Differentiable Owen Scrambling

BASTIEN DOIGNIES, Université Claude Bernard Lyon 1, CNRS, INSA Lyon, LIRIS, France

DAVID COEURJOLLY, CNRS, Université Claude Bernard Lyon 1, INSA Lyon, LIRIS, France
NICOLAS BONNEEL, CNRS, Université Claude Bernard Lyon 1, INSA Lyon, LIRIS, France

JULIE DIGNE, CNRS, Université Claude Bernard Lyon 1, INSA Lyon, LIRIS, France
JEAN-CLAUDE IEHL, Université Claude Bernard Lyon 1, CNRS, INSA Lyon, LIRIS, France
VICTOR OSTROMOUKHOYV, Université Claude Bernard Lyon 1, CNRS, INSA Lyon, LIRIS, France

v

Fig. 1. Owen scrambling is a popular tool in Quasi-Monte Carlo to randomize samples by permuting elementary intervals of [0,1)%. It relies on a tree of
boolean flags swapping digits of the positional decomposition of the sample coordinates (see Fig. 2). Our Owen permutation tree replaces permutations by
smooth transitions between intervals, rendering the Owen tree differentiable. This can be used in a smooth optimization framework to improve the quality of
low-discrepancy point sets while preserving their low discrepancy. Here, starting with a random Owen tree (left), our optimization results in low discrepancy
samples with minimized optimal transport cost (right). These samples give lower errors for equal sample counts in simple rendering settings. We also show for
each node of the tree the effect of smoothly exchanging two intervals on an optimal transport loss when starting from the identity permutation (middle).

Quasi-Monte Carlo integration is at the core of rendering. This technique
estimates the value of an integral by evaluating the integrand at well-chosen
sample locations. These sample points are designed to cover the domain as
uniformly as possible to achieve better convergence rates than purely ran-
dom points. Deterministic low-discrepancy sequences have been shown to
outperform many competitors by guaranteeing good uniformity as measured
by the so-called discrepancy metric, and, indirectly, by an integer ¢ value
relating the number of points falling into each domain stratum with the stra-
tum area (lower ¢ is better). To achieve randomness, scrambling techniques
produce multiple realizations preserving the ¢ value, making the construc-
tion stochastic. Among them, Owen scrambling is a popular approach that
recursively permutes intervals for each dimension. However, relying on per-
mutation trees makes it incompatible with smooth optimization frameworks.
We present a differentiable Owen scrambling that regularizes permutations.

Authors’ addresses: Bastien Doignies, Université Claude Bernard Lyon 1, CNRS, INSA
Lyon, LIRIS, France, bastien.doignies@liris.cnrs.fr; David Coeurjolly, CNRS, Université
Claude Bernard Lyon 1, INSA Lyon, LIRIS, France, david.coeurjolly@cnrs.fr; Nico-
las Bonneel, CNRS, Université Claude Bernard Lyon 1, INSA Lyon, LIRIS, France,
nicolas.bonneel@liris.cnrs.fr; Julie Digne, CNRS, Université Claude Bernard Lyon 1,
INSA Lyon, LIRIS, France, julie.digne@liris.cnrs.fr; Jean-Claude Iehl, Université Claude
Bernard Lyon 1, CNRS, INSA Lyon, LIRIS, France, jean-claude.iehl@liris.cnrs.fr; Victor
Ostromoukhov, Université Claude Bernard Lyon 1, CNRS, INSA Lyon, LIRIS, France,
victor.ostromoukhov@liris.cnrs.fr.

Publication rights licensed to ACM. ACM acknowledges that this contribution was
authored or co-authored by an employee, contractor or affiliate of a national govern-
ment. As such, the Government retains a nonexclusive, royalty-free right to publish
or reproduce this article, or to allow others to do so, for Government purposes only.
Request permissions from owner/author(s).

© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM 0730-0301/2024/12-ART255

https://doi.org/10.1145/3687764

Lowres version

We show that it can effectively be used with automatic differentiation tools
for optimizing low-discrepancy sequences to improve metrics such as op-
timal transport uniformity, integration error, designed power spectra or
projective properties, while maintaining their initial #-value as guaranteed
by Owen scrambling. In some rendering settings, we show that our optimized
sequences improve the rendering error.

CCS Concepts: » Mathematics of computing — Automatic differentiation;
+ Theory of computation — Pseudorandomness and derandomization;
« Computing methodologies — Computer graphics.

Additional Key Words and Phrases: Sampling, Owen scrambling, Quasi-
Monte Carlo, Automatic differentiation

ACM Reference Format:

Bastien Doignies, David Coeurjolly, Nicolas Bonneel, Julie Digne, Jean-
Claude Iehl, and Victor Ostromoukhov. 2024. Differentiable Owen Scram-
bling. ACM Trans. Graph. 43, 6, Article 255 (December 2024), 12 pages.
https://doi.org/10.1145/3687764

1 INTRODUCTION

Monte Carlo integration is widely used in computer graphics, such
as in rendering [Kajiya 1986; Cook 1986; Veach 1997; Keller 2013;
Pharr et al. 2016], geometry processing [Sawhney and Crane 2020;
Hermosilla et al. 2018] or image processing [Chan et al. 2014]. In
the classical formulation, Monte Carlo techniques estimate the inte-
gral of a function by averaging evaluations of a function at random
locations. Since, the expected numerical error is formally related to
the estimator variance, many variance reduction techniques have
been developed to accelerate convergence. Among these techniques,

ACM Trans. Graph., Vol. 43, No. 6, Article 255. Publication date: December 2024.

