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Fig. 1. We demonstrate that 2D Sobol’ sequences constructed with polynomials ? and ?2 + ? + 1 have a characteristic matrix  ="?2+?+1"
−1
? that can be

obtained with a simple recursive algorithm. This is illustrated using polynomials of degrees 4 = 5 and 24 = 10, where each colored block has dimensions

4 × 4 . They produce high-quality (1, 2)-sequences (with quality factor C = 1) under mild conditions on  ’s blocks and ? (bo�om). The quality factor C of each

point set is indicated in the upper-right corner of each patch (only 256 points are shown). We use these (1, 2)-sequences to construct higher-dimensional

low-discrepancy sequences with high-quality 2D and 4D projections.

Low-discrepancy sequences, and more particularly Sobol’ sequences are

gold standard for drawing highly uniform samples for quasi-Monte Carlo

applications. They produce so-called (C, B )-sequences, that is, sequences of

B-dimensional samples whose uniformity is controlled by a non-negative

integer quality factor C . The Monte Carlo integral estimator has a conver-

gence rate that improves as C decreases. Sobol’ construction in base 2 also

provides extremely fast sampling point generation using e�cient xor-based

arithmetic. Computer graphics applications, such as rendering, often require

high uniformity in consecutive 2D projections and in higher-dimensional

projections at the same time. However, it can be shown that, in the classical

Sobol’ construction, only a single 2D sequence of points (up to scrambling),
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constructed using irreducible polynomials G and G + 1, achieves the ideal

C = 0 property. Reusing this sequence in projections necessarily loses high

dimensional uniformity. We prove the existence and construct many 2D

Sobol’ sequences having C = 1 using irreducible polynomials ? and ?2+?+1.

They can be readily combined to produce higher-dimensional low discrep-

ancy sequences with a high-quality C = 1, guaranteed in consecutive pairs of

dimensions. We provide the initialization table that can be directly used with

any existing Sobol’ implementation, along with the corresponding generator

matrices, for an optimized 692-dimensional Sobol’ construction. In addition

to guaranteeing the (1, 2)-sequence property for all consecutive pairs, we

ensure that C ≤ 4 for consecutive 4D projections up to 215 points.
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1 Introduction

Integrating a function using quasi-Monte Carlo consists in evalu-

ating it at well-chosen uniformly distributed sample points, and

averaging these values. Sobol’ sequences arise as the cornerstone of

quasi-Monte Carlo, by producing extremely well-distributed sam-

pling points whose uniformity drastically improves the convergence

rate, compared to classical Monte Carlo methods. These points are

constructed using a fast and compact recursive algorithm involv-

ing polynomials and matrices. Sobol’ sequences have thus been

widely adopted in computer graphics, notably for rendering where

e�ciency is paramount. Their mathematical beauty, their connec-

tions to Pascal matrices (or Sierpinsky triangle) and Galois theory

also make them appealing to the mathematician, but their di�-

culty comprehending may discourage others. This paper gives new

fundamental mathematical insights on Sobol’ sequences, exploring

particular pairs of polynomials and new Sobol’ matrix constructions,

with practical and provable bene�ts in terms of quasi-Monte Carlo

integration error.

Sobol’ sequences produce a sequence of samples in arbitrary di-

mension bymultiplying Sobol’ matrices with a base-1 representation

of the sample index, where one Sobol’ matrix is used per dimension.

To compute a Sobol’ matrix, a polynomial ? of degree 4 and an ini-

tialization matrix of size 4 × 4 (often called direction vectors in prior

work) are required. The (triangular) Sobol’ matrix is recursively

constructed column by column, where the next column is computed

as a linear combination of the previous 4 columns weighted by the

polynomial coe�cients (plus a shifted column), with all operations

performed modulo 1 (or over Galois Field �� (1)). The uniformity

of the produced sample points is determined by a non-negative

integer parameter C , where C = 0 corresponds to the best achievable

quality, and the quasi-Monte Carlo integral estimator converges

with a rate roughly proportional to 1C (see [Lemieux 2009] page 157,

and [Niederreiter 1988]).

An B-dimensional set with 1< samples with quality C is called a

(C,<, B)-net (see Fig. 2). If such a point set is a (C,<, B)-net for all<,

then it is a (C, B)-sequence. We are particularly interested in the case

B = 2, not only for producing 2D points for 2-dimensional problems,

but most importantly to control 2-dimensional projections of higher-

dimensional problems [Joe and Kuo 2008] arising for example in

computer graphics such as rendering.

It has been demonstrated that, in base 1 = 2, and when consider-

ing 2D points, matrices that generate (0, 2)-sequences are inherently

related by a Pascal matrix [Ahmed et al. 2023; Hofer and Suzuki

2019]. Consequently, the only pair of polynomials that produce C = 0

using Sobol’ construction are G and G + 1. The space of C = 0 se-

quences is thus extremely limited, when1 = 2. One possible solution

is to increase 1, as suggested in [Ostromoukhov et al. 2024], which

allows for additional polynomials that generate C = 0 sequences.

However, the e�ect on the integration error for C ≠ 0 becomes

more signi�cant due to the 1C factor in the convergence rate. In

addition, base 1 = 2 allows for extremely fast implementations us-

ing vectorized xor-based arithmetic, which is not the case when

1 > 2. For practical reasons, Sobol’ polynomials and initialization

matrices have thus been optimized mostly in base 1 = 2 [Joe and

Kuo 2008], though consecutive dimensions typically produce in-

creasing C values as dimension increases which limits their use for

rendering [Christensen et al. 2018].

Focusing on the case 1 = 2, in this paper we show that there

exist many (1, 2)-sequences that can be constructed from pairs of

irreducible polynomials ? and ?2+? +1. These 2D sequences can be

combined to produce higher dimensional (C, B)-sequences of high-

quality C = 1 in consecutive 2D projections, which is the best quality

achievable for 1 = 2 aside from the single C = 0 pair mentioned

above. We also observed that, in practical integration problems,

the quasi-Monte Carlo convergence rate did not di�er signi�cantly

between C = 0 and C = 1 in base 2 (see Fig. 3), making C = 1 a com-

pelling compromise. Our use of a standard 1 = 2 Sobol’ framework

makes our sequences readily usable in production renderers already

using Sobol’ sequences, by simply replacing existing polynomials

and initializations with ours. In our quest to prove the quality of

our polynomials, we discovered a new recursive construction of

Sobol’ matrices, derived by iteratively squaring polynomials. This,

in turn, led to the identi�cation of interesting patterns that charac-

terize these sequences. This paper explores the depths of this new

construction and demonstrates how our sequences can be applied

to quasi-Monte Carlo rendering. Code and data are available at

https://github.com/liris-origami/OneTwoSobolSequences.
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Fig. 2. The definition of a (C,<, 2)-net of = = 2< samples is that all dyadic

intervals of area 2C /2< contain 2C points. As such, a (0, 4, 2)-net (top) has

exactly one (=20) point in each interval of volume 1/24, a (1, 4, 2)-net has

exactly two points (=21) in each interval of volume 1/23 (middle), and a

(2, 4, 2)-net has four points on intervals of volume 1/22 (bo�om). Increasing

C thus reduces uniformity constraints and produces larger gaps and clusters

in the distribution.

2 Related work

We summarize fundamentals about Sobol’ construction [Sobol’ 1967]

and refer the reader to reference books [Dick and Pillichshammer

2010; Lemieux 2009; Niederreiter 1992] for in-depth discussions.

Sobol’ construction. To construct (C, B)-sequences, Sobol’ proposed

a solution based on primitive polynomials. Given B primitive poly-

nomials ?0, . . . , ?B−1 in the Galois Field of prime base 1 called�� (1)

(think of it as the set of integers modulo 1), Sobol’ constructs B upper
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Fig. 3. Experimental validation in 2D of the impact of the C value of a Sobol’ sequence on various metrics (from le� to right, the generalized !2 discrepancy

[Hickernell 1998] and Monte Carlo integration errors on random Gaussians and Heaviside functions). We randomly select a pair of Sobol’ polynomials from

the first thousand entries of Joe and Kuo [2008], we evaluate the metrics for each sample count and plot error distribution (box plots) per values C (box plot

colors) observed for that sample count (64 realizations for each C ). We observe a strong correlation between the observed C value of the point set and its quality

for Monte Carlo integration, while C = 1 appears as a good compromise in quality compared to C = 0.

triangular matrices "?0 , . . . , "?B−1 , one per dimension, which are

used to obtain each coordinate of the 8Cℎ sample point x8 in the

sequence. Speci�cally, the :Cℎ coordinate of the 8Cℎ sample point, x:8 ,

is obtained using a matrix-vector product between matrix"?: and

the base 1 decomposition of the sample point index 8 interpreted

as a column vector, denoted 8̄ hereafter, @̄ ="?: 8̄ with 8 =
∑
9 8̄ 91

9 .

