: Graph of a model transition on a point near an edge.

value is below κmax(R, h)). If there is not enough data (too many

curvature values are below κmax(R, h)), we classify the point as

”flat” (green color in Fig.4). If we have enough data, we com-

pute a least square fitting of the data, in logscale, with respect

to a linear model of slope of 0 (so called ”smooth model”, the

intercept being unknown) and a linear model of slope of −1 (

”edge model”, the intercept being unknown as well, see Eq. 16).

For a given linear model of slope γ, the distance between the

linear model eγ and a range {GZ,p(Ri), ...,GZ,p(R j)} of n curva-

ture values is given by

eγ(GZ,p(Ri), ...,GZ,p(R j)) = min
b∈R

















j
∑

k=i

(Yk − γXk + b)2

















, (19)

with Xk = log Rk and Yk = log(GZ,p(Rk)). Since we minimize a

sum of quadratic terms, the value b∗ for which Eq. 19 is minimal

is simply:

b∗ =

∑ j

k=i
(γXk − Yk)

n
. (20)

If the distance to the smooth model is lower than the dis-

tance to the edge model, we may classify the point as ”smooth”

(blue color in Fig.4), otherwise it may fall into the ”edge” class

(red color). For infinitely small radii and gridstep h, this classi-

fication perfectly captures the constant and hyperbolic behavior

of curvature values, and it correctly decides whether the point

of interest is singular or not.

3.4. Model transitions and overall classification

When dealing with noisy data, the ideal classification de-

scribed above can be highly perturbed if noise induces high

curvature values in the curvature profile for small radii. Be-

side such artifacts, for a finite range of radii, transitions may

occur between classes. For instance, at a point which is close to

an edge, this point could first be classified as “edge” for large

radii, “smooth” for smaller ones and even “flat” if values fall

above the κmax(R, h) value. This is illustrated in Figure 6 for a

point close to an edge.

To recognize this behavior, we first introduce a new linear

model of slope −2: the slope of κmax(R, h). If the distance to the

5
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model of −2 slope (called flat-model hereafter) is lower than the

distance to the smooth model and edge model, we can correct

the classification to ”flat”. Then, we can evaluate the behavior

of the three distances as the ball radius changes. Doing so, we

can evaluate transitions in the linear fitting models. If a transi-

tion is detected (see Fig. 6), we decide to classify the point to

the model which is minimal for the largest number of radii.

More formally, we define lγ as the number of radii in the

range [R0,Rn] for which the distance eγ to the model of slope γ

(for γ in {−2,−1, 0}) is minimal (compared to the other ones).

Finally, for a point p of the shape Z ⊂ Z
2 or Z3, we define

our feature classifier as follows:

CZ,p(R0,Rn) =







































FLAT, if ∀0 ≤ i ≤ n,GZ,p(Ri) < κmax(Ri, h)

or if l−2 > max(l−1, l0)

SMOOTH, if l0 > max(l−1, l−2)

EDGE, otherwise.

(21)

4. Experiments

We present an experimental evaluation of our feature es-

timator for 3D digital shapes. This Integral Invariant feature

estimator (II) is implemented in the DGtal library [17]. We

choose to compare our feature estimator with five other feature

estimators from the literature we have adapted to digital data:

three of them use a scale-space analysis [9, 6, 10] and two are

”single-scale” [7, 8] but share common points with our method.

4.1. Comparative results

We first briefly describe the main characteristics of each

feature estimator, then we discuss its pros and cons for digital

shape analysis. Note that, apart from our method, all other esti-

mators estimate features only from surfacic information (sam-

ples on ∂X). Although our method requires volumetric infor-

mation (samples on X), our method keeps the same time com-

plexity thanks to an optimization described in [1]. Input data

are displayed on Figures 8, 9, 10 and 11, top row.