HTTPS://ORCID.ORG/0009-0006-9225-5407
HTTPS://ORCID.ORG/0000-0003-3164-8697
HTTPS://ORCID.ORG/0000-0001-5243-4810
HTTPS://ORCID.ORG/0000-0003-0905-0840
HTTPS://ORCID.ORG/0000-0001-6877-2398
HTTPS://ORCID.ORG/0009-0004-3123-9388
https://orcid.org/0009-0006-9225-5407
https://orcid.org/0000-0003-3164-8697
https://orcid.org/0000-0001-5243-4810
https://orcid.org/0000-0001-5243-4810
https://orcid.org/0000-0003-0905-0840
https://orcid.org/0000-0001-6877-2398
https://orcid.org/0009-0004-3123-9388
https://orcid.org/0009-0004-3123-9388
https://doi.org/10.1145/3687764
https://doi.org/10.1145/3687764

255:2 « B. Doignies, D. Coeurjolly, N. Bonneel,). Digne, J.-C. lehl, V. Ostromoukhov

correlated sampling reduces variance by designing point sets that
cover the integration domain much more uniformly, resulting in or-
ders of magnitude lower integration errors [Sobol 1967; Niederreiter
1992] - a process called Quasi-Monte Carlo.

Following the Koksma-Hlawka inequality that bounds the integra-
tion error by a measure of samples uniformity [Niederreiter 1992],
low-discrepancy point sets and low-discrepancy sequences are con-
structed with the objective of providing good sampling locations for
most integration problems. A popular construction imposes multiple
simultaneous stratification constraints [Owen 1997b,a; Grinschlof3
et al. 2008; Paulin et al. 2021, 2022; Ahmed et al. 2023b] and leads to
so-called (¢, m, s)-nets. Their quality is guaranteed by a low ¢ value,
an integer that determines the number of points falling inside each
stratum, hence characterizing uniformity. However, these point sets
are sometimes difficult to obtain, and producing many of them is
intractable. For rendering, where each pixel may be estimated inde-
pendently, using the same point set for all pixels introduces aliasing,
and it is often better to use a different point set per pixel.

Introducing diversity often means running an entire machinery to
produce a limited number of point sets (e.g., changing a random seed
before solving a linear program [Paulin et al. 2022] or sieving among
many candidates [L’Ecuyer and Munger 2016; Paulin et al. 2021]).
But it can also be achieved by scrambling an existing point set via
simple and cheap operations. For instance, Cranley-Patterson rota-
tions translate points on a toroidal domain, which preserves lattices
but negatively affects the ¢ value of (¢, m, s)-nets. For (¢, m, s)-nets,
Owen scrambling recursively permutes intervals for each dimen-
sion independently so that the number of points in each interval
remains unchanged, preserving the t value. Owen scrambling may
even improve the quasi-Monte Carlo convergence rate for smooth
integrands [Owen 1997b,a]. Multiple attempts have thus been made
at optimizing Owen scrambling to improve this integration con-
vergence rate [Perrier et al. 2018; Perrier 2018]. However, these
methods rely on random and blind exploration of a huge search
space that grows exponentially fast with the number of points.

In this paper, we propose a novel differentiable formulation of
Owen scrambling, and an optimization scheme that works in any
dimension. Since our differentiable scrambling is based on Owen per-
mutation trees, it exactly preserves the ¢ value of the input point set.
Our differentiable scrambling then allows optimizing other unifor-
mity criteria for the input point set, such as optimal transport ener-
gies on the point set or its projections, integration error, or energies
enforcing a prescribed power spectrum. Our implementation is avail-

able at https://github.com/liris- origami/DifferentiableOwenScrambling.

2 RELATED WORKS

We review the literature focusing on optimizing point sets and
sequences for quasi-Monte Carlo applications.

(t,m, s)-nets. A low-discrepancy sequence (LDS) guarantees low
integration error by controlling the discrepancy of generated sample
points, a measure of their uniformity [Niederreiter 1992]. To obtain
a LDS, a typical construction requires that when stratifying the do-
main, a point set of n = b™ samples has exactly b’ samples in each
stratum of volume b ~™. Here, b is a fixed base (typically b = 2), and
t is an integer characterizing the uniformity of the point set, related

ACM Trans. Graph., Vol. 43, No. 6, Article 255. Publication date: December 2024.

Lowres version

to its discrepancy [Niederreiter 1992]. Ideally, ¢ = 0 indicates the
best possible quality, where each stratum of volume b~ contains a
single sample. For ¢ = 1, this enforces b samples per b times bigger
stratum, so uniformity is less enforced than for ¢ = 0. This property
is at the core of (f,m, s)-nets, a construction of a low-discrepancy
point set of b s-dimensional points of specific ¢ value. Similarly,
(,s)-sequences are sequences of points for which the (t, m, s)-net
property holds for all m, i.e., they remain low discrepancy when
adding more points. Following Ahmed et al. [2023b] and Ostro-
moukhov et al. [2024], we denote (¢, m, s)-progressive, point sets
that are (¢, m’, s)-nets for all m" < m given a fixed maximum value
of m. (t,m, s)-nets can be obtained via algebraic construction [Sobol
1967; Niederreiter 1992; Bratley and Fox 1988], or solving complex
systems of constraints [Ahmed and Wonka 2021; Paulin et al. 2022].
The resulting point sets and sequences offer the best Monte Carlo
convergence rate. Our work allows to further optimize them accord-
ing to other metrics using efficient convex optimization routines,
while maintaining (&, m, s)-progressivity.