The sample point coordinate is now

x
:
8 =

∑
9

@̄ 91
− 9 .

The construction of the upper triangular invertible matrix"?: us-

ing the primitive polynomial ?: uses a recursive formula to obtain

a column given its 4 previous columns, where 4 is the degree of the

polynomial ?: . The initialization of this recursion, an 4 × 4 upper

triangular matrix at the top-left corner of matrix"?: , provides addi-

tional degrees of freedom in addition to the chosen polynomial. We

base our construction on matrix blocks instead of the more common

column-wise recursion, as proposed by Faure and Lemieux [2016],

that we brie�y describe in Sec. 4.1.

Joe and Kuo numerically optimized top-left 4 × 4 blocks, resulting

in improved Sobol’ sequences on consecutive projections [Joe and

Kuo 2008]. Matrices can be directly obtained without Sobol’ recur-

rence using an integer linear program solver, but this limits their

use to only moderately large problem [Paulin et al. 2022a].

Faure and Lemieux showed that the larger set of irreducible poly-

nomials can be used instead of primitive polynomials [Faure and

Lemieux 2016; Sloane 2001]. Irreducible polynomials are similar to

prime numbers, meaning they cannot be factored into products of

other non-constant polynomials. Faure and Lemieux showed that

the parameter C of the resulting (C, B)-sequence is bounded by the

sum of the polynomial degrees minus one. A simple way to obtain

(0, 1)-sequences in base 1 consists of using the �rst 1 irreducible

polynomials ?0 (G) = G , ?1 (G) = G + 1, . . . , ?1−1 (G) = G + 1 − 1,

each of degree 1. The theorem by Faure and Lemieux then shows

that 0 ≤ C ≤
∑
8 (346(?8 ) − 1) = 0. However, this produces a unique

sequence (up to sample permutations), related to those produced

by Faure [1982], which limits its use in more general settings that

require sample diversity. Ostromoukhov et al. [2024] used a construc-

tion with quadruplets of irreducible polynomials in base 1 = 3 to

achieve progressive point sets of excellent consecutive projections.

LDS and projective LDS in Computer Graphics. In rendering appli-

cations, low-discrepancy sequences can have a signi�cant impact

on path-tracing performance [Christensen et al. 2018; Jarosz et al.

2019; Keller 2004, 2013]. When the sampling pattern de�ned on the

canonical domain [0, 1)B is mapped to a pixel (or a group of pixels),

decorrelating the pattern across di�erent pixels typically requires

a scrambling procedure. Owen’s scrambling is usually considered,

as it preserves the C value of the point set [Owen 1995]. Due to the

nature of the rendering equation, several authors have explored pro-

jective strategies aimed at achieving highly uniform consecutive 2D

projections. Achieving high-quality in 2D projections often comes at

the cost of degrading uniformity in higher dimensions [Ahmed and

Wonka 2020; Kollig and Keller 2002; Paulin et al. 2021; Perrier et al.

2018]. Notably, the ZeroTwo sequence uses the �rst two Sobol’ di-

mensions repeatedly with random permutations [Pharr et al. 2023],

while padded 4D Sobol’ repeats and shu�es samples of the �rst

four dimensions [Burley 2020]. These provide ideal behavior in con-

secutive 2 or 4D projections, but behave similarly to white noise

in higher dimensions. Some methods are dedicated to generating

point sets rather than sequences [Ostromoukhov et al. 2024; Paulin

et al. 2022a], or are not low discrepancy [Paulin et al. 2020; Reinert

et al. 2016]. Our new construction enables the de�nition of complete

(C, B)−sequences with guaranteed high-quality (i.e. (1, 2)-sequences)

2D projections.

3 Overview of our construction

We �rst focus on 2-dimensional Sobol’ sequences. Our goal is thus

to obtain Sobol’ matrices"?0 and"?1 for two polynomials ?0 and

?1. In our framework, we may use standard Sobol’ construction

to generate these matrices using respectively polynomials ?0 and

?1 and initialization matrices �?0 and �?1 : our contribution is to

provide simple conditions for these initialization matrices to yield

high-quality parameter C = 1 Sobol’ sequences (see Fig. 4). This
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section describes an overview of this process, while Sec. 4 details

proofs. In the following, we assume modulo 2 arithmetic, and all

values involved are binary.

We consider a matrix  ="?1"
−1
?0

that uniquely represents a 2D

Sobol’ sequence up to a permutation of points, called characteristic

matrix (denoted � by Ahmed et al. [2023]). We show that when

?1 = ?
2
0
+ ?0 + 1, where ?0 is a degree 4 polynomial and ?1 thus has

degree 24 ,  has a peculiar form, and can be obtained recursively

from a decomposition into square blocks �, � and �:

 (8 )
=

[
� �

0 �

]
→  (8+1)

=



� � � + � �

0 � � 0

0 0 � � + �

0 0 0 �


.

where each block �, � or � has size 28−14 . This produces a matrix

 of arbitrary size, doubling its size at each iteration. Our paper

introduces conditions on  (1) and  (2) , that lead to conditions

on the Sobol’ initialization matrices �?0 and �?1 , for our Sobol’

sequences to be (1, 2)-sequences. We note that the initialization

 (1) , of size 24 × 24 , is  (1)
= �?1 �̃

−1
?0
, where we denote �̃?0 the

24 × 24 matrix obtained by extending the 4 × 4 matrix �?0 to 24 × 24

using standard Sobol’ iterations.

To obtain Sobol’ initialization matrices, we thus �rst generate a

random invertible triangular 4×4 matrix�?0 whichwe extend to 24×

24 using Sobol’ iterations. We then use a matrix  (1) satisfying our

conditions (see next), and easily obtain 24 × 24 initialization matrix

�?1 =  
(1) �̃?0 . Matrices"?0 and"?1 , and 2D sample coordinates

are then obtained using standard Sobol’ procedures, from ?0, ?1 =

?2
0
+ ?0 + 1, �?0 and �?1 .

To generate higher-dimensional Sobol’ sequences, we combine

pairs of dimensions but further require that ?0 and ?1 = ?
2
0
+ ?0 + 1

be irreducible polynomials so as to guarantee that the resulting

B-dimensional sequence is a (C, B)-sequence [Faure and Lemieux

2016].

We claim the following contributions.

Theorem 3.1. The sequence of iterations

 (8 )
=

[
� �

0 �

]
→  (8+1)

=



� � � + � �

0 � � 0

0 0 � � + �

0 0 0 �


, (1)

where each matrix block �, �, � , is of size 28−14 × 28−14 , produces

the characteristic matrix of a 2D Sobol’ sequence given by a degree 4

polynomial ? , and degree 24 polynomial ?2 + ? + 1.

Corollary 3.2. A 2D Sobol’ sequence given by polynomials ?

and ?2 + ? + 1 only depends on the degree of the polynomial and

initialization matrices, and does not depend on the coe�cients of ?

themselves, up to a permutation of samples.

This corollary is readily justi�ed since the recursive construction

of theorem 3.1 does not involve polynomial coe�cients, but merely

polynomial degrees. As such, a pair ?0 of degree 4 and ?1 = ?
2
0
+?0+1

with given initialization matrices would result in the same sequence

as ?′
0
of degree 4 and ?′

1
= ?′2

0
+?′

0
+1 for another pair of initialization

matrices.