Figures 8 and 9 compare all feature estimators on noise

free digitized shapes, while Figures 10 and 11 compare them

on noisy versions of these digital shapes. For all methods,

parameters—if any—were tuned to give best possible results

for noise free data. These parameters are kept for noisy version

of the shapes. For methods requiring a gridstep h (such as ours

to define κmax(R, h)), we simply consider h = 1 and encode this

scaling factor in the object size for the experiment in the first

row of Figure 7.

4.1.1. Clarenz’s Feature Detector [7]

Clarenz et al. define a surface classification criterion based

on the barycenter b and the covariance matrix (in their pa-

per, they called them zero and first moments) of local sur-

face patches BR(x) ∩ ∂X. They introduce a scale-space anal-

ysis of the length of the vector ~xb as a function of the ball ra-

dius. They show a quadratic scaling of this quantity on smooth

regions of the surface, and a linear scaling close to edges.

However, this scale-space prop-

erty is not used in their clas-

sification methods, and it is

also not evaluated experimen-

tally. In our experiments, we

observe these two behaviors,

but they are hardly distinguish-

able (see graph of the right fig-

ure). Instead, they propose two

methods that provide a smooth-

ness score:

• the first one is based on the length of ~xb for a given ball

radius. It provides a good smooth / non-smooth criterion

on noise-free surfaces but not on noisy surface.

• the second one combines the previous feature score with

the smallest eigenvalue (related to the normal) and the

largest eigenvalue (related to the first principal curvature)

of the covariance matrix of BR(x) ∩ ∂X for a given R.

This second estimator (used in the experiments) provides

slightly better results on noisy shapes.

Note that both estimators require additional parameters (α and

β) used to smooth the feature score.

In Figures 8 and 10, we show two radii R1 and R2 in the

same range than others estimators. As expected, small radii

detect small non-smooth region. Larger radii reinforce the non-

smooth region detection but also consider small smooth region

as non-smooth (see ”union of spheres” object for example).

4.1.2. Mérigot’s Voronoi Covariance Measure (VCM) [8]

Mérigot et al. propose a robust method to extract curvature

information, sharp features and normal directions by convolv-

ing the covariance matrix of Voronoi cells on the object surface

with a local kernel.

More precisely, to each point of the sur-

face is associated a Voronoi Covariance Measure

VX,R(B(p, r)), which depends on two parameters:

the offset radius R dilates the

input set (the distance function

is more robust far from the sur-

face), while the convolution ra-

dius r defines the Voronoi cells

that are integrated to smooth

the measure. Both parameters

allow to limit the impact of

noise in the input data while

preserving geometrical infor-

mation. To extract a feature

score, authors compute a ratio of the eigenvalues of the con-

volved VCM at each point p: r(p)
de f
=

λ2(p)

λ0(p)+λ1(p)+λ2(p)
. The

point is considered as a sharp edge when the ratio is greater

than a threshold parameter T .

Experimentally, this method provides good results on both

noise-free (see Fig. 8) and on noisy surfaces (Fig. 10). How-

ever it requires three parameters that are difficult to set for a

large class of shapes. Note that the digital version of the VCM
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has also some multigrid convergence properties for normal di-

rections [18], and this is the implementation we used in our

experiments.

4.1.3. Mellado’s Growing Least Squares Analysis in Scale-

Space [10]

The method of Mellado et al. also provides a feature

score rather than a feature classification as described above.

More precisely, the shape is

analyzed with a least squares

spherical fitting approach. The

scale-space parameter is the

neighborhood size considered

in the fitting. Then, following

their notations, for each scale

t, they fit an algebraic hyper-

sphere and get the algebraic off-

set distance τ between p and the

0-isosurface, the unit normal η

and the signed curvature κ of

the hyper-sphere. Then, they compute a geometrical variation

at a point p as defined by: ν(p, t)
de f
=

(

dτ
dt

)2
+

(

t
dη
dt

)2
+

(

t2 dκ
dt

)2
.

Authors let the user choose what they consider a ”feature” us-

ing this geometric variation. But they also provide a continuous

feature function f (p)
de f
=

∫

tanh(ν(p, t))dt that differentiates re-

gions with no geometrical variations (in blue color in Figs. 9

and 11) from those with high variations (in yellow).

Experimentally, this method seems to be less sensitive to

noise but some artifacts appear on edges (see Fandisk object in

Fig. 9).

4.1.4. Pauly [6]

Like Clarenz et al. and Mérigot et al., Pauly et al. use

the eigenvalues of the covariance matrix at each point on the

shape surface for a given neighborhood. They exploit all three

eigenvalues λ0 ≤ λ1 ≤ λ2 by computing τi

de f
=

λ0

λ0+λ1+λ2
for a

range of radii {Ri}i = 0..n. Since these eigenvalues decrease

as the curvature increases, τi will be higher on edges than on

flat parts of the surface. To enhance this distinction, the weight

ω(p) is defined as the number of times τi is greater than τmax

on the range of radii (ω(p)
de f
= Card{τi ≥ τmax | 0 ≤ i < n}).

Such weight becomes large on

feature parts (yellow color in

Figs. 9 and 11) and low on

non feature parts (blue color).

Since this detector is related

to the shape curvatures, it pro-

vides geometrically meaningful

results. But the choice of τmax

is dependent on the shape ge-

ometry: it can consider small

smooth parts as features (small

sphere in Cube+Sphere object).

Also, this estimator is highly

sensitive to noise as we can see on Fig. 11.

4.1.5. Park’s Tensor Voting Feature Extractor [9]

Park et al. compute the voting tensor at each point on the

surface of the shape for a given neighborhood, then they com-

pute eigenvalues of the resulting matrix. With a simple ratio on

these eigenvalues, they get a feature weight quantity for each

surface point at a given radius of neighborhood. They wish to

classify the surface into two categories, feature (i.e. edge in

fact) and non-feature.

The scale-space analysis comes with a threshold on those

weights. They define two bounds: ω− and ω+; for all radii

if the weight becomes greater than ω+ the point is labeled as

a “feature” (red color in Fig. 9), if the weight becomes lower

than ω− the point is labeled as a “non- feature” (green color),

and if the variation of the weight is greater than τ times the last

weight, they keep the last weight. The remaining points that are

not classified will be clustered. Clusters containing less than ten

points are classified as “non-feature”, otherwise as “feature”.

From our own experiments,

ω− and ω+ are really depen-

dent on the shape geometry

and the kind of “features” we

want. At high curvature points,

this analysis generally detects

these points as features. How-

ever, when singularities have

a smaller dihedral angle, bad

classifications occur (on the

Cube+Sphere object for exam-

ple). On noisy data, with the

sameω−, ω+ and τ parameters as for perfect data, it only detects

high curvature regions as features.

4.1.6. Our feature estimator and discussion

All previous detectors discussed above fail to detect all fea-

ture regions at various scales. The difficulty lies in choosing pa-

rameters that detect small feature regions but wich are also ro-

bust enough on noisy shapes (see for example union-of-sphere

objects). In our framework, we have ideal scale-space model of

features. By analyzing the distance to each linear model as de-

scribed in Section 3.3, our estimator can detect and properly

classify edge regions from smooth and flat regions indepen-

dently of their scale. Finally, no others parameters than a range

of radii are required. It is important to note that the maximal

radius R0 of our range of ball radii is related to the lowest cur-

vature of the smooth region we wish to detect. Otherwise, from

Property 1, our estimator misclassifies it as a flat part.

Some strips around edge regions are wrongly classified as

smooth (see Fig. 7-top for example): this artefact is due to the

transition between a flat part and an edge part. If we analyze

the transition, we see that the curvature follows a slope of −1

above κmax(R, h) (edge model) for large radii and ends with val-

ues below κmax(R, h) (flat model). Between these two states, the

curvature must follow a slope of 0 (smooth model) to connect

the two other states. This transition can be predominant close

to a edge features. This artefact could be removed by measur-

ing the geometric distance to a feature on the shape boundary,
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and reclassify these false smooth zones into flat zones if this

distance is small.

On noisy objects, our classification still detects edge,

smooth and flat regions, but some edge artefacts may appear

within smooth regions. This is due to the fact that the feature

function is no more a straight line but more a polyline. These

artefacts could be removed either by a better distance to mod-

els, or by pruning small regions (as in [9]). Remember that only

raw results obtained by our method are presented. Therefore, it

is clear that many post-processing could be added to improve

results.

Finally, Figure 7-top displays the classification of our es-

timator on OctaFlower shape at different resolution (bound-

ing boxes of digital objects are 2563, 5123 and 10243). Fig-

ure 7-bottom displays the classification of features on objects

provided by scanners: a Stanford bunny, and digital snow mi-

crostructures acquired by X-ray microtomography. For these

snow grains, the classification allows us to determine where the

curvature estimation is not defined (on geometrical discontinu-

ities).

Figure 7: Results of our feature estimator on OctaFlower object at different res-

olutions (2563, 5123 and 10243), on a Stanford bunny and on snow microstruc-

tures acquired with X-Ray micro-tomography.

5. Conclusion

In this article, we have used integral invariant results from

differential geometry to design a simple and a robust feature

selection tool for digital objects. The proposed approach classi-

fies digital surface elements into three categories: edge, smooth

or flat. Since the proposed approach is based on local multiscale

differential quantities, the final classification is locally adaptive

and scale invariant in the sense that it can capture features at

different scales on the same geometrical object.

For the specific case of digital surfaces, we have shown that

our approach provides more accurate results compared to exist-

ing approach. Furthermore, the feature extraction is based on

scale-space behavior of curvature estimators for which we have

a multigrid convergence properties. As a consequence, quanti-

ties involved in the classification are still related to geometrical

quantities defined on the underlying Euclidean object, and thus,

a finer digitization implies a better classification.
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Figure 8: Evaluation of feature detectors on perfectly digitized shapes. SpheresUnion: 400 × 200 × 200 voxels, CubeSphere: 2003 voxels, Fandisk: 5123 voxels,

OctaFlower: 5123 voxels. Parameters used for [7]: R1 = 10, R2 = 22, α = 1, β = 50. Parameters used for [8]: R1 = 10, r1 = 10, R2 = 22, r2 = 22, T = 0.
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Figure 9: Evaluation of feature detectors on perfectly digitized shapes. SpheresUnion: 400 × 200 × 200 voxels, CubeSphere: 2003 voxels, Fandisk: 5123 voxels,

OctaFlower: 5123 voxels. Parameters used for [10]: rmin = 5, rmax = 25. Parameters used for [6]: rmin = 5, rmax = 25, τmax = 0.01. Parameters used for [9]:

rmin = 5, rmax = 25, ωmin = 1.4, ωmax = 1.4, τ = 1.2. Parameters used for our algorithm: rmin = 5, rmax = 25.
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Figure 10: Evaluation of feature detectors on noisy approximations of digital shapes of Fig. 8. SpheresUnion: 400 × 200 × 200 voxels, CubeSphere: 2003 voxels,

Fandisk: 5123 voxels, OctaFlower: 5123 voxels. Parameters used for [7]: R1 = 10, R2 = 22, α = 1, β = 50. Parameters used for [8]: R1 = 10, r1 = 10, R2 = 22,

r2 = 22, T = 0.2.
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Figure 11: Evaluation of feature detectors on noisy approximations of digital shapes of Fig. 9. SpheresUnion: 400 × 200 × 200 voxels, CubeSphere: 2003 voxels,

Fandisk: 5123 voxels, OctaFlower: 5123 voxels. Parameters used for [10]: rmin = 5, rmax = 25. Parameters used for [6]: rmin = 5, rmax = 25, τmax = 0.01.

Parameters used for [9]: rmin = 5, rmax = 25, ωmin = 1.4, ωmax = 1.4, τ = 1.2. Parameters used for our algorithm: rmin = 5, rmax = 25.
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