Point set randomization. Making point sets stochastic is desirable
in many applications, and in particular for rendering where a dif-
ferent point set may be needed for each pixel. This can be done
via Cranley-Patterson rotations that randomly but rigidly translate
the point set modulo 1 [Cranley and Patterson 1976], although this
operation degrades t. Digital shift applies a XOR operation (when
b = 2) to the point coordinates with a random mask. This preserves
t but provides little degrees of freedom in our context (typically
2325 possible permutations) and does not allow for improved Monte
Carlo convergence rate [Owen 2003]. Similarly, Linear Matrix scram-
bling [Hickernell 1996; Matousek 1998] multiplies the bit vector by
a random invertible triangular matrix, which offers much higher
degrees of freedom (typically 231:30-5/2y

Owen scrambling recursively permutes half-spaces (when b = 2)
for each dimension based on a decision tree, which also preserves t.
This produces a vast exploration space that amounts to a different
digital shift per point, but the decision tree is inherently not differen-
tiable. Owen permutations do not cover all permutations that would
preserve t [Ahmed and Wonka 2021], but the alternative permuta-
tions of Ahmed and Wonka [2021] covering them all are restricted
to two dimensions. The number of degrees of freedom is again
exponentially higher, typically 2(2)s and in practice, Owen scram-
bling performs better than Linear Matrix Scrambling [Owen 2003].
While Owen’s theoretical construction is based on trees of infinite
depth that preserve the (#,s)-sequence property, practical imple-
mentations require to fix their depth. In the general case, strictly
speaking, this produces (, m, s)-progressive samples for arbitrarily
large m (where m equals the tree’s depth). Producing a sequence
would involve sequentially increasing the tree depth, but this would
impact the lower significant digits of all previously generated sam-
ples. Restricting the space of permutations allows to produce true
(¢, s)-sequences by imposing that previously generated samples are
not affected by lower tree levels [Perrier et al. 2018].

Blue noise. Blue noise point sets have attenuated low-frequencies
in their power spectrum, which also offers low integration error
guarantees [Durand 2011; Subr and Kautz 2013; Pilleboue et al.

https://github.com/liris-origami/DifferentiableOwenScrambling

2015]. The prevailing method to attain such spectrum is energy
minimization. One of the earlier algorithms that exploits this idea
is Lloyd’s relaxation [Lloyd 1982] and its direct extension using
capacity-constrained Voronoi’s diagrams [Balzer et al. 2009; Li et al.
2010; Xu et al. 2011; Du et al. 1999; Chen et al. 2012]. The connection
to semi-discrete optimal transport was made explicit and extended
in BNOT [de Goes et al. 2012] which led to many applications in
computer graphics. While these methods theoretically extend to
any dimension, they rely on Voronoi or Power Diagrams that are
hard to construct in high dimensions. To overcome this limitation,
the use of a sliced optimal transport energy (SOT) has been pro-
posed [Paulin et al. 2020; Salatin et al. 2022]. A similar spectrum can
be obtained by optimizing distance-based filters [Fattal 2011; Heck
et al. 2013]. The special case of Gaussian filters was recently studied
in depth and produces state-of-the-art blue noise point sets in arbi-
trary dimensions [Oztireli et al. 2010; Ahmed et al. 2022]. The filters
themselves can also be learned to target any (projectively) isotropic
spectra [Leimkiihler et al. 2019]. These energies can be used in our
framework to further optimize low-discrepancy sequences.

Blue noise with (t, m, s)-net properties. Blue noise and low-discre-
pancy properties are hard to combine. The low-discrepancy property
requires very fine structures that leave little room to move sam-
ples and control their power spectrum. An attempt to directly build
blue noise low-discrepancy point sets can be found in the PMJ con-
struction [Christensen et al. 2018] but this approach yields subpar
results in terms of power spectra. An effective way to combine
the two properties is to use permutations that preserve the low
discrepancy property. In LDBN [Ahmed et al. 2016], the authors pro-
pose permutations on local 2D tiles that slightly affect discrepancy,
but not sufficiently to significantly affect integration convergence
rate. Starting with an exhaustive search on the first few levels of
the Owen scrambling permutation tree (see Sec. 3.1) on local tiles,
BNLD [Perrier et al. 2018] computes new local permutations that ex-
tend the blue noise property to the whole point set but this method
only enforces blue noise on 2D projections. More recently, Ahmed
and Wonka [2021] introduced a novel scrambling technique that
allows a brute force optimization to target a blue noise spectrum,
although their approach remains limited to 2D and would be in-
tractable for generic energy functions (e.g., optimal transport). In
higher dimensions, another approach by Ahmed et al. [2023a] pro-
duces Owen trees that could be used to minimize any loss by similar
local permutations, and offers preliminary 2D optimization results.

While differentiable approaches to optimize general permutations
have been explored using Sinkhorn Networks [Mena et al. 2017],
this would only permute the order of the points, without affecting
their spatial relationships within each dimension.

3 ADIFFERENTIABLE OWEN SCRAMBLING
FORMULATION

We first review the original Owen scrambling approach for com-
pleteness, and then describe our differentiable version.

3.1 Random Owen scrambling

Owen scrambling or Nested Uniform Scrambling is a widely used
scrambling technique for (¢, m, s)-nets. It has numerous interesting

Lowres version

Differentiable Owen Scrambling « 255:3

before scrambling

0000000600

T T T T T T T T 1
[1/4 12 3/4 1

A A
00000000

T T 1
o 14 12 3/4 1

Fig. 2. Left: Representation of an Owen scrambling permutations as a tree
of depth 3. Right: Discrete swaps applied on 2° = 8 points of the second
Sobol’ dimension. Above the unit intervals, point indices (white numbers)
are represented at their corresponding spatial locations. Each level of the
tree decides if halves, quarters or eighths of intervals need to be permuted
(tree node value = 1, colored) or not (tree node value = 0). Our framework
makes these permutations differentiable.

properties: the space of different permutations is huge (in our case,
with b = 2 and n = 2™ points in s dimensions, there are 2("~1)
degrees of freedom), it is fast with moderate storage, and it can be
done progressively one point at a time. Unlike other scrambling
methods, not only does it preserve the point set quality as defined
by its ¢ value, but it can also improve it [Owen 1997a, 2003].