A B

C

A B A + B A

C C

A A + B

C

A B A + B A B A + B A B

C C C C C

A A + B A A + B

C C

A B B A + B

C C C

A A + B

C

···

�? �?2

�?2+?+1 =  
(1)�?2

 (1)  (2)  (3)

Only used for proofs (Theorem 3.3)

Alg. 1

Alg. 2

Classical Sobol’ construction

"? "?2+?+1

Fig. 4. Overview. We introduce a recursive construction of the characteristic

matrix associated with a pair of polynomials (?, ?2 + ? + 1). We use it in

proofs to obtain conditions for generating (1, 2)-sequences based on the

first iteration alone of this recursion. From characteristic matrices meeting

these conditions, we derive Sobol’ initialization matrices �? and �?2+?+1,

which in turn allows to construct the corresponding Sobol’ matrices "?
and"?2+?+1 generating (1, 2)−sequences in base 2.

Theorem 3.3. Iterations  (8 ) →  (8+1) characterize Sobol’ (1, 2)-

sequences if and only if both conditions are met:

• (P): corank() ) ≤ 1 for any rectangular (F −1) ×F submatrix

) of  (2) anchored at its �rst row

• (Q): corank(�′) ≤ 1 for any square submatrix �′ of block �

in  (1) obtained by removing any consecutive set of : columns

and the last : rows of � .

These results allow us to pre-compute many matrices  (1) satis-

fying the conditions of theorem 3.1 for a given polynomial degree 4
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and infer pairs of irreducible polynomials and initialization matrices

that produce Sobol’ (1, 2)-sequences.

In the process of proving these theorems, we discovered new

insights on Sobol’ constructions for more general polynomials:

• Polynomials ? and ?2 will produce the same Sobol’ matrices,

given proper initialization matrices (see lemma 4.1).

• This property allows building general Sobol’ matrices in a

recursive way by doubling their size at each iteration via

polynomial squaring.

• The characteristic matrix can also be constructed recursively.

The goal of Sec. 4 is to provide mathematical proofs for the claims

we summarized in this overview section. The practitioner may thus

skip Sec. 4 at �rst read and jump to the description of our algorithms

in Sec. 5. Speci�cally, sections 4.1 and 4.2 prove lemma 4.1 related to

polynomials ? and ?2 yielding the same matrices. This in turns helps

proving in Sec. 4.3 that characteristic matrices can be constructed

recursively. When applied to polynomials ? and ?2 + ? + 1, Sec. 4.4

proves that the characteristic matrix has the recursive construction

of Eq. 1 and thus proves Theorem 3.1. Finally, Sec. 4.5 and our

supplementarymaterials prove Theorem 3.3 that explicits conditions

under which the characteristic matrices generate (1, 2)-sequences.

4 Construction of (1, 2)-sequences in base 2

We �rst recall a construction of Sobol’ matrices based on matrix

blocks by Faure and Lemieux [2016] in Sec. 4.1, which will serve

as a basis for the next sections describing our proof. Our proof

�rst consists of introducing a new recursive construction of Sobol’

matrices by squaring polynomials in Sec. 4.2. We then show that

a similar squaring procedure can be obtained for characteristic

matrices in Sec. 4.3. We then show, using this construction, that

the characteristic matrix for polynomials ? and ?2 + ? + 1 has a

speci�c form exhibiting a self-similar pattern in Sec. 4.4. We �nally

show that ranks of characteristic matrices with this self-similar

pattern are necessarily such that the produced 2D sequences are

(1, 2)-sequences in Sec. 4.5.

4.1 Block-based recursive construction

We �rst brie�y describe a block-based 1-D Sobol’ construction as

described by Faure and Lemieux [2016].

For a given irreducible polynomial ? (G) = G4 +
∑4−1
8=0 08G

8 and

upper 4 × 4 invertible triangular initialization matrix �? , Faure and

Lemieux [2016] rewrite Sobol’ iterations in terms of block matrices:

"? =

©
«

�1,1 �1,2 �1,3 . . .

0 �2,2 �2,3 . . .

0 0 �3,3 . . .
...

...
...

. . .

ª®®®®
¬
,

where the blocks �8, 9 , of size 4 × 4 , are de�ned according to the

following recursive procedure:

�1,1 = �? ; �8,8 = �?�
8−1
?

�8, 9 =

{
�8, 9−1&?�? when 8 = 1

�8, 9−1&?�? + �8−1, 9−1�? elsewhere.
(2)

Here, &? is an 4 × 4 lower triangular Toeplitz matrix involving

the coe�cients (08 )8 of polynomial ? :

&? =

©
«

00 0 0 . . . 0

01 00 0 . . . 0

02 01 00 . . . 0

...
...

...
. . .

...

04−1 04−2 04−3 . . . 00

ª®®®®®®
¬
. (3)

Matrix �? of size 4 × 4 is de�ned as

�? = (�34 + '?,2) (�34 + '?,3) . . . (�34 + '?,4 ), (4)

where �34 is an identity matrix of size 4 × 4 , and '?,: are matrices

of size 4 × 4 with zeros everywhere except in the �rst : − 1 entries

of the :-th column, given by the coe�cients (04−(:−1) , . . . , 04−1) of

polynomial ? .

We introduce a new recursion to build Sobol’ matrices inspired

by the construction of Faure and Lemieux [2016].

4.2 Sobol’ construction by squaring polynomials

In the following, we introduce a squared superscript notation to

clarify matrix sizes when appropriate, e.g.,"
[24 ]
? denoting the Sobol’

matrix of polynomial ? restricted to the �rst 24 rows and 24 columns.

We observe that the Sobol’ matrix"?2 of a squared polynomial

(although not irreducible) is identical to the Sobol’ matrix "? of

the original polynomial, provided that the initialization matrix �?2
coincides with the top-left corner of"? . We formalize this:

Lemma 4.1. The Sobol’ matrix"? generated by a polynomial ? of

degree 4 and initialization matrix �? is identical to the Sobol’ matrix

"?2 of polynomial ?2 and initialization matrix

�?2 ="
[24 ]
? =

(
�? 0

0 �?

) (
�34 &?�?
0 �?

)
, (5)

corresponding to the top-left 24 × 24 submatrix of"? .

Matrices &?2 and �?2 of Faure and Lemieux [2016] can be obtained

by applying a Kronecker product (or tensor product) with the matrix

�32 =

(
1 0

0 1

)
to matrices &? and �? :

&?2 =&? ⊗ �32, �?2 = �? ⊗ �32 . (6)

where &?2 and �?2 are of size 24 × 24 .

This lemma brings a new recursive construction of Sobol’ matri-

ces, doubling their sizes at each iteration by squaring polynomials,

illustrated in Fig. 5.

In our development, we �rst note that, while �? can have a com-

plicated form, its inverse can be expressed much more easily, as an

upper triangular Toeplitz matrix:

� −1? =

©
«

1 04−1 04−2 . . . 01
0 1 04−1 . . . 02
0 0 1 . . . 03
...

...
...

. . .
...

0 0 0 . . . 1

ª®®®®®®
¬
, (7)

where we ignore signs in modulo 2 arithmetic. This is obtained by

observing that matrices �34 + '?,: are their own inverses, and that
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Fig. 5. In contrast to the column-by-column Sobol’ approach [Sobol’ 1967], and the block formulation of Faure and Lemieux [2016] (Sec. 4.1), we present a

novel recursive construction for Sobol’ matrices (le�) and characteristic matrices (right) by squaring polynomials. The construction of matrix"? follows from

lemma 4.1, Eq. (5), while the construction of  
[24̃ ]
@,A is obtained from Eq. (8). Matrices - (8 ) , . (8 ) , - ′(8 ) and . ′(8 ) provide compact representations of expressions

involving �? , �? , and&? , using the distributivity of the Kronecker product over matrix multiplication.

inverting �? then merely reverses the order of the multiplication:

� −1? = (�34 + '?,4 ) . . . (�34 + '?,2).

Proof of Lemma 4.1. The relation between�?2 and�? is simply

obtained by running Faure and Lemieux’ iterations for one block of

columns. We may now assume that the top-left 24 × 24 submatrices

of"? and"?2 coincide. We also note that for a polynomial ? (G) =

G4 +
∑4−1
8=0 08G

8 , given modulo-2 arithmetic cancelling odd degrees,

?2 (G) = G24 +
∑4−1
8=0 08G

28 . This, in turn, leads to &?2 = &? ⊗ �32,

and similarly, to � −1
?2

= � −1? ⊗ �32 and thus �?2 = �? ⊗ �32 (the

inverse of the Kronecker product being the Kronecker product of the

inverse matrices), and �nally,&?2�?2 = (&?�? ) ⊗ �32. The recursive

construction of Eq. (2) thus produces the same matrices whether

using &?2 and �?2 or &? and �? .

□

4.3 Block-based characteristic matrices

For a pair of dimensions with Sobol’ matrices"@ and"A , we base

our analysis on the characteristic matrix  = "A"
−1
@ as de�ned

by Ahmed et al. [2023] , which uniquely characterizes Sobol’ 2D

sequences up to a permutation of samples. When the polynomials @

and A are of the same degree 4̃ , we may build a characteristic matrix

of size 24̃ by applying one iteration of Faure and Lemieux’ block

construction:

 
[24̃ ]
@,A ="

[24 ]
A

(
"

[24 ]
@

)−1
=

(
�A 0

0 �A

) (
�34̃ &A �A
0 �A

) ((
�@ 0

0 �@

) (
�34̃ &@�@
0 �@

))−1

=

(
�A 0

0 �A

) (
�34̃ &@ +&A �A �

−1
@

0 �A �
−1
@

) (
�@ 0

0 �@

)−1

=

(
 

[4̃ ]
@,A 0

0  
[4̃ ]
@,A

) (
�34̃ �@ (&@ +&A �A �

−1
@ )�−1

@

0 �@ (�A �
−1
@ )�−1

@

)
. (8)

where we used the identity

(
� �

0 �

)−1
=

(
�−1 −�−1��−1

0 �−1

)
for

invertible� and� , and where 
[4̃ ]
@,A = �A�

−1
@ is the 4̃×4̃ initialization

block for this characteristic matrix, obtained from the initializations

of"@ and"A .

This construction considers polynomials @ and A of the same

degree, but we can use lemma 4.1 to square our �rst polynomial

and then consider @ = ?2 and A = ?2 + ? + 1 of the same degree. We

thus consider this construction using 4̃ = 24 .

Also, this construction merely produces a matrix of size 24̃ given

polynomials of degree 4̃ . However, it can be used recursively by

considering lemma 4.1, doubling the size of the matrix at each itera-

tion by squaring polynomials. By lemma 4.1, the e�ect of squaring

polynomials on all matrices involved is merely a tensor product

with �32. We also illustrate this process in Fig. 5.
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4.4 The special case (?, ?2 + ? + 1)

The construction for characteristic matrices in Sec. 4.3 is general,

and applies to any pair of polynomials. In this section, we show the

special case when @ = ?2, and A = ?2 + ? + 1.

First, we note that applying lemma 4.1 for using @ = ?2 in place of

@ = ? leads to an extended initialization matrix �?2 which inverse

can be expressed:

�−1
?2

=

(
"

[24 ]
?

)−1
=

(
�34 &?
0 � −1?

) (
�−1
? 0

0 �−1
?

)
. (9)

We thus now consider that our polynomials have degree 24 and

we seek to apply our characteristic matrix construction to obtain a

matrix  
[44 ]
@,A of size 44 × 44 .

It can then be shown (see Appendix A.1) that �?2+?+1�
−1
?2

has a

particular form:

�?2+?+1�
−1
?2

=

(
�34 �?
0 �34

)
. (10)

The resultingmatrix is also its own inverse: �?2+?+1�
−1
?2

= �?2�
−1
?2+?+1

.

Combining Eq. (9) and (10) (see Appendix A.2), we have:

�?2+?+1�
−1
?2
�−1
?2

= �−1
?2

(
�34 �34
0 �34

)
. (11)

Similarly, we have

(&?2 +&?2+?+1�?2+?+1�
−1
?2

)�−1
?2

= �−1
?2

(
�34 �34
�34 0

)
, (12)

where we further use the properties of the product of our Toeplitz

matrices, see Appendix A.3 for details.

Putting all together, and considering the initially given matrix

 
[24 ]

?2,?2+?+1
has size 24 since we considered ?2 and ?2+?+1 of degree

24 , we see that the recursive construction of  becomes

 
[44 ]

?2,?2+?+1
=

(
 

[24 ]

?2,?2+?+1
0

0  
[24 ]

?2,?2+?+1

)©
«
�324

(
�34 �34
�34 0

)

0

(
�34 �34
0 �34

)ª®®®
¬
.

(13)

Lemma 4.1 indicates that this procedure becomes recursive by

squaring polynomials, allowing to double the size of  at each

iteration. We rewrite these iterations using the following notation

involving blocks �, �,� of size 284 × 284 , doubling their size at each

iteration:

 (8 )
=

[
� �

0 �

]
→  (8+1)

=



� � � + � �

� � 0

� � + �

�


with the 24 × 24 initial matrix

 (1)
=  

[24 ]

?2,?2+?+1
= �?2+?+1�

−1
?2

= �?2+?+1

((
�? 0

0 �?

) (
�34 &?�?
0 �?

))−1
,

for any given 4 × 4 upper triangular invertible matrix �? and 24 ×

24 upper triangular invertible matrix �?2+?+1 giving the degrees

of freedom for the generated sequences. �?2 is here obtained by

running standard Sobol’ iterations to extend the 4 × 4 matrix �? to

obtain the next 4 rows and columns.

4.5 Rank of submatrices

Let us denote by )̄ 9,F a square F × F submatrix of  starting

at column 1 ≤ 9 < < − F . Ahmed et al. [2023] showed that

("? , "@) is a (0, 2)−sequence if and only if all submatrices )̄ 9,F have

nonzero determinant (modulo 2). In our settings, we de�ne ) 9,F

F 1

9

)̄ 9,F

) 9,F

 

as the rectangular submatrix of  starting at

column 9 and of size (F − 1) ×F . A �rst claim

is that a (1, 2)-sequence is characterized by

a matrix  having all submatrices ) 9,F rank-

de�cient by at most 1 (see Appendix A.4). If

we denote corank() 9,F): =F −1−rank() 9,F)

the rank de�ciency of matrix ) 9,F , a (1, 2)-

sequence is thus characterized by the property

that all submatrices) 9,F of have a corank of at most 1. We call this

property P. Ranks need to be computed in �� (2), e.g., the matrix
1 1 0 0

1 0 1 1

0 1 1 1


has rank 2 in �� (2) (because the third column

is the sum of the previous two, modulo 2) although it has rank 3

over the integers. This can be obtained numerically using Gaussian

elimination.

Since matrix  is an in�nite-sized matrix, systematic numerical

evaluation of ranks for all possible submatrices of quickly becomes

intractable.

We instead bene�t from our recursive construction of  to prop-

agate properties across iterations. We show by induction that if

property P holds for matrix  (2) , and an additional property Q

holds for the block � of  (1) , then properties P and Q necessarily

hold for all  (8 ) , 8 ≥ 1.

Property Q states that all submatrices �′ of � obtained by re-

moving 1 ≤ C < < consecutive columns and the last C rows have

corank(�′) ≤ 1. It is easy to verify that property Q holds for  (8 ) ,

8 ≥ 1, if it holds for  (1) , since the recursive procedure transforms

� into a block triangular matrix

(
� � + �

0 �

)
, where � is full rank.

Verifying by induction that property P holds for  (8 ) , 8 ≥ 1,

provided that it holds for  (2) (and thus  (1) ) is more involved.

Given amatrix of the form (8 ) , we iterate our construction to obtain

 (8+1) and  (8+2) ;  (8+2) has 8× 8 blocks, each of size 28−14 × 28−14 .

From  (8+2) , we extract matrices ) 9,F that overlap any number

1 ≤ 1 ≤ 8 of consecutive blocks horizontally and either 1 or 1 − 1

blocks vertically. We symbolically perform Gaussian elimination

on ) 9,F to exhibit block triangular structures for which ranks can

be easily obtained [Meyer 1973]. Speci�cally, we seek to have any

number of blocks on the diagonal with full rank, and, at most, 1

block ful�lling property P or Q by hypothesis to conclude that

corank() 9,F) ≤ 1 . Given the sheer number of cases, we refer the

reader to the supplementary materials for the exhaustive list of

cases, and show one typical case in Fig. 6 on a submatrix ) =

) 9,F overlapping 4 blocks (out of 8) of  (8+2) . The base case of the

induction is tested numerically on matrix  (2) (if it holds for  (2)

it also holds for  (1) ).
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Fig. 6. Example of an (B − 1) × B submatrix) (in red) of  (8+2) overlapping

4 consecutive blocks horizontally and vertically. Gaussian elimination is

performed (here by addition and permutation of blocks of columns) to

exhibit a block triangular structure, where one block (in orange) has non-

zero determinant, and another block (in pink) whose corank is smaller than

1 since  (8+1) satisfies P by hypothesis. This proves that this particular

submatrix ) also has corank() ) ≤ 1. In supplementary materials, we

exhaustively list all cases for rectangular submatrices) included in  (8+2)

to conclude that  (8+2) then satisfies P.

5 Experimental results

In this section, we outline practical aspects of our method. First, we

provide a brief overview of the process for generating polynomials

and initialization matrices for Sobol’ sequences, with a focus on

ensuring high-quality 2D projections. Next, we present a concrete

example demonstrating how the proposed method can be integrated

into a typical physically-based rendering (PBR) framework, using

PBRT [Pharr et al. 2023] as a case study.

5.1 Constructing projective (1, 2)-sequences

In our construction, we cannot use all irreducible polynomials as

Faure and Lemieux do [Faure and Lemieux 2016], because we focus

on pairs of polynomials (?8 , ?8+1) such that ?8+1 = ?
2
8 + ?8 + 1. We

found 346 such pairs of irreducible polynomials of degree up to

4 = 16 (24 = 32). This allows for 692D sampling with guaranteed-

quality 2D projections, and more precisely (1, 2)-sequences for con-

secutive pairs of dimensions. The property of (1, 2)-sequences for

each pair is guaranteed by Theorem 3.1, provided that the appropri-

ate initialization matrices are provided.

First, we precompute a set of candidate characteristic matrices

K4 for each degree 4 of the polynomials we are considering. Note

that by Corollary 3.2, at this stage we do not need the speci�c

polynomials involved, but only their degrees. The construction of

this collection consists in a random search for matrices�, �,� of size

4 × 4 by verifying that  (2) satis�es property P and that � satis�es

property Q (see Sec. 4.5 and Algorithm 1). Exploring the space of

all matrices �, �, � that satisfy P and Q, respectively, becomes

infeasible for large 4 , as the search space grows exponentially with

4 . For 4 ∈ {1, 2, 3, 4, 5}, we found 2, 6, 40, 1688, and 727 matrices,

respectively. For higher degrees, we leverage the fact that doubling

a matrix in K4 by squaring the polynomial as described in Eq. (1),

provides a candidate matrix for K24 . These matrices are available in

the supplementary material.

Then, each characteristic matrix inK4 is used to de�ne two Sobol’

matrices for each pair of irreducible polynomials (?, ?2 + ? + 1) of

ALGORITHM 1: Constructing K4 .

Result: A set of candidate characteristic matrices K4 .

while true do
Draw a random upper triangular matrix � with 1 on the

diagonal and a random square matrix �, both of size 4 × 4 ;

Draw a random triangular matrix� of size 4 × 4 satisfying the

property Q;

Construct  (2) of size 44 × 44 using Eq. (1);

if  (2) satis�es the property P then

Append  (1) to K4 ;

end

end

degrees 4 and 24 respectively (Theorem 3.1). We construct the ini-

tialization matrices �
[4 ]
? and �

[24 ]

?2+?+1
as follows: we draw a random

non-singular upper triangular matrix�
[4 ]
? of size 4×4 , and expand it

to �
[24 ]

?2
using standard Sobol’ iterations for polynomial ? , and con-

struct �
[24 ]

?2+?+1
using �

[24 ]

?2+?+1
=  [24 ]�

[24 ]

?2
where the characteristic

matrix  [24 ] is drawn from K4 (see Algorithm 2).

Finally, we convert the initialization matrices �
[4 ]
? and �

[24 ]

?2+?+1

into a set of direction vectors for Sobol’ construction, which is

compatible with the format of Joe and Kuo [2008].

ALGORITHM 2: Constructing many (1, 2)−sequence initialization

matrices

Data: a degree 4 , a set of candidate characteristic matrices K4 .

Result: A collection of tuples
{(
?, �

[4 ]
? 0=3�

[24 ]

?2+?+1

)}
while true do

forall pairs of irreducible polynomials ? and ?2 + ? + 1 of degrees

4 and 24 respectively do

Create random non-singular upper triangular matrix �
[4 ]
?

of size 4 × 4 ;

Expand �
[4 ]
? to �

[24 ]

?2
using Sobol’ construction with ? ;

Draw a characteristic matrix  [24 ] from K4 ;

Compute �
[24 ]

?2+?+1
=  [24 ]�

[24 ]

?2
;

Append
(
?, �

[4 ]
? , �

[24 ]

?2+?+1

)
to the result;

end

end

5.2 Further improvements

For each pair of polynomials (?8 , ?8+1) we can generate a large num-

ber of possible initializations, as outlined in Algorithm 2, which all

satisfy our conditions for generating (1, 2)-sequences. Consequently,

we enforce additional criteria to enhance our multi-dimensional

construction. In the context of computer graphics, we aim to achieve

higher quality not only for consecutive pairs of dimensions but also

for 4-tuples of dimensions, which group consecutive pairs. We se-

lect only solutions with guaranteed reasonably-good C ≤ 4 for 4D

projections up to 215 points. We further seek to achieve low C for di-

mensions that are close to (8, 8 + 1). Speci�cally, pairs of dimensions
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Fig. 7. We compare consecutive 2D projections for the first 12 dimensions of several constructions: (a) Sobol’ with Joe and Kuo initializations [Joe and Kuo

2008], (b) Faure and Lemieux [2016; 2019], (c) the first two Sobol’ dimensions, repeated with a random permutation of sample indices [Pharr et al. 2023], (d)

the Cascaded Sobol’ approach of Paulin et al. [2021] (not sequence) (e) the �ad-optimized LDS in GF(3) by Ostromoukhov et al. [2024], and (f) our approach.

Here, orange squares designate guaranteed (0, 2)-progressive or (0, 2)/(1, 2)-sequence properties. Blue squares designate optimized 4-tuples of dimensions.

Green squares designate additional optimizations, supported by our optimization process (See details in Sec. 5.2). For low discrepancy projections, the factor C

of each point set is numerically computed and indicated in the upper-right corner of each patch.

are progressively added by proposing pairs of matrices generated

from characteristic matrices. Accepting a new pair of matrices re-

quires that, within the 6D block of dimensions involving the last 4D

block and the new pair, all-pairs 2D values of C ≤ 3 for any< ≤ 8.

Further, for the 4D block involving the last pair of dimensions and

the new pair, the 4D value of C ≤ 4 for< ≤ 15 and C ≤ 3 for< ≤ 10.

Pairs of polynomials of degree lower than 4 = 12 (involving the

�rst 36 dimensions) were further inspected manually to ensure high

quality. This optimization process is inspired by the pioneering

works of Joe and Kuo [2008] and Faure and Lemieux [2019]. It is also

close to the optimization described by Ostromoukhov et al. [2024].

Visualization of 2D projections for our resulting sequence can be

seen in Fig. 7 while discrepancy and integration errors for 2D and

4D projections can be seen in Fig. 10. In Figure 8, we further analyze

the experimental C values any 2D projections, for various sample

counts, up to 100D. While our construction provides better C values

for nearly consecutive pairs (see histograms), the experimental C

values for distant polynomials are only slightly worse than Sobol’s.

It is important to note that, aside from the optimization crite-

ria, our construction behaves like any other Sobol’ construction.

Speci�cally, some remote pairs of dimensions or n-tuples beyond

the optimized 4-tuples mentioned earlier may exhibit “good” or

“bad” values of C , which fall outside the control of our optimiza-

tion process. This limitation is also present in the aforementioned

optimizations [Faure and Lemieux 2019; Joe and Kuo 2008; Ostro-

moukhov et al. 2024].

For dimensions greater than 692, the standard Joe and Kuo ini-

tializations can be used, provided they do not reuse our optimized

polynomials. To assist with this, we provide a complementary initial-

ization table for reference, along with the corresponding initializa-

tion matrices, integrating Joe and Kuo’s dimensions for dimensions

greater than 692 that excludes our polynomials.

5.3 Renderings

We evaluate our sequence with PBRT-v4 [Pharr et al. 2023] used

as a per-pixel path tracer. PBRT constructs paths by combining 1D

and 2D random variables. When sampling 1D variables, we sample

2 of our dimensions and keep one of them cached for the next

1D variable. Constructing a path involves sampling a pixel (2D),

time (1D) and the lens (2D). Evaluating direct lighting additionally

requires selecting the light source (1D) and a point on that light

source (2D). Evaluating one bounce of indirect lighting requires

selecting the material (1D) and sampling a direction from it (2D).

In this setting, rendering with direct lighting uses 11 dimensions
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Fig. 8. Up to 100 dimensions, we show the experimental C values for each 2D projection pair (8, 9 ) of Sobol’ sequences with Joe and Kuo (top) and our

(1, 2)-sequences (bo�om) for< = 6,< = 8, and< = 12. The last column corresponds to the maximum C values over< ∈ {2, .., 12}. The histograms highlight

the distributions of C values for close pairs (i.e., |8 − 9 | ≤ 4) and all pairs. While most pairs have comparable C values with only a small degradation far from

the diagonal, our construction shows a significant improvement for close consecutive pairs (with C ≤ 1 by construction for pairs (28, 28 + 1)).

involving 6 optimized pairs, while rendering with one bounce of

indirect lighting requires 17 dimensions (9 pairs), two bounces of

indirect lighting require 23 dimensions (12 pairs), etc. We did not use

Russian roulette nor spectrum sampling. We compare our results to

those of other samplers in Fig. 12, focusing on rendering error. We

used Owen scrambling for all methods.

Our sequences with guaranteed C = 1 2D projections perform

similarly to the base-3 progressive point sets of quad-optimized

�� (3) [Ostromoukhov et al. 2024] and the base-2 point sets of

Cascaded Sobol’ [Paulin et al. 2021]. This result is in agreement

with other discrepancy and integration results in Fig. 10 and Fig. 9.

Padding 4D Sobol’ samples with random shu�ing [Burley 2020]

yields better results than padding in 2D (ZeroTwo [Pharr et al. 2023]).

While our high-dimensional behavior is guaranteed low-discrepancy

and padded 4D Sobol’ has poor discrepancy convergence (see Fig. 11),

our renderings remain similar in most cases.

Working with�� (2) arithmetic is also faster than�� (3). Addi-

tions in �� (2) can be computed with a binary xor in parallel on

32 values whereas �� (3) requires modulo arithmetic and tabulated

operations on scalar values [Ostromoukhov et al. 2024]. Generating

8D points is roughly four time slower with quad-optimized �� (3)

(798ms vs 201ms respectively, for 16M samples, on a Ryzen 3900X).

In our tests, when rendering a Cornell box at 256spp at 1k resolution,

sampling (in base-2) takes at least 75% of the total render time in

PBRT, while the more complex SanMiguel scene results in 15% of

the time spent in sampling. Easy-to-use precompiled matrices and

fast point generation functions are available in the supplementary

materials, as well as the modi�ed PBRT source code.

6 Conclusions

We designed a theoretical construction of 2D Sobol’ sequences with

C = 1 using ? and ?2 + ? + 1, while remaining low-discrepancy in
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Discrepancy MSE Integration (Gaussians) MSE Integration (Heavisides)

2D
4D

Fig. 9. In 2D and 4D, we evaluate the samplers quality with respect to the generalized !2 discrepancy measure [Hickernell 1998] and integration errors (MSE)

for random Gaussians and random Heavisides integrands (results averaged over 64 Owen-scrambled point sets). Although Sobol’ [1967]/Joe and Kuo [2008]

and Faure and Lemieux [2016] sequences are of high quality for the pair (0, 1) and the quadruple (0, 1, 2, 3) , higher discrepancies and integration errors can be

observed for the pair (14, 15) and the quadruple (12, 13, 14, 15) . In contrast, quad-optimized LDS in�� (3) [Ostromoukhov et al. 2024] and our sequences

show comparable results, with our sequences more easily computed in�� (2) .

higher dimensions. In practice, we found many solutions of unique

characteristic matrices, in contrast to the unique solution for C = 0.

We used 346 such pairs to produce a 692D sequence having at most

C = 1 in 2D consecutive projections. In the process of proving C = 1,

we discovered a new recursive construction for Sobol’ matrices and

for characteristic matrices. However, the availability of pairs of ir-

reducible polynomials in the form ? and ?2 + ? + 1 is limited, and

their degrees quickly increase. In practice, we use polynomials of

up to degree 24 = 32 to produce 692 dimensions, while the construc-

tion of Faure and Lemieux [2016] uses at maximum polynomials
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2D 4D

Fig. 10. Generalized !2 discrepancy [Hickernell 1998] of consecutive 2D pairs (le�) and quadruples of dimensions (right) of the first 36 dimensions of Sobol’

using tables of Joe and Kuo [2008] (red), quad-optimized projection in�� (3) [Ostromoukhov et al. 2024] (blue), Faure and Lemieux [2016] (magenta), and our

sequences (green). We observe comparable results to the quad-optimized projection in�� (3) while staying in�� (2) , both improving over Joe and Kuo.

2D

4D

8D

16D

32D

Fig. 11. For (C, B )-sequences only, we compare their generalized !2 discrep-

ancy in higher dimensions (from 2D to 32D, by increasing order of the

polynomials). We observe similar results for all LDS sequences, while our se-

quence has highly uniform 2D projections (see Fig. 10-le�). ZeroTwo [Pharr

et al. 2023] and Padded 4D [Burley 2020] are not LDS in higher dimensions

and thus do not o�er the same convergence rate.

of degree 13 to produce 1377 dimensions. While low-degree poly-

nomials may appear desirable since they are guaranteed to reduce

C for high-dimensional integration problems, as C is bounded by

sums of polynomial degrees, this does not mean that C is neces-

sarily large when the degree is large (in fact, our solution could

lead to C = 1 in 2D for arbitrarily large polynomial degrees). We

have found that the quality of our sequence remains competitive for

moderately high-dimensional integration problems arising in path

tracing, despite our use of higher-degree polynomials. Our use of a

base-2 construction remains an advantage in rendering where e�-

ciency is critical, and base-2 allows for both e�cient sampling and

Owen scrambling [Burley 2020; Owen 1995]. Our sampler produces

a sequence, which is ideal for progressive rendering. Our use of stan-

dard Sobol’ construction makes integration into existing renderers

already supporting Sobol’ extremely lightweight. We nevertheless

intend to explore 1 > 2 within our framework to discover C = 0

sequences in higher dimensions, which remains a gold standard for

numerical integration.

Acknowledgments

This work was partially funded by ANR-20-CE45-0025 (MoCaMed),

by ANR-22-CE46-000 (StableProxies), and donations from Adobe

Inc.

References
Abdalla GM Ahmed, Mikhail Skopenkov, Markus Hadwiger, and Peter Wonka. 2023.

Analysis and synthesis of digital dyadic sequences. ACM Transactions on Graphics
(TOG) 42, 6 (2023), 1–17.

Abdalla GM Ahmed and Peter Wonka. 2020. Screen-space blue-noise di�usion of
Monte Carlo sampling error via hierarchical ordering of pixels. ACM Transactions
on Graphics (TOG) 39, 6 (2020), 1–15.

Brent Burley. 2020. Practical hash-based Owen scrambling. Journal of Computer
Graphics Techniques (JCGT) 10, 4 (2020), 29.

Per Christensen, Julian Fong, Jonathan Shade, Wayne Wooten, Brenden Schubert, An-
drew Kensler, Stephen Friedman, Charlie Kilpatrick, Cli� Ramshaw, Marc Bannister,
et al. 2018. Renderman: An advanced path-tracing architecture for movie rendering.
ACM Transactions on Graphics (TOG) 37, 3 (2018), 1–21.

Josef Dick and Friedrich Pillichshammer. 2010. Digital Nets and Sequences: Discrepancy
Theory and Quasi–Monte Carlo Integration. Cambridge University Press.

Henri Faure. 1982. Discrépance de suites associées à un système de numération (en
dimension s). Acta Arithmetica 41, 4 (1982), 337–351.

Henri Faure and Christiane Lemieux. 2016. Irreducible Sobol’sequences in prime power
bases. Acta Arithmetica 173, 1 (2016), 59–80.

Henri Faure and Christiane Lemieux. 2019. Implementation of irreducible
Sobol’sequences in prime power bases. Mathematics and Computers in Simula-
tion 161 (2019), 13–22.

Fred Hickernell. 1998. A generalized discrepancy and quadrature error bound. Mathe-
matics of computation 67, 221 (1998), 299–322.

Roswitha Hofer and Kosuke Suzuki. 2019. A complete classi�cation of digital (0, 3)-nets
and digital (0, 2)-sequences in base 2. Uniform distribution theory 14, 1 (2019), 43–52.

Wojciech Jarosz, Afnan Enayet, AndrewKensler, Charlie Kilpatrick, and Per Christensen.
2019. Orthogonal array sampling for Monte Carlo rendering. In Computer Graphics
Forum, Vol. 38. Wiley Online Library, 135–147.

Stephen Joe and Frances Y Kuo. 2008. Constructing Sobol sequences with better
two-dimensional projections. SIAM Journal on Scienti�c Computing 30, 5 (2008),
2635–2654.

Alexander Keller. 2004. Myths of computer graphics. In Monte Carlo and Quasi-Monte
Carlo Methods 2004. Springer, 217–243.

Alexander Keller. 2013. Quasi-Monte Carlo image synthesis in a nutshell. In Monte
Carlo and Quasi-Monte Carlo Methods 2012. Springer, 213–249.

Thomas Kollig and Alexander Keller. 2002. E�cient multidimensional sampling. In
Computer Graphics Forum, Vol. 21. Wiley Online Library, 557–563.

ACM Trans. Graph., Vol. 44, No. 4, Article . Publication date: August 2025.

Lowres version



Sobol’ Sequences with Guaranteed-�ality 2D Projections • 13

M
A
E

M
A
E

Number of samples per pixel

M
A
E

Fig. 12. Rendering results in 17D with 2 bounces (top and middle), and 35D with 5 bounces (bo�om). We provide convergence graphs as a function of

the number of samples per pixel (mean absolute error – MAE) showing that rendering can benefit from high-quality projections (C = 1 in our case) while

being sequence for progressive rendering, contrary to Cascaded Sobol’ [Paulin et al. 2021] (additional results in supplementary material). Breakfast Room by

blendswap user Wig42 and Spaceship by thecali, compiled by Benedikt Bi�erli.

Christiane Lemieux. 2009. Monte Carlo and Quasi-Monte Carlo Sampling. Vol. 20.
Springer.

Carl D Meyer, Jr. 1973. Generalized inverses and ranks of block matrices. SIAM J. Appl.
Math. 25, 4 (1973), 597–602.

Harald Niederreiter. 1988. Low-discrepancy and low-dispersion sequences. Journal of
number theory 30, 1 (1988), 51–70.

Harald Niederreiter. 1992. Random Number Generation and Quasi-Monte Carlo Methods.
SIAM.

Victor Ostromoukhov, Nicolas Bonneel, David Coeurjolly, and Jean-Claude Iehl. 2024.
Quad-optimized low-discrepancy sequences. In Proceedings of ACM SIGGRAPH.

Art B Owen. 1995. Randomly permuted (t, m, s)-nets and (t, s)-sequences. In Monte
Carlo and Quasi-Monte Carlo Methods in Scienti�c Computing. Springer, 299–317.

Loïs Paulin, Nicolas Bonneel, David Coeurjolly, Jean-Claude Iehl, Alex Keller, and
Victor Ostromoukhov. 2022a. MatBuilder: Mastering Sampling Uniformity Over
Projections. ACM Transactions on Graphics (SIGGRAPH) 41, 4 (Aug 2022).

Lois Paulin, Nicolas Bonneel, David Coeurjolly, Jean-Claude Iehl, Antoine Webanck,
Mathieu Desbrun, and Victor Ostromoukhov. 2020. Sliced optimal transport sam-
pling. ACM Trans. Graph. 39, 4 (2020), 99.

Loïs Paulin, David Coeurjolly, Nicolas Bonneel, Jean-Claude Iehl, Victor Ostromoukhov,
and Alexander Keller. 2022b. Generator matrices by solving integer linear pro-
grams. In International Conference on Monte Carlo and Quasi-Monte Carlo Methods
in Scienti�c Computing. Springer, 525–541.

Loïs Paulin, David Coeurjolly, Jean-Claude Iehl, Nicolas Bonneel, Alexander Keller,
and Victor Ostromoukhov. 2021. Cascaded Sobol’Sampling. ACM Transactions on
Graphics (TOG) 40, 6 (2021), 1–13.

Hélène Perrier, David Coeurjolly, Feng Xie, Matt Pharr, Pat Hanrahan, and Victor
Ostromoukhov. 2018. Sequences with low-discrepancy blue-noise 2-D projections.
In Computer Graphics Forum, Vol. 37. Wiley Online Library, 339–353.

Matt Pharr, Wenzel Jakob, and Greg Humphreys. 2023. Physically based rendering: From

theory to implementation (4th ed.). MIT Press.
Bernhard Reinert, Tobias Ritschel, Hans-Peter Seidel, and Iliyan Georgiev. 2016. Pro-

jective blue-noise sampling. In Computer Graphics Forum, Vol. 35. Wiley Online
Library, 285–295.

Neil James Alexander Sloane. 2001. The On-Line Encyclopedia of Integer Sequences.
https://oeis.org/A058943 (2001).

Il’ya Meerovich Sobol’. 1967. On the distribution of points in a cube and the approximate
evaluation of integrals. Zhurnal Vychislitel’noi Matematiki i Matematicheskoi Fiziki
7, 4 (1967), 784–802.

ACM Trans. Graph., Vol. 44, No. 4, Article . Publication date: August 2025.

Lowres version



14 • Nicolas Bonneel, David Coeurjolly, Jean-Claude Iehl, and Victor Ostromoukhov

A Additional derivations

A.1 Proofs of Eq. (10)

Starting from eq. 4 and � −1? = (�34 + '?,4 ) . . . (�34 + '?,2), we have:

�?2+?+1�
−1
?2

=

(�324 + '?2+?+1,2) . . . (�324 + '?2+?+1,24 ) (�324 + '?2,24 ) . . . (�324 + '?2,2)

To simplify the notations, we denotes '′
:
= (�324 +'?2+?+1,: ) and

'′′
:
= (�324 + '?2,: ). Hence, we have:

�?2+?+1�
−1
?2

=

'′2 . . . '
′
4−1︸      ︷︷      ︸

(8 )

'′4 . . . '
′
24−1'

′
24'

′′
24'

′′
24−1 . . . '

′′
4︸                                 ︷︷                                 ︸

(88 )

'′′4−1 . . . '
′′
2︸       ︷︷       ︸

(888 )

(14)

In the following, we will use this illustration for '′
:
(the column of

index : contains the (: −1) highest degree coe�cients of ?2+? +1):

�3

�3

0

?
2
+
?

0 0
1

Note that by de�nition of '′
:
and '′′

:
matrices, we can only consider

polynomials ?2 + ? and ?2 respectively, as the constant factor is

dropped by construction.

Let us �rst consider the �rst innermost product in part (88) of

Eq. (14) involving the ?2 + ? and ?2 polynomials '′
24'

′′
24 :

�3

?
2
+
?

10

�3

?
2

10

=
�3

?

0

10

4

as ?2 + ?2 coe�cients cancel out for rows greater or equal to 4 . We

denote by*1 the resulting matrix. Let us now consider the product

*2 = '
′
24−1*1 '

′′
24−1:

�3

?
2
+
?

1
1
0
0

00

0
�3

?

0

10

�3

?
2

0
0 1

1
0
0

0

which simpli�es to

�3 ?
?

1
1 0

00

00
0

If we repeat this process for all triplets of matrices '′
:
*24−: '

′′
:
for

the : indices of (88), we end up with the matrix*4 :

�3

�3

� −1?

0

Indeed, for each product '′
:
*24−: '

′′
:
, all ?2 coe�cents vanish, lead-

ing to a triangular upper-right block with shifted ? coe�cients as

in Eq. (7).

Let us now consider the product between (88) and the (8) and

(888) parts in Eq. (14). First, we observe that

'′′4−1'
′′
4−2 =

�3

�3

0

0

?
2
?
2

10
1

By doing such products for all matrices of (888), we obtain an upper-

left block which corresponds to the �rst 4 × 4 entries of � −1
?2+?

.

'′′4−1 . . . '
′′
2 =

(
� −1
?2

0

0 �34

)
.

For products in (8), we use the fact that

(
'′2 . . . '

′
4−1

)−1
= '′−14−1 . . . '

′−1
2 = '′4−1 . . . '

′
2 =

(
� −1
?2+?

0

0 �34

)
,

as '′
:
is its own inverse and using a similar construction as for (888).

Thus, using the inverse of a block matrix, we obtain

'′2 . . . '
′
4−1 =

(
�?2+? 0

0 �34

)
,

which equals to

(
�?2 0

0 �34

)
as no coe�cients for the ? term are

present in the upper-left block.

We �nally have

�?2+?+1�
−1
?2

=

(
�?2 0

0 �34

) (
�34 � −1?
0 �34

) (
� −1
?2

0

0 �34

)

=

(
�?2 0

0 �34

) (
� −1
?2

� −1?

0 �34

)

=

(
�34 �?
0 �34

)
.

which concludes Eq. (10). The last step uses the observation that, for

the upper-right block, �?2�
−1
? =

((
�?2�

−1
?

)−1)−1
=

(
�?�

−1
?2

)−1
=(

�?�
−1
? � −1?

)−1
= �? .
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A.2 Proofs of Eq. (11)

First, combining Eq. (9) and (10), we have:

�?2+?+1�
−1
?2
�−1
?2

=

(
�34 �?
0 �34

) (
�34 &?
0 � −1?

) (
�−1
? 0

0 �−1
?

)
(15)

=

(
�34 &? + �34
0 � −1?

) (
�−1
? 0

0 �−1
?

)
(16)

=

(
�34 &?
0 � −1?

) (
�−1
? �−1

?

0 �−1
?

)
(17)

=

(
�34 &?
0 �34

) (
�−1
? 0

0 �−1
?

) (
�34 �34
0 �34

)
(18)

= �−1
?2

(
�34 �34
0 �34

)
, (19)

leading to Eq. (11). Starting from Eq. (16), we also have

�?2+?+1�
−1
?2
�−1
?2

=

(
�34 &? + �34
0 � −1?

) (
�−1
? 0

0 �−1
?

)
(20)

=

(
�34 &?+1
0 � −1?

) (
�−1
? 0

0 �−1
?

)
, (21)

that will be used later.

A.3 Proofs of Eq. (12)

Let us now prove the following statement:

(&?2 +&?2+?+1�?2+?+1�
−1
?2

)�−1
?2

= �−1
?2

(
�34 �34
�34 0

)
.

From now on, we make explicit the size of the matrices using [4]

or [24] superscripts. First, by de�nition, &
[24 ]

?2
is

&
[24 ]

?2
=

©
«

00 0 0 . . . 0

0 00 0 . . . 0

01 0 00 . . . 0

0 01 0 . . . 0

...
...

...
. . .

...

04−1 0 04−2 . . . 00

ª®®®®®®®®
¬
. (22)

We decompose &
[24 ]

?2
into 4 × 4 blocks:

&
[24 ]

?2
=

(
&

[4 ]

?2
0

&̃
[4 ]

?2
&

[4 ]

?2

)
. (23)

Similar to &
[24 ]

?2
, &̃

[4 ]

?2
is also Toeplitz. Furthermore, we have

&
[4 ]
?+@ =&

[4 ]
? +&

[4 ]
@ and &

[4 ]
?@ =&

[4 ]
? &

[4 ]
@ ,

for any polynomial ? and @ of degree 4 . The same holds for &̃
[4 ]
?+@

and &̃
[4 ]
?@ matrices. Now,

(&?2 +&?2+?+1�?2+?+1�
−1
?2

)�−1
?2

=

=&?2�
−1
?2

+&?2+?+1�?2+?+1�
−1
?2
�−1
?2

using Eq. (9) and 21 with ) =

(
�−1
? 0

0 �−1
?

)

=

((
&

[4 ]

?2
0

&̃
[4 ]

?2
&

[4 ]

?2

) (
�34 &

[4 ]
?

0 &̃
[4 ]
?

)

+

(
&

[4 ]

?2+?+1
0

&̃
[4 ]

?2+?+1
&

[4 ]

?2+?+1

) (
�34 &

[4 ]
?+1

0 &̃
[4 ]
?+1

))
) . (24)

First, we observe that &̃
[4 ]
? = &̃

[4 ]
?+1. The �rst factor can be rewritten

(
&

[4 ]

?2
&

[4 ]

?3

&̃
[4 ]

?2
&̃

[4 ]

?2
&

[4 ]
? +&

[4 ]

?2
&̃

[4 ]
?

)

+

(
&

[4 ]

?2+?+1
&

[4 ]

?3+1

&̃
[4 ]

?2+?+1
&̃

[4 ]

?2+?+1
&

[4 ]
?+1 +&

[4 ]

?2+?+1
&̃

[4 ]
?+1

)
,

since &
[4 ]

?2
&

[4 ]
? = &

[4 ]

?3
and &

[4 ]

?2+?+1
&

[4 ]
? = &

[4 ]

?3+?2+?
. Furthermore,

for any polynomial ? and @ of degree 4 , we have

&
[24 ]
?@ =&

[24 ]
? &

[24 ]
@

=

(
&

[4 ]
? 0

&̃
[4 ]
? &

[4 ]
?

) (
&

[4 ]
@ 0

&̃
[4 ]
@ &

[4 ]
@

)

=

(
&

[4 ]
?@ 0

&̃
[4 ]
? &

[4 ]
@ +&

[4 ]
? &̃

[4 ]
@ &

[4 ]
?@

)
.

Hence, the �rst factor of Eq. (24) is

(
&

[4 ]

?2
&

[4 ]

?3

&̃
[4 ]

?2
&̃

[4 ]

?3

)
+

(
&

[4 ]

?2+?+1
&

[4 ]

?3+1

&̃
[4 ]

?2+?+1
&̃

[4 ]

?3+1

)
=

(
&

[4 ]
?+1 &

[4 ]
1

&̃
[4 ]
?+1 &̃

[4 ]

?3
+ &̃

[4 ]

?3+1

)

=

(
&

[4 ]
?+1 �34

� −1? 0

)
,

using the fact that &̃
[4 ]
? = � −1? from the construction of both matri-

ces.
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Finally,

(&?2 +&?2+?+1�?2+?+1�
−1
?2

)�−1
?2

=

(
&

[4 ]
?+1 �34

� −1? 0

)
)

=

(
&

[4 ]
?+1 �34

� −1? 0

) (
�−1
? 0

0 �−1
?

)

=

(
&

[4 ]
? + �34 �34
� −1? 0

) (
�−1
? 0

0 �−1
?

)

=

(
�34 &

[4 ]
? + �34

0 � −1?

) (
0 1

1 0

) (
�−1
? 0

0 �−1
?

)

= �−1
?2

(
�34 �34
�34 0

)
,

which concludes the proof of Eq. (12).

A.4 (1, 2)−sequences and corank 1 submatrices of  

Let us consider two Sobol’ matrices"? and"@ of size<×< forming

a (C,<, 2)-net. We denote ="@"
−1
? . First we remind that the pairs

of matrices ("? , "@) and (�3<,  ) generate the same point set (up

to indices permutation). Let KC
:
the (< − C) ×< matrix consisting

of the �rst : rows of �3< and the �rst< − : − C rows of  :

KC
:
=

�3:

 ′  ′′

0

:

:

< − :

< − : − C

LemmaA.1 (Niederreiter [1992] (p. 73) and Paulin et al [2022b]).

"? and"@ is a (C,<, 2)−net if and only if for all : ∈ {1, . . . ,<}, KC
:

has corank C .

From block-wise rank computation (the corank of a block trian-

gular matrix with one full rank diagonal block is the corank of the

other diagonal block [Meyer 1973]), we have

corank(KC
: ) = corank( ′′) .

Focusing on (1, 2)-sequences, matrices  ′′ for all< and all : of

size (< − : − 1) × (< − :) are exactly the ) 9,F matrices involved

in the property P (see Sect. 4.5). As a consequence, if each such

matrices ) has corank 1, we can conclude that  characterizes a

(1, 2)−sequence.
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