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Fig. 1. Owen scrambling is a popular tool in Quasi-Monte Carlo to randomize samples by permuting elementary intervals of [0,1)%. It relies on a tree of
boolean flags swapping digits of the positional decomposition of the sample coordinates (see Fig. 2). Our Owen permutation tree replaces permutations by
smooth transitions between intervals, rendering the Owen tree differentiable. This can be used in a smooth optimization framework to improve the quality of
low-discrepancy point sets while preserving their low discrepancy. Here, starting with a random Owen tree (left), our optimization results in low discrepancy
samples with minimized optimal transport cost (right). These samples give lower errors for equal sample counts in simple rendering settings. We also show for
each node of the tree the effect of smoothly exchanging two intervals on an optimal transport loss when starting from the identity permutation (middle).

Quasi-Monte Carlo integration is at the core of rendering. This technique
estimates the value of an integral by evaluating the integrand at well-chosen
sample locations. These sample points are designed to cover the domain as
uniformly as possible to achieve better convergence rates than purely ran-
dom points. Deterministic low-discrepancy sequences have been shown to
outperform many competitors by guaranteeing good uniformity as measured
by the so-called discrepancy metric, and, indirectly, by an integer ¢ value
relating the number of points falling into each domain stratum with the stra-
tum area (lower ¢ is better). To achieve randomness, scrambling techniques
produce multiple realizations preserving the ¢ value, making the construc-
tion stochastic. Among them, Owen scrambling is a popular approach that
recursively permutes intervals for each dimension. However, relying on per-
mutation trees makes it incompatible with smooth optimization frameworks.
We present a differentiable Owen scrambling that regularizes permutations.
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We show that it can effectively be used with automatic differentiation tools
for optimizing low-discrepancy sequences to improve metrics such as op-
timal transport uniformity, integration error, designed power spectra or
projective properties, while maintaining their initial #-value as guaranteed
by Owen scrambling. In some rendering settings, we show that our optimized
sequences improve the rendering error.

CCS Concepts: » Mathematics of computing — Automatic differentiation;
+ Theory of computation — Pseudorandomness and derandomization;
« Computing methodologies — Computer graphics.
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1 INTRODUCTION

Monte Carlo integration is widely used in computer graphics, such
as in rendering [Kajiya 1986; Cook 1986; Veach 1997; Keller 2013;
Pharr et al. 2016], geometry processing [Sawhney and Crane 2020;
Hermosilla et al. 2018] or image processing [Chan et al. 2014]. In
the classical formulation, Monte Carlo techniques estimate the inte-
gral of a function by averaging evaluations of a function at random
locations. Since, the expected numerical error is formally related to
the estimator variance, many variance reduction techniques have
been developed to accelerate convergence. Among these techniques,
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correlated sampling reduces variance by designing point sets that
cover the integration domain much more uniformly, resulting in or-
ders of magnitude lower integration errors [Sobol 1967; Niederreiter
1992] - a process called Quasi-Monte Carlo.

Following the Koksma-Hlawka inequality that bounds the integra-
tion error by a measure of samples uniformity [Niederreiter 1992],
low-discrepancy point sets and low-discrepancy sequences are con-
structed with the objective of providing good sampling locations for
most integration problems. A popular construction imposes multiple
simultaneous stratification constraints [Owen 1997b,a; Grinschlof3
et al. 2008; Paulin et al. 2021, 2022; Ahmed et al. 2023b] and leads to
so-called (¢, m, s)-nets. Their quality is guaranteed by a low ¢ value,
an integer that determines the number of points falling inside each
stratum, hence characterizing uniformity. However, these point sets
are sometimes difficult to obtain, and producing many of them is
intractable. For rendering, where each pixel may be estimated inde-
pendently, using the same point set for all pixels introduces aliasing,
and it is often better to use a different point set per pixel.

Introducing diversity often means running an entire machinery to
produce a limited number of point sets (e.g., changing a random seed
before solving a linear program [Paulin et al. 2022] or sieving among
many candidates [L’Ecuyer and Munger 2016; Paulin et al. 2021]).
But it can also be achieved by scrambling an existing point set via
simple and cheap operations. For instance, Cranley-Patterson rota-
tions translate points on a toroidal domain, which preserves lattices
but negatively affects the ¢ value of (¢, m, s)-nets. For (¢, m, s)-nets,
Owen scrambling recursively permutes intervals for each dimen-
sion independently so that the number of points in each interval
remains unchanged, preserving the t value. Owen scrambling may
even improve the quasi-Monte Carlo convergence rate for smooth
integrands [Owen 1997b,a]. Multiple attempts have thus been made
at optimizing Owen scrambling to improve this integration con-
vergence rate [Perrier et al. 2018; Perrier 2018]. However, these
methods rely on random and blind exploration of a huge search
space that grows exponentially fast with the number of points.

In this paper, we propose a novel differentiable formulation of
Owen scrambling, and an optimization scheme that works in any
dimension. Since our differentiable scrambling is based on Owen per-
mutation trees, it exactly preserves the ¢ value of the input point set.
Our differentiable scrambling then allows optimizing other unifor-
mity criteria for the input point set, such as optimal transport ener-
gies on the point set or its projections, integration error, or energies
enforcing a prescribed power spectrum. Our implementation is avail-

able at https://github.com/liris- origami/DifferentiableOwenScrambling.

2 RELATED WORKS

We review the literature focusing on optimizing point sets and
sequences for quasi-Monte Carlo applications.

(t,m, s)-nets. A low-discrepancy sequence (LDS) guarantees low
integration error by controlling the discrepancy of generated sample
points, a measure of their uniformity [Niederreiter 1992]. To obtain
a LDS, a typical construction requires that when stratifying the do-
main, a point set of n = b™ samples has exactly b’ samples in each
stratum of volume b ~™. Here, b is a fixed base (typically b = 2), and
t is an integer characterizing the uniformity of the point set, related
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to its discrepancy [Niederreiter 1992]. Ideally, ¢ = 0 indicates the
best possible quality, where each stratum of volume b~ contains a
single sample. For ¢ = 1, this enforces b samples per b times bigger
stratum, so uniformity is less enforced than for ¢ = 0. This property
is at the core of (f,m, s)-nets, a construction of a low-discrepancy
point set of b s-dimensional points of specific ¢ value. Similarly,
(,s)-sequences are sequences of points for which the (t, m, s)-net
property holds for all m, i.e., they remain low discrepancy when
adding more points. Following Ahmed et al. [2023b] and Ostro-
moukhov et al. [2024], we denote (¢, m, s)-progressive, point sets
that are (¢, m’, s)-nets for all m" < m given a fixed maximum value
of m. (t,m, s)-nets can be obtained via algebraic construction [Sobol
1967; Niederreiter 1992; Bratley and Fox 1988], or solving complex
systems of constraints [Ahmed and Wonka 2021; Paulin et al. 2022].
The resulting point sets and sequences offer the best Monte Carlo
convergence rate. Our work allows to further optimize them accord-
ing to other metrics using efficient convex optimization routines,
while maintaining (&, m, s)-progressivity.

Point set randomization. Making point sets stochastic is desirable
in many applications, and in particular for rendering where a dif-
ferent point set may be needed for each pixel. This can be done
via Cranley-Patterson rotations that randomly but rigidly translate
the point set modulo 1 [Cranley and Patterson 1976], although this
operation degrades t. Digital shift applies a XOR operation (when
b = 2) to the point coordinates with a random mask. This preserves
t but provides little degrees of freedom in our context (typically
2325 possible permutations) and does not allow for improved Monte
Carlo convergence rate [Owen 2003]. Similarly, Linear Matrix scram-
bling [Hickernell 1996; Matousek 1998] multiplies the bit vector by
a random invertible triangular matrix, which offers much higher
degrees of freedom (typically 231:30-5/2y

Owen scrambling recursively permutes half-spaces (when b = 2)
for each dimension based on a decision tree, which also preserves t.
This produces a vast exploration space that amounts to a different
digital shift per point, but the decision tree is inherently not differen-
tiable. Owen permutations do not cover all permutations that would
preserve t [Ahmed and Wonka 2021], but the alternative permuta-
tions of Ahmed and Wonka [2021] covering them all are restricted
to two dimensions. The number of degrees of freedom is again
exponentially higher, typically 2(2)s and in practice, Owen scram-
bling performs better than Linear Matrix Scrambling [Owen 2003].
While Owen’s theoretical construction is based on trees of infinite
depth that preserve the (#,s)-sequence property, practical imple-
mentations require to fix their depth. In the general case, strictly
speaking, this produces (, m, s)-progressive samples for arbitrarily
large m (where m equals the tree’s depth). Producing a sequence
would involve sequentially increasing the tree depth, but this would
impact the lower significant digits of all previously generated sam-
ples. Restricting the space of permutations allows to produce true
(¢, s)-sequences by imposing that previously generated samples are
not affected by lower tree levels [Perrier et al. 2018].

Blue noise. Blue noise point sets have attenuated low-frequencies
in their power spectrum, which also offers low integration error
guarantees [Durand 2011; Subr and Kautz 2013; Pilleboue et al.
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2015]. The prevailing method to attain such spectrum is energy
minimization. One of the earlier algorithms that exploits this idea
is Lloyd’s relaxation [Lloyd 1982] and its direct extension using
capacity-constrained Voronoi’s diagrams [Balzer et al. 2009; Li et al.
2010; Xu et al. 2011; Du et al. 1999; Chen et al. 2012]. The connection
to semi-discrete optimal transport was made explicit and extended
in BNOT [de Goes et al. 2012] which led to many applications in
computer graphics. While these methods theoretically extend to
any dimension, they rely on Voronoi or Power Diagrams that are
hard to construct in high dimensions. To overcome this limitation,
the use of a sliced optimal transport energy (SOT) has been pro-
posed [Paulin et al. 2020; Salatin et al. 2022]. A similar spectrum can
be obtained by optimizing distance-based filters [Fattal 2011; Heck
et al. 2013]. The special case of Gaussian filters was recently studied
in depth and produces state-of-the-art blue noise point sets in arbi-
trary dimensions [Oztireli et al. 2010; Ahmed et al. 2022]. The filters
themselves can also be learned to target any (projectively) isotropic
spectra [Leimkiihler et al. 2019]. These energies can be used in our
framework to further optimize low-discrepancy sequences.

Blue noise with (t, m, s)-net properties. Blue noise and low-discre-
pancy properties are hard to combine. The low-discrepancy property
requires very fine structures that leave little room to move sam-
ples and control their power spectrum. An attempt to directly build
blue noise low-discrepancy point sets can be found in the PMJ con-
struction [Christensen et al. 2018] but this approach yields subpar
results in terms of power spectra. An effective way to combine
the two properties is to use permutations that preserve the low
discrepancy property. In LDBN [Ahmed et al. 2016], the authors pro-
pose permutations on local 2D tiles that slightly affect discrepancy,
but not sufficiently to significantly affect integration convergence
rate. Starting with an exhaustive search on the first few levels of
the Owen scrambling permutation tree (see Sec. 3.1) on local tiles,
BNLD [Perrier et al. 2018] computes new local permutations that ex-
tend the blue noise property to the whole point set but this method
only enforces blue noise on 2D projections. More recently, Ahmed
and Wonka [2021] introduced a novel scrambling technique that
allows a brute force optimization to target a blue noise spectrum,
although their approach remains limited to 2D and would be in-
tractable for generic energy functions (e.g., optimal transport). In
higher dimensions, another approach by Ahmed et al. [2023a] pro-
duces Owen trees that could be used to minimize any loss by similar
local permutations, and offers preliminary 2D optimization results.

While differentiable approaches to optimize general permutations
have been explored using Sinkhorn Networks [Mena et al. 2017],
this would only permute the order of the points, without affecting
their spatial relationships within each dimension.

3 ADIFFERENTIABLE OWEN SCRAMBLING
FORMULATION

We first review the original Owen scrambling approach for com-
pleteness, and then describe our differentiable version.

3.1 Random Owen scrambling

Owen scrambling or Nested Uniform Scrambling is a widely used
scrambling technique for (¢, m, s)-nets. It has numerous interesting
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Fig. 2. Left: Representation of an Owen scrambling permutations as a tree
of depth 3. Right: Discrete swaps applied on 2° = 8 points of the second
Sobol’ dimension. Above the unit intervals, point indices (white numbers)
are represented at their corresponding spatial locations. Each level of the
tree decides if halves, quarters or eighths of intervals need to be permuted
(tree node value = 1, colored) or not (tree node value = 0). Our framework
makes these permutations differentiable.

properties: the space of different permutations is huge (in our case,
with b = 2 and n = 2™ points in s dimensions, there are 2("~1)
degrees of freedom), it is fast with moderate storage, and it can be
done progressively one point at a time. Unlike other scrambling
methods, not only does it preserve the point set quality as defined
by its ¢ value, but it can also improve it [Owen 1997a, 2003].

We first formally define Owen scrambling in 1d. Without loss of
generality, we assume b = 2. Starting with a point expressed by its
fixed-point binary representation on q bits (typically q = 32)

q
X = Z a;i27", (1)
i=1
the scrambled point is given by:

x =
i=1

eiz_i, (2)

M

where the {e;} are obtained as: e; = 74, 4,...q;_, (i) and the {7} are
random (and possibly independent) permutations of {0, 1}. In base
2, there are only two permutations (0 <> 1), hence it is common
to talk about bit flipping and it can be efficiently implemented via
XOR operations. This scrambling is classically represented as a tree
with branches encoding the original digits and nodes encoding the
permutation to apply (see Figure 2). Alternatively, flipping bits can
be interpreted as swapping half (or quarter, eighth, ...) spaces.

Scrambling trivially extends to any dimension by considering one
permutation tree per dimension. Evaluating a scrambled point set of
n points has O(snq) time complexity and requires O(s29) storage.
In practice, for (¢, m, s) inputs, we may consider using ¢’ = m bits
instead of g, in which case complexity is O(snlogn) and storage is
O(sn). We may alternatively consider m < ¢’ < q.

Owen permutation trees may be computed on the fly to avoid
storing s - n values, resulting in no storage. A straightforward imple-
mentation relies on seeding a fast counter-based random number
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generator with random access [Salmon et al. 2011]. This also allows
to run the scrambling at maximum depth (typically g = 32) obtain-
ing a much larger diversity of point sets. Even faster scrambling
can be achieved in base b = 2 with carefully designed hash struc-
tures [Burley 2020], and Owen scrambling and Sobol’ construction
of points sets can be performed simultaneously [Helmer et al. 2021].

3.2 Differentiable Owen scrambling

In this section, we present our continuous formulation of Owen
scrambling. The scrambling process relies on bit flipping, which is
a discrete operation transforming a 0 to a 1, or a 1 to a 0. We design
a smooth function that achieves this effect. More formally, we give
the following definition for our differentiable binary flip (DBF).

Definition 3.1 (Differentiable binary flip). Let f be a differentiable,
bijective, strictly increasing function defined on [0, 1] with values
in [0, 1] such that £(0) = 0 and f(1) = 1. We define a corresponding
binary flip function DBFy : {0,1} x [0,1] ~— [0,1] as

DBF¢(p,0) = (1= p)f(6) + (1 - f(0)), ©)
where f is the bit value, and f(6) indicates by how much this
value should change. While this formulation allows for the bit to take
non integer values —a condition for its differentiability— it can still
represent a true binary flip because DBF(0,0) = DBFy(1,1) = 0
and DBF(0,1) = DBFy(1,0) = 1. Since f defines a bijection from
[0,1] to [0,1], DBFy has no local minimum with respect to its
second argument 6. In practice we use a tanh function for f: f(8) =
% (tanh(a(0 — 0.5)) + 1), where « is the smoothing parameter. We
use o = 5 in our experiments.

ALGORITHM 1: Differentiable Owen Scrambling

Data: x: the coordinate to scramble, g’: the scrambling depth, 6: the
fuzzy tree parameters.
Result: x’: the continuous owen scrambling of x with parameters 6.
1 select « 1;

2 bits «— BINARYEXPANSION(x, depth);
3 fori < 1toq’ do
4 bits[i] « DBF(bits[i], O[select]);
// classical Owen scrambling:
// bits[i] « bits[i] xor tree[select]
5 select « 2 - select + bits[i]; // Binary heap traversal
6 end

7 x' Z?zl 27 bis[i];

A DBF function may return non-integer values that represent
fuzzy bits. However, points are represented using their binary de-
composition x = Z?:l ;2" with integers a; € {0, 1}. Our differen-
tiable Owen scrambling keeps this representation, but uses fuzzy
scrambled bits instead x” = Z?:l agz_i with a} € [0, 1]. This still
results in points within the unit square, but they are not guaranteed
to lie on the classical dyadic grid anymore (i.e., where coordinates
are multiple of negative powers of 2). In our implementation (see
Algorithm 1), we store a flattened binary tree, and cannot benefit
from fast hash-based or on the fly evaluation of the scrambling.

Our Algorithm 1 differs from the classical Owen scrambling in line
4, where we replace Owen scrambling’s XOR operation to compute
bits[i] by our differentiable bit flip.
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3.3 Optimization scheme

Equipped with our differentiable formulation, we are now ready to
optimize low-discrepancy point sets. We minimize various differen-
tiable losses (see Sec. 4) using either gradient descent or stochastic
gradient descent (SGD). We require explicitly storing the entire
Owen tree, and optimize all nodes values. In our context, Adam
would require nearly 3 times higher memory usage, and we ex-
cluded it given the limited memory. To further reduce memory use,
we use an explicit derivative f'(0) = (1 - tanh?(a(6 — 0.5)))
(DBFy is only differentiated w.r.t. ). We apply the chain rule for

a given loss L : w = [%;] ~V.L(x), where the loss gradi-
ij

ent is explicited in Sec. 4. The (sparse) Jacobian matrix [%] y is
obtained using f”, and its ratio of nonzero values for row j is n/2¢
with ¢ = |log,(j + 1)] (i.e., the number of points affected by level ¢
of the tree). We also optimize values over a fixed tree depth ¢’ = 16.

Due to fixed-point arithmetic, components of loss gradients with
respect to low significant bits rapidly diminish. However, moderately
significant bits (i = log, (N)) are the ones most likely to significantly
affect the energy (see Sec. 4.5 and Fig. 11). For this reason, we
increase the learning rate linearly with the number of points.

After the optimization has terminated, each 6; is rounded to either
0 or 1. The effect of this step is evaluated in Sec. 4.

3.4 Optimized losses

We use four losses: Optimal transport to uniform distribution, Gauss-
ian Kernel Energy, Integration Error, Pair Correlation Function.

Optimal transport. We optimize the (squared) semi-discrete op-
timal transport cost between our point set X = {x;}i=1., and a
uniform distribution, using a quadratic ground distance:

Ws(X) = inf / x — x| ?dx. 4
2(X) = in Z sy 1 @

This can be efficiently computed in 2D and 3D by an optimization
process using a Newton solver [Lévy and Schwindt 2018], since
T~ 1(x;) results in a cell of a power diagram. It characterizes the uni-
formity of the point set and relates to the integration error [Paulin
et al. 2020]. The gradient VW, (X) is given by:

M) = % (centroid(T_l(xi)) - xi) , (5
1

i

VW (X) = (

i
where centroid(T~!(x;)) is the centroid of the power cell of x;. We
use a gradient descent to optimize our Owen permutation tree.

Gaussian kernel energy. The blue-noise enforcing energy intro-
duced by Ahmed et al. [2021; 2022] describes the difference between
the point set smoothed by a Gaussian kernel and a constant function:

1 n n _ L §
g(X) = ; Z Z e [ x]”2/(202) . (6)
i=1 j=1

Its gradients follows

1 & _xal?
VGX) =| =5 ) (i —xe | ™
no =
J#i ;



We use o = 0.5n/5 and a gradient descent optimization.

Integration error. We optimize a sum of integration errors to a set
of K random Gaussian distributions in the cases of 2D, 4D, 6D, or 8D
point sets. We use K = 65, 536 Gaussians with uniformly random
mean and covariance matrices using UTK [UTK 2018]. The integral
of each Gaussian g;(x) is pre-computed at high precision using 228
samples. The integration error is defined as:

1w 19 ’
100 = ¢ | [ 9edx =1 3 gt ®
k=1 i=1

Its gradient is simply obtained by

2 & 1<
VI(X)=-— ; ( / gic(x)dx — ~ Zlgm)) Vok(x). ()

We use an SGD to optimize our Owen permutation tree, using
batches of 512 Gaussians. When testing, we use K’ = 16, 384 differ-
ent random Gaussians.

Pair Correlation Function (PCF).. A pair correlation function char-
acterizes the spectrum of a point set as a distribution of distances
between points [Oztireli and Gross 2012]. It can be explicited for a
point set X as a 1d function of a radial parameter r:

n n
1 2 ’2
PCF(X,r) = — e~ (imxjll=r)"/ o) (1)
0 & Jz;
with the normalization a(r) = 2n(n — 1)(7 — 4r — r?)r. We use a
square #; distance between a reference PCF (obtained by averaging

~ 128 PCFs of n points with the desired distribution) PCF(r) and
that of the current low-discrepancy point set X:

Tmax _

P(X) = / [PCF(X, r) — PCE(r)|%dr. (11)
=Tmin

Its gradient is obtained using:

PX) _ -2 / " (peFOX.r) - BCE())

ox; a(r)o’?

=Tmin

n
D xi-x) (1 ) m) e~ (= I=n)"/20™) gy (1)
i =%

We discretize the PCF on 100 bins, we use ¢/ = 1073, Fmin = 0.01,
rmax = 0.1, and a gradient descent Owen tree optimization.

We may also optimize a mixture of the above losses, notably to
enforce them for different projections (see sec. 4.7) or to enforce
them at different sample counts (sec. 4.6).

4 NUMERICAL RESULTS
4.1 Comparisons to other methods

We compare our approach that mathematically preserves the low
discrepancy property and the actual value of ¢ while optimizing
other metrics, to methods that either only optimize these metrics
or also preserve low discrepancy properties. Representative point
sets for our results and for the identified best performing competing
approaches are shown in Fig. 3, and direct comparisons in terms of
metrics for a larger set of related works are shown in Fig. 5.
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When optimizing ‘Wa, we compare to the state-of-the-art optimal
transport-based BNOT approach of de Goes et al. [2012] in 2D or
to the sliced optimal transport (SOT) of Paulin et al. [2020] which
conveniently works in arbitrary dimensions. We also compare to
the 2D low discrepancy blue noise (LDBN) approach of Ahmed
et al. [2016] mimicking a BNOT spectrum while remaining low
discrepancy. We also compare to Gaussian Blue noise (GBN, [Ahmed
etal. 2022]) for completeness. In 2D, we obtain a similar ‘W, as BNOT
while preserving low-discrepancy and t properties, and outperform
LDBN. In 3D, the limited degrees of freedom do not allow us to
reach the ‘W, level of SOT, but we improve over GBN and reduce
the ‘W, energy from the initialization.

When optimizing the Gaussian Kernel Energy G, we compare to
Gaussian Blue Noise [Ahmed et al. 2022], specifically designed for
minimizing this loss. We also compare to the 2D approach of Ahmed
and Wonka [2021] (Blue-Nets) which preserves ¢ and optimizes the
Gaussian Kernel energy G. For completeness, we also similarly
compare to SOT and LDBN. While most methods perform similarly
for this metric, we show modest improvements metric-wise over
non-optimized Owen that remain visually noticeable (Fig. 3).

Regarding the integration loss 7, while no other method aims
at directly minimizing this exact loss, low-discrepancy sequences
such as Owen-scrambled Sobol’ are state-of-the-art, at least in low-
dimensional quasi-Monte Carlo integration contexts. For all metrics,
we compare to an (unoptimized) ART-Owen scrambling [Ahmed
et al. 2023a] on 16 symbols (ART16). Specifically for the integra-
tion loss, we have implemented a preliminary optimization strat-
egy over ART (denoted ART16/Int.) following the paper’s pseu-
docode [Ahmed et al. 2023a]. For completeness, we also compare
to other techniques. Our Gaussian integrands cover a much wider
range of covariance matrices than those used in the GBN paper [Ahmed
et al. 2022], which explains the different results. In all tested dimen-
sions (2D, 4D, 6D, 8D), our method performs best. In 2D, its closest
competitor is Sobol’, but in higher dimensions, optimal-transport
based methods come second, outperforming Sobol’. Unoptimized
ART-Owen over 16 symbols performs similarly to Owen on 32 bits.

For the PCF loss P, we target a step function PCF, and we mainly
compare to Heck et al. [2013] and LDBN [2016]. The approach of
Heck et al. does not directly seek to minimize the same square £»
distance between PCFs, but can produce point sets following a step
PCF. Similarly, LDBN matches a point set of step PCF but it is not
driven by an energy minimization. For this reason, we only show
qualitative comparisons in Figs. 6 and 3. For references, Figure 4
presents the Power spectra of our optimized point sets.

Using a weighted sum of two losses (Integration and Gaussian
kernels, Fig.7) results in a tradeoff between both losses as expected,
while improving both energies with respect to the initial point set
(Sobol’ +Owen).

4.2 Timings and bruteforce comparisons

The running time of our optimization is largely dominated by the
evaluation of the loss and its gradient at each iteration. All our
experiments were run on an AMD Ryzen 7 1700X 8-Core computer.
Typical optimization times for 1k points in 2D at depth 16 range
from 2s for Gaussian Kernel energy to 30s for Integration error, due

ACM Trans. Graph., Vol. 43, No. 6, Article 255. Publication date: December 2024.



Integration (Gaussian)

255:6 « B. Doignies, D. Coeurjolly, N. Bonneel, ). Digne, J.-C. lehl, V. Ostromoukhov
Gaussian kernel
e
]
=
=
O
o]
g
o
3]
@
Q
m
9]
a
—
+
4
2
B
£
s}
)
g
A LDBN-BNOT : Blue-Nets
w
et
=
o
Init (Sobol’'+Owen)  Ours/W» Ours/GBN

£, PCF

[Heck et al.]

LDBN-STEP

Ve

Ours/Integration

Ours/¢, PCF STEP .
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Fig. 4. For point sets given in Fig. 3, our Fourier Power Spectra exhibit the low

LDBN-BNOT I Blue-Nets I LDBN-STEP I Ours/GBN I Ours/W, I

i Ours/f, PCF I

discrepancy property (low energy on the axes, i.e., a black cross over the

Ours/Integration

frequency domain), and some blue noise property (low energy in the low frequencies, i.e., a black disk at the origin), especially for GBN and ‘W, losses.

to the stochasticity of the optimization procedure. It also requires 1
GB of RAM to store the trees and Jacobian matrices. When applying
a static Owen tree (eq. 2 on 16 bits), typical timings are 63.34M
samples per second (averaging 64k realizations of 8D point sets
of 256 samples). For the comparison, ART16 [Ahmed et al. 2023a]
outputs 18.59Ms/sec. For completeness, fast hash-based techniques
such as Burley’s FastOwenScrambler in PBRT 4 [Burley 2020] can
generate 103.48Ms/sec but without any control of the scrambled set.

As our method is tailored for smooth optimization, we provide
equal time comparisons with respect to a more naive discrete opti-
mization technique. Specifically, we compare to a simple optimiza-
tion scheme that builds N random Owen trees and keeps the best
performing one. We set N such that the total running time matches
that of our method for the same loss. In Fig. 8, we show the relative
reduction in loss for W2, G, and 7 when using our approach and
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bruteforce optimization compared to the initial loss. Our optimiza-
tion largely outperforms a bruteforce search in most cases.

4.3 Low discrepancy preservation

Our optimization scheme preserves ¢ by construction. We illustrate
this property in Fig. 9 by showing that all our optimized Owen
trees result in the same discrepancies as Sobol’ with random Owen
permutations, which is the best discrepancy attained among all
samplers we tested.

4.4 Effect of clamping

During optimization, all our fuzzy bit variables take continuous
values in [0, 1]. Upon completion, bits are rounded to their nearest
integer value (and all results presented in the paper use integer
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Fig. 6. For 1024 2D samples, we show the results of the PCF optimization
using a squared ¢, distance loss to a PCF from Heck et al. [2013]. Using
dashed lines, we also illustrate the PCF of the initialization (Sobol’+Owen,
labelled as init) and the PCF before the final clamping of the weights (soft).
While we improve the PCF compared to the initialization, the clamping
enforcing the LDS of the point set does affect the final PCF.

bits in {0, 1}). While this is common in relaxed integer optimiza-
tion [Burer and Letchford 2012], this may affect the energy, since
the resulting tree is not optimal anymore for the integer-valued
bits. We evaluate the effect of this rounding on the integration error
energy J in Fig. 10.

4.5 Effect of tree level

It may appear surprising that smoothly exchanging two intervals
would produce intermediate configurations meaningful enough for
a smooth optimization solver to lower a loss often characterizing
some uniformity measure. For instance, smoothly varying the most
significant bit from 0 to 1 progressively exchanges the two halves
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Fig. 7. Integration and Gaussian kernels errors while optimizing for each
energy independently as well as a (weighted) sum of these two energies
(denoted Ours/ (Int.+GBN)).

of the unit domain, with a midpoint value representing a point set
of much lower uniformity. However, smoothly exchanging bits of
lower significance has a much less intuitive effect on the point set
(recall that a decision to flip a given bit is sample-dependent, and
depends on the value of the point’s more significant bits). We run
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affects the value of the loss being minimized. We show the energy value I
in 2D before optimization (init), after optimization (soft), and with the full
scheme (optimization+rounding, Ours/int).

Fig. 11. We show the distribution of bits flipped as a function of the bit index
(0 is the most significant) after optimizing a ‘W loss over 28 2D samples
(one histogram per dimension). Most bits are flipped in intermediate tree

levels as applying our smooth permutation to highly significant bits makes
little sense, while very low significant bits only slightly alters the loss.
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an experiment on two trees of ¢’ = 16 levels, optimizing a ‘W,
loss on 28 2D points. We assess which levels of the permutations
trees are more prone to change, i.e., which bit of the fixed-point
representation of point coordinates are more likely affected by our
optimization. We show the resulting histogram as a function of the
bit index (bit 0 is the most significant) in Fig. 11. As expected, the
most significant bit is never altered during the optimization. Most
bit flips occur between the 4th and 8th bit, which can be explained
as there are 28 samples. Bits of very low significancy also only have
aminor effect on the energy as they correspond to subtle changes in
point location. This behavior can be illustrated by the energy profile
at each tree level: we start with an Owen tree entirely set to 0 and
vary each node’s value continuously from 0 to 1 independently. We
show the resulting effect on the ‘W, loss in Fig. 1.

4.6 Multiscale optimization

Our method takes as input an Owen tree of fixed height ¢’ = 16 and
performs a single optimization. While this allows for the discrepancy
and t value to be preserved, the losses we have introduced so far
were only evaluated for a single sample count. The resulting low-
discrepancy sequence thus only exhibits a minimal loss for a specific
sample count. We evaluate the effect of minimizing an energy for a
single sample count (n = 2048) on the Gaussian integration energy
value of other sample counts in Fig. 12: the effect of the minimization
process is only visible at the optimized sample count.

To alleviate this issue, we propose a multiscale loss that sums in-
dividual losses for multiple selected sample counts. We evaluate this
strategy by summing Gaussian integration losses evaluated for 128,
512 and 2048 samples, and show the corresponding losses at other
sample counts in Fig. 12 (see also Fig. 13 for point patterns illustra-
tion). We also show results for a more exhaustive loss accounting
for sample counts of all powers of 2. This results in loss-specific
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Fig. 12. Progressivity test. We compare various strategies for enforcing
progressivity for the integration loss. We can either specifically optimize
for n samples only (n = 2048), or sum of losses for a subset of the sample
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Fig. 13. Multiscale optimization in 2D. We show realizations when optimiz-
ing the Gaussian kernel loss independently for all sample counts (first row),
only for 1024 samples (middle row), and jointly for all sample counts with
the multiscale approach of Sec. 4.6 (last row).

progressive samplers, such as Gaussian integration-progressive or
“‘Whs-progressive, in addition to remaining (¢, m, s)-progressive by
construction for (¢, m, s)-progressive inputs. We can see a trade-
off between progressivity and performance in terms of loss. While
optimizing for all sample counts allows to reduce loss for all sam-
ple counts, quality remains lower than when minimizing for a few
subsets of sample counts for these selected sample counts.

4.7 Rendering

We use our differentiable Owen scrambling to render images with a
6D integration domain. We integrate over the pixel area (2D), direct
lighting (2D) and either depth of field or indirect lighting (2D). As a
pre-process, a set of 64 different scramblings are optimized (starting
from different initializations) to minimize

Wa (projo,1 (X)) + Wa(proj,2,s (X)) + Wa(proja,s (X)), (13)
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where proj, k. (X) projects the point set X onto 2 dimensions (k, £).
One of these realizations is picked at random for each pixel. Figure 14
illustrates the diversity of these realizations. Figure 15 (top) shows
a smooth setting, with direct lighting, diffuse objects, a constant
sky, a soft area light source and depth of field. Figure 15 (middle and
bottom rows) shows scenes with one bounce of indirect lighting
and diffuse and glossy materials. Starting from Sobol’ [1967] or Cas-
caded Sobol’ [Paulin et al. 2021], we perform the optimization for
each sample count, and compare our results with the unoptimized
point set in term of #; error. Since Sobol’ is (¢, m, s)-progressive, a
multiscale optimization denoted "Ours (Sobol’- MS)" has also
been considered in Fig. 15 and 16. In the smooth setting, our op-
timized low-discrepancy point sets lower rendering error; in the
discontinuous setting, our method performs equally (Fig. 15 bottom).

Fig. 14. Superimposed results of multiple optimization starting from differ-
ent initial random Owen trees, exhbiting diversity (8 solutions here for 1024
samples for Gaussian kernel loss; each point set is color coded).

5 DISCUSSIONS & PERSPECTIVES

Our differentiable scrambling offers significant advantages to im-
prove low-discrepancy sequences, but it also carries a number of
limitations. First, while Owen trees are often evaluated on the fly
thus requiring no storage, our optimized tree values need to be
stored, requiring O(n) storage. Our resulting trees could be fur-
ther compressed as an interesting future work. Our process also
requires O(n?) storage during the optimization to store the Jaco-
bian, but due to its peculiar sparsity pattern and redundant values,
this could supposedly be brought down to O(n) with engineering
efforts. Block coordinate descent could also help reduce memory
use by only requiring blocks of Jacobian rows per iteration. Our
implementation is limited to base b = 2 binary Owen trees, but ex-
tending it in higher bases [Faure and Lemieux 2016; Ostromoukhov
et al. 2024] would be possible by considering an interpolation on a
(b — 1)-dimensional simplex. Extending our approach to more com-
plex Owen-like permutations such as the 2D approach of Ahmed
and Wonka [2021] would be more difficult, as it requires non-trivial
choices for permuting dimensions. Adapting our approach to the
problem of smooth optimization of permutation sets [Mena et al.
2017] would be an interesting future work. Regarding progressivity
with respect to given energies, we only minimize the energy for
a specific subset of sample counts using a sum of losses approach.
An interesting venue for future work would consist of a progres-
sive per-level optimization of the tree. Nevertheless, we show that
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optimizing Owen trees can be performed in a smooth setting, and
allows enforcing additional properties such as optimal transport
uniformity, Gaussian integration efficiency, blue noise spectrum or
other PCF while retaining the low discrepancy of the point sets.
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