We first formally define Owen scrambling in 1d. Without loss of
generality, we assume b = 2. Starting with a point expressed by its
fixed-point binary representation on q bits (typically q = 32)

q
X = Z a;i27", (1)
i=1
the scrambled point is given by:

x =
i=1

eiz_i, (2)

M

where the {e;} are obtained as: e; = 74, 4,...q;_, (i) and the {7} are
random (and possibly independent) permutations of {0, 1}. In base
2, there are only two permutations (0 <> 1), hence it is common
to talk about bit flipping and it can be efficiently implemented via
XOR operations. This scrambling is classically represented as a tree
with branches encoding the original digits and nodes encoding the
permutation to apply (see Figure 2). Alternatively, flipping bits can
be interpreted as swapping half (or quarter, eighth, ...) spaces.

Scrambling trivially extends to any dimension by considering one
permutation tree per dimension. Evaluating a scrambled point set of
n points has O(snq) time complexity and requires O(s29) storage.
In practice, for (¢, m, s) inputs, we may consider using ¢’ = m bits
instead of g, in which case complexity is O(snlogn) and storage is
O(sn). We may alternatively consider m < ¢’ < q.

Owen permutation trees may be computed on the fly to avoid
storing s - n values, resulting in no storage. A straightforward imple-
mentation relies on seeding a fast counter-based random number

ACM Trans. Graph., Vol. 43, No. 6, Article 255. Publication date: December 2024.

255:4 « B. Doignies, D. Coeurjolly, N. Bonneel,). Digne, J.-C. lehl, V. Ostromoukhov

generator with random access [Salmon et al. 2011]. This also allows
to run the scrambling at maximum depth (typically g = 32) obtain-
ing a much larger diversity of point sets. Even faster scrambling
can be achieved in base b = 2 with carefully designed hash struc-
tures [Burley 2020], and Owen scrambling and Sobol’ construction
of points sets can be performed simultaneously [Helmer et al. 2021].

3.2 Differentiable Owen scrambling

In this section, we present our continuous formulation of Owen
scrambling. The scrambling process relies on bit flipping, which is
a discrete operation transforming a 0 to a 1, or a 1 to a 0. We design
a smooth function that achieves this effect. More formally, we give
the following definition for our differentiable binary flip (DBF).

Definition 3.1 (Differentiable binary flip). Let f be a differentiable,
bijective, strictly increasing function defined on [0, 1] with values
in [0, 1] such that £(0) = 0 and f(1) = 1. We define a corresponding
binary flip function DBFy : {0,1} x [0,1] ~— [0,1] as

DBF¢(p,0) = (1= p)f(6) + (1 - f(0)), ©)
where f is the bit value, and f(6) indicates by how much this
value should change. While this formulation allows for the bit to take
non integer values —a condition for its differentiability— it can still
represent a true binary flip because DBF(0,0) = DBFy(1,1) = 0
and DBF(0,1) = DBFy(1,0) = 1. Since f defines a bijection from
[0,1] to [0,1], DBFy has no local minimum with respect to its
second argument 6. In practice we use a tanh function for f: f(8) =
% (tanh(a(0 — 0.5)) + 1), where « is the smoothing parameter. We
use o = 5 in our experiments.

ALGORITHM 1: Differentiable Owen Scrambling

Data: x: the coordinate to scramble, g’: the scrambling depth, 6: the
fuzzy tree parameters.
Result: x’: the continuous owen scrambling of x with parameters 6.
1 select « 1;

2 bits «— BINARYEXPANSION(x, depth);
3 fori < 1toq’ do
4 bits[i] « DBF(bits[i], O[select]);
// classical Owen scrambling:
// bits[i] « bits[i] xor tree[select]
5 select « 2 - select + bits[i]; // Binary heap traversal
6 end

7 x' Z?zl 27 bis[i];

A DBF function may return non-integer values that represent
fuzzy bits. However, points are represented using their binary de-
composition x = Z?:l ;2" with integers a; € {0, 1}. Our differen-
tiable Owen scrambling keeps this representation, but uses fuzzy
scrambled bits instead x” = Z?:l agz_i with a} € [0, 1]. This still
results in points within the unit square, but they are not guaranteed
to lie on the classical dyadic grid anymore (i.e., where coordinates
are multiple of negative powers of 2). In our implementation (see
Algorithm 1), we store a flattened binary tree, and cannot benefit
from fast hash-based or on the fly evaluation of the scrambling.

Our Algorithm 1 differs from the classical Owen scrambling in line
4, where we replace Owen scrambling’s XOR operation to compute
bits[i] by our differentiable bit flip.

ACM Trans. Graph., Vol. 43, No. 6, Article 255. Publication date: December 2024.

Lowres version

3.3 Optimization scheme

Equipped with our differentiable formulation, we are now ready to
optimize low-discrepancy point sets. We minimize various differen-
tiable losses (see Sec. 4) using either gradient descent or stochastic
gradient descent (SGD). We require explicitly storing the entire
Owen tree, and optimize all nodes values. In our context, Adam
would require nearly 3 times higher memory usage, and we ex-
cluded it given the limited memory. To further reduce memory use,
we use an explicit derivative f'(0) = (1 - tanh?(a(6 — 0.5)))
(DBFy is only differentiated w.r.t.). We apply the chain rule for

a given loss L : w = [%;] ~V.L(x), where the loss gradi-
ij

ent is explicited in Sec. 4. The (sparse) Jacobian matrix [%] y is
obtained using f”, and its ratio of nonzero values for row j is n/2¢
with ¢ = |log,(j + 1)] (i.e., the number of points affected by level ¢
of the tree). We also optimize values over a fixed tree depth ¢’ = 16.

Due to fixed-point arithmetic, components of loss gradients with
respect to low significant bits rapidly diminish. However, moderately
significant bits (i = log, (N)) are the ones most likely to significantly
affect the energy (see Sec. 4.5 and Fig. 11). For this reason, we
increase the learning rate linearly with the number of points.

After the optimization has terminated, each 6; is rounded to either
0 or 1. The effect of this step is evaluated in Sec. 4.

3.4 Optimized losses

We use four losses: Optimal transport to uniform distribution, Gauss-
ian Kernel Energy, Integration Error, Pair Correlation Function.

Optimal transport. We optimize the (squared) semi-discrete op-
timal transport cost between our point set X = {x;}i=1., and a
uniform distribution, using a quadratic ground distance:

Ws(X) = inf / x — x| ?dx. 4
2(X) = in Z sy 1 @

This can be efficiently computed in 2D and 3D by an optimization
process using a Newton solver [Lévy and Schwindt 2018], since
T~ 1(x;) results in a cell of a power diagram. It characterizes the uni-
formity of the point set and relates to the integration error [Paulin
et al. 2020]. The gradient VW, (X) is given by:

M) = % (centroid(T_l(xi)) - xi) , (5
1

i

VW (X) = (

i
where centroid(T~!(x;)) is the centroid of the power cell of x;. We
use a gradient descent to optimize our Owen permutation tree.

Gaussian kernel energy. The blue-noise enforcing energy intro-
duced by Ahmed et al. [2021; 2022] describes the difference between
the point set smoothed by a Gaussian kernel and a constant function:

1 n n _ L §
g(X) = ; Z Z e [x]”2/(202) . (6)
i=1 j=1

Its gradients follows

1 & _xal?
VGX) =| =5) (i —xe | ™
no =
J#i ;

We use o = 0.5n/5 and a gradient descent optimization.

Integration error. We optimize a sum of integration errors to a set
of K random Gaussian distributions in the cases of 2D, 4D, 6D, or 8D
point sets. We use K = 65, 536 Gaussians with uniformly random
mean and covariance matrices using UTK [UTK 2018]. The integral
of each Gaussian g;(x) is pre-computed at high precision using 228
samples. The integration error is defined as:

1w 19 ’
100 = ¢ | [9edx =1 3 gt ®
k=1 i=1

Its gradient is simply obtained by

2 & 1<
VI(X)=-— ; (/ gic(x)dx — ~ Zlgm)) Vok(x). ()

We use an SGD to optimize our Owen permutation tree, using
batches of 512 Gaussians. When testing, we use K’ = 16, 384 differ-
ent random Gaussians.

Pair Correlation Function (PCF).. A pair correlation function char-
acterizes the spectrum of a point set as a distribution of distances
between points [Oztireli and Gross 2012]. It can be explicited for a
point set X as a 1d function of a radial parameter r:

n n
1 2 ’2
PCF(X,r) = — e~ (imxjll=r)"/ o) (1)
0 & Jz;
with the normalization a(r) = 2n(n — 1)(7 — 4r — r?)r. We use a
square #; distance between a reference PCF (obtained by averaging

~ 128 PCFs of n points with the desired distribution) PCF(r) and
that of the current low-discrepancy point set X:

Tmax _

P(X) = / [PCF(X, r) — PCE(r)|%dr. (11)
=Tmin

Its gradient is obtained using:

PX) _ -2 / " (peFOX.r) - BCE())

ox; a(r)o’?

=Tmin

n
D xi-x) (1) m) e~ (= I=n)"/20™) gy (1)
i =%

We discretize the PCF on 100 bins, we use ¢/ = 1073, Fmin = 0.01,
rmax = 0.1, and a gradient descent Owen tree optimization.

We may also optimize a mixture of the above losses, notably to
enforce them for different projections (see sec. 4.7) or to enforce
them at different sample counts (sec. 4.6).

4 NUMERICAL RESULTS
4.1 Comparisons to other methods

We compare our approach that mathematically preserves the low
discrepancy property and the actual value of ¢ while optimizing
other metrics, to methods that either only optimize these metrics
or also preserve low discrepancy properties. Representative point
sets for our results and for the identified best performing competing
approaches are shown in Fig. 3, and direct comparisons in terms of
metrics for a larger set of related works are shown in Fig. 5.

Lowres version

Differentiable Owen Scrambling « 255:5

When optimizing ‘Wa, we compare to the state-of-the-art optimal
transport-based BNOT approach of de Goes et al. [2012] in 2D or
to the sliced optimal transport (SOT) of Paulin et al. [2020] which
conveniently works in arbitrary dimensions. We also compare to
the 2D low discrepancy blue noise (LDBN) approach of Ahmed
et al. [2016] mimicking a BNOT spectrum while remaining low
discrepancy. We also compare to Gaussian Blue noise (GBN, [Ahmed
etal. 2022]) for completeness. In 2D, we obtain a similar ‘W, as BNOT
while preserving low-discrepancy and t properties, and outperform
LDBN. In 3D, the limited degrees of freedom do not allow us to
reach the ‘W, level of SOT, but we improve over GBN and reduce
the ‘W, energy from the initialization.

When optimizing the Gaussian Kernel Energy G, we compare to
Gaussian Blue Noise [Ahmed et al. 2022], specifically designed for
minimizing this loss. We also compare to the 2D approach of Ahmed
and Wonka [2021] (Blue-Nets) which preserves ¢ and optimizes the
Gaussian Kernel energy G. For completeness, we also similarly
compare to SOT and LDBN. While most methods perform similarly
for this metric, we show modest improvements metric-wise over
non-optimized Owen that remain visually noticeable (Fig. 3).

Regarding the integration loss 7, while no other method aims
at directly minimizing this exact loss, low-discrepancy sequences
such as Owen-scrambled Sobol’ are state-of-the-art, at least in low-
dimensional quasi-Monte Carlo integration contexts. For all metrics,
we compare to an (unoptimized) ART-Owen scrambling [Ahmed
et al. 2023a] on 16 symbols (ART16). Specifically for the integra-
tion loss, we have implemented a preliminary optimization strat-
egy over ART (denoted ART16/Int.) following the paper’s pseu-
docode [Ahmed et al. 2023a]. For completeness, we also compare
to other techniques. Our Gaussian integrands cover a much wider
range of covariance matrices than those used in the GBN paper [Ahmed
et al. 2022], which explains the different results. In all tested dimen-
sions (2D, 4D, 6D, 8D), our method performs best. In 2D, its closest
competitor is Sobol’, but in higher dimensions, optimal-transport
based methods come second, outperforming Sobol’. Unoptimized
ART-Owen over 16 symbols performs similarly to Owen on 32 bits.

For the PCF loss P, we target a step function PCF, and we mainly
compare to Heck et al. [2013] and LDBN [2016]. The approach of
Heck et al. does not directly seek to minimize the same square £»
distance between PCFs, but can produce point sets following a step
PCF. Similarly, LDBN matches a point set of step PCF but it is not
driven by an energy minimization. For this reason, we only show
qualitative comparisons in Figs. 6 and 3. For references, Figure 4
presents the Power spectra of our optimized point sets.

Using a weighted sum of two losses (Integration and Gaussian
kernels, Fig.7) results in a tradeoff between both losses as expected,
while improving both energies with respect to the initial point set
(Sobol’ +Owen).

4.2 Timings and bruteforce comparisons

The running time of our optimization is largely dominated by the
evaluation of the loss and its gradient at each iteration. All our
experiments were run on an AMD Ryzen 7 1700X 8-Core computer.
Typical optimization times for 1k points in 2D at depth 16 range
from 2s for Gaussian Kernel energy to 30s for Integration error, due

ACM Trans. Graph., Vol. 43, No. 6, Article 255. Publication date: December 2024.

Integration (Gaussian)

255:6 « B. Doignies, D. Coeurjolly, N. Bonneel,). Digne, J.-C. lehl, V. Ostromoukhov
Gaussian kernel
e
]
=
=
O
o]
g
o
3]
@
Q
m
9]
a
—
+
4
2
B
£
s}
)
g
A LDBN-BNOT : Blue-Nets
w
et
=
o
Init (Sobol’'+Owen) Ours/W» Ours/GBN

£, PCF

[Heck et al.]

LDBN-STEP

Ve

Ours/Integration

Ours/¢, PCF STEP .

Fig. 3. For each loss, we identify a method that optimizes best (“Best competitors”), a method that optimizes best under the constraint that points remain of
low discrepancy (“Best competitors + LDS”) and compare the generated point sets to our method. Our best competitors are BNOT [de Goes et al. 2012]
(in 2D), and the blue noise approach of Heck et al. [2013]. For best competitors under LDS constraints, we identified LDBN (in 2D) with a BNOT and STEP

targets [Ahmed et al. 2016], and Blue-Nets (in 2D) [Ahmed and Wonka 2021].

Fig. 4. For point sets given in Fig. 3, our Fourier Power Spectra exhibit the low

LDBN-BNOT I Blue-Nets I LDBN-STEP I Ours/GBN I Ours/W, I

i Ours/f, PCF I

discrepancy property (low energy on the axes, i.e., a black cross over the

Ours/Integration

frequency domain), and some blue noise property (low energy in the low frequencies, i.e., a black disk at the origin), especially for GBN and ‘W, losses.

to the stochasticity of the optimization procedure. It also requires 1
GB of RAM to store the trees and Jacobian matrices. When applying
a static Owen tree (eq. 2 on 16 bits), typical timings are 63.34M
samples per second (averaging 64k realizations of 8D point sets
of 256 samples). For the comparison, ART16 [Ahmed et al. 2023a]
outputs 18.59Ms/sec. For completeness, fast hash-based techniques
such as Burley’s FastOwenScrambler in PBRT 4 [Burley 2020] can
generate 103.48Ms/sec but without any control of the scrambled set.

As our method is tailored for smooth optimization, we provide
equal time comparisons with respect to a more naive discrete opti-
mization technique. Specifically, we compare to a simple optimiza-
tion scheme that builds N random Owen trees and keeps the best
performing one. We set N such that the total running time matches
that of our method for the same loss. In Fig. 8, we show the relative
reduction in loss for W2, G, and 7 when using our approach and

ACM Trans. Graph., Vol. 43, No. 6, Article 255. Publication date: December 2024.

Lowres version

bruteforce optimization compared to the initial loss. Our optimiza-
tion largely outperforms a bruteforce search in most cases.

4.3 Low discrepancy preservation

Our optimization scheme preserves ¢ by construction. We illustrate
this property in Fig. 9 by showing that all our optimized Owen
trees result in the same discrepancies as Sobol’ with random Owen
permutations, which is the best discrepancy attained among all
samplers we tested.

4.4 Effect of clamping

During optimization, all our fuzzy bit variables take continuous
values in [0, 1]. Upon completion, bits are rounded to their nearest
integer value (and all results presented in the paper use integer

2D 3D

Whitenoise
Jittered = =

N Sobol+Owen
0.001 BNOT
LDBN

Ours/W,

Whitenoise
Sobol'+Owen =———
SO

3
5

GBN ——
ART16 ———
Ours/W, ——

Differentiable Owen Scrambling « 255:7

1 1 1

(2]

—

B} 01 A

= Witenons :

a2 " Jittered - - 01

Sobol'+Owen —— =S =

o LDBN —— Whitenoise Whitenoise WHTES

< BNOT Sobol'+Owen —— Sobol'+Owen Sobol'+Owen

= . GBN —— soT soT soT

a 0oL Blue-Nets —— GBN —— GBN —— GBN ——
3 T16 —— T16 —— ART16 —— ART16 ——
= Ours/Gaussian Ours/Gaussian Ours/Gaussian Ours/Gaussian

S . :

1 64 102 4 16 64 256 024 a 16 64 024
0.01 0.01
0.01 ~ N
001 001
0.0

o o o

] 1e Sobol+01

= obol"+Owen 1e

) Sobol'+Owen 16-05 | Sobol+Owen Sobol'+Owen ——
) - sot soT Sot

= e GBN —— GBN —— GBN ——
= le-l ARTI6/Int. ART16 —— ART16 —— e-07 ARTL6 ——
— Ours/Int. 08 1 ARTI6/Int. ART16/Int. —— ART16/Int. ——

Ours/Int.

te-12

Frequency

0.4 J
/ Target PCF (Heck et al.)
0.2 4 Ours/PCF

Ours/PCF (soft) —- =+
Ours/PCF (init) —-—+

0 10 20 30 40 50 60 70 80 90 100
Normalized radius
Fig. 6. For 1024 2D samples, we show the results of the PCF optimization
using a squared ¢, distance loss to a PCF from Heck et al. [2013]. Using
dashed lines, we also illustrate the PCF of the initialization (Sobol’+Owen,
labelled as init) and the PCF before the final clamping of the weights (soft).
While we improve the PCF compared to the initialization, the clamping
enforcing the LDS of the point set does affect the final PCF.

bits in {0, 1}). While this is common in relaxed integer optimiza-
tion [Burer and Letchford 2012], this may affect the energy, since
the resulting tree is not optimal anymore for the integer-valued
bits. We evaluate the effect of this rounding on the integration error
energy J in Fig. 10.

4.5 Effect of tree level

It may appear surprising that smoothly exchanging two intervals
would produce intermediate configurations meaningful enough for
a smooth optimization solver to lower a loss often characterizing
some uniformity measure. For instance, smoothly varying the most
significant bit from 0 to 1 progressively exchanges the two halves

Lowres version

Ours/Int. Ours/Int.

16 64 256 1024 4 16 64 256 1024

0.01
-
2
= 0.0001
%
=)
Q 1le-06
=1
=
<
Eh1e-08
B Whitenoise
=] Sobol'+0wen ==
— 1e-10 Ours/Int.
Ours/GBN ==
Ours/(Int. + GBN) =
le-12

4 16 64 256 1024

o

Whitenoise
Sobol'+Owen ===
Ours/GBN ==
Ours/Int.
Ours/(Int. + GBN)

IS)
)
S

Gaussian kernels error
o
e

0.0001

16 64 256 1024

Number of samples
Fig. 7. Integration and Gaussian kernels errors while optimizing for each
energy independently as well as a (weighted) sum of these two energies
(denoted Ours/ (Int.+GBN)).

of the unit domain, with a midpoint value representing a point set
of much lower uniformity. However, smoothly exchanging bits of
lower significance has a much less intuitive effect on the point set
(recall that a decision to flip a given bit is sample-dependent, and
depends on the value of the point’s more significant bits). We run

ACM Trans. Graph., Vol. 43, No. 6, Article 255. Publication date: December 2024.

255:8 « B. Doignies, D. Coeurjolly, N. Bonneel, J. Digne, J.-C. lehl, V. Ostromoukhov

Ours/Int. 2d ==

Bruteforce (equal time) 2d = =
Ours/Int. 4d =

Bruteforce (equal time) 2d = =
Ours/Int. 6d -

force (equal time) 84,< -
Ours/Int, 88 ——

10 Bruteforcaegual ti€) 8d = =

Ours/Gaussian 2d ——
Bruteforce (equal time) 2d = =
Ours/Gaussian 4d ——
Bruteforce (equal time) 2d = =
Ours/Gaussian 6d
Bruteforce (equal time) 8d
Ours/Gaussian 8d ——
Bruteforce (equal time) 8d = =

Ours/W, 2d =———
Bruteforce (equal time) 2d = =

Integration error ratio

Gaussian kernels error ratio

W, error ratio

= 1

4 16 64 256
Number of samples

Number of sampfgg

1024 4 1024

Number of samplzegs5

Fig. 8. We show the relative reduction in loss (Loss(Sobol’+Owen32) / Loss(optimized point set)) for our method compared to a bruteforce optimization
scheme at equal running time (higher is better). Our smooth optimization largely outperforms a bruteforce search in most cases.

2D 4D

Whitenoise
Sobol'+Owen ——
SO

GBN ——

ART16 ———
Ours/Int.
Ours/Gaussian

Discrepancy

Ours/Gaussian

6D 8D

Whitenoise
Sobol'+Owen
soT

GBN —— GBN ——

ART16 —— ART16 ——
Ours/Int. Ours.Int.
Ours/Gaussian Ours/Gaussian

—

Whitenoise
Sobol'+Owen
SO

Fig. 9. Discrepancy evaluation. Our method is based on Owen scrambling and thus preserves the ¢ value of the input point set. All our optimized permutations
thus perform as well as Sobol’ with random Owen permutations (our ‘W, and I discrepancy curves are superimposed with Sobol’+Owen).

0.01

0001

1e-06

o
=3

Whitenoise

Ours/Int.
le-10 Ours/Int. (soft)
Ours/Int. (init)

Integration error
=

4 16 64 256 1024
Number of samples

Fig. 10. Rounding the differentiable Owen tree to the nearest integer value
affects the value of the loss being minimized. We show the energy value I
in 2D before optimization (init), after optimization (soft), and with the full
scheme (optimization+rounding, Ours/int).

Fig. 11. We show the distribution of bits flipped as a function of the bit index
(0 is the most significant) after optimizing a ‘W loss over 28 2D samples
(one histogram per dimension). Most bits are flipped in intermediate tree

levels as applying our smooth permutation to highly significant bits makes
little sense, while very low significant bits only slightly alters the loss.

ACM Trans. Graph., Vol. 43, No. 6, Article 255. Publication date: December 2024.

Lowres version

an experiment on two trees of ¢’ = 16 levels, optimizing a ‘W,
loss on 28 2D points. We assess which levels of the permutations
trees are more prone to change, i.e., which bit of the fixed-point
representation of point coordinates are more likely affected by our
optimization. We show the resulting histogram as a function of the
bit index (bit 0 is the most significant) in Fig. 11. As expected, the
most significant bit is never altered during the optimization. Most
bit flips occur between the 4th and 8th bit, which can be explained
as there are 28 samples. Bits of very low significancy also only have
aminor effect on the energy as they correspond to subtle changes in
point location. This behavior can be illustrated by the energy profile
at each tree level: we start with an Owen tree entirely set to 0 and
vary each node’s value continuously from 0 to 1 independently. We
show the resulting effect on the ‘W, loss in Fig. 1.

4.6 Multiscale optimization

Our method takes as input an Owen tree of fixed height ¢’ = 16 and
performs a single optimization. While this allows for the discrepancy
and t value to be preserved, the losses we have introduced so far
were only evaluated for a single sample count. The resulting low-
discrepancy sequence thus only exhibits a minimal loss for a specific
sample count. We evaluate the effect of minimizing an energy for a
single sample count (n = 2048) on the Gaussian integration energy
value of other sample counts in Fig. 12: the effect of the minimization
process is only visible at the optimized sample count.

To alleviate this issue, we propose a multiscale loss that sums in-
dividual losses for multiple selected sample counts. We evaluate this
strategy by summing Gaussian integration losses evaluated for 128,
512 and 2048 samples, and show the corresponding losses at other
sample counts in Fig. 12 (see also Fig. 13 for point patterns illustra-
tion). We also show results for a more exhaustive loss accounting
for sample counts of all powers of 2. This results in loss-specific

Whitenoise
0.01 Jittered = =
Sobol'+Owen

Ours/Int.

Ours/Int. (2048 only) =

Ours/Int. (2048 + 3 losses)

. Ours/Int. (2048 + all losses)

Integration error

le-12

4 16 096 16384

o 256 1024 4
Number of samples
Fig. 12. Progressivity test. We compare various strategies for enforcing
progressivity for the integration loss. We can either specifically optimize
for n samples only (n = 2048), or sum of losses for a subset of the sample
counts (n = 128,512, 2048) or for all powers-of-two sample counts. We
evaluate these strategies on the unoptimized sample counts, compared to
reoptimizing a new tree per sample count (Ours/Int (pointset)).

Ours/GBN

Ours/GBN MS ~ Ours/GBN 1024

4 32 256 1024

Fig. 13. Multiscale optimization in 2D. We show realizations when optimiz-
ing the Gaussian kernel loss independently for all sample counts (first row),
only for 1024 samples (middle row), and jointly for all sample counts with
the multiscale approach of Sec. 4.6 (last row).

progressive samplers, such as Gaussian integration-progressive or
“‘Whs-progressive, in addition to remaining (¢, m, s)-progressive by
construction for (¢, m, s)-progressive inputs. We can see a trade-
off between progressivity and performance in terms of loss. While
optimizing for all sample counts allows to reduce loss for all sam-
ple counts, quality remains lower than when minimizing for a few
subsets of sample counts for these selected sample counts.

4.7 Rendering

We use our differentiable Owen scrambling to render images with a
6D integration domain. We integrate over the pixel area (2D), direct
lighting (2D) and either depth of field or indirect lighting (2D). As a
pre-process, a set of 64 different scramblings are optimized (starting
from different initializations) to minimize

Wa (projo,1 (X)) + Wa(proj,2,s (X)) + Wa(proja,s (X)), (13)

Lowres version

Differentiable Owen Scrambling « 255:9

where proj, k. (X) projects the point set X onto 2 dimensions (k, £).
One of these realizations is picked at random for each pixel. Figure 14
illustrates the diversity of these realizations. Figure 15 (top) shows
a smooth setting, with direct lighting, diffuse objects, a constant
sky, a soft area light source and depth of field. Figure 15 (middle and
bottom rows) shows scenes with one bounce of indirect lighting
and diffuse and glossy materials. Starting from Sobol’ [1967] or Cas-
caded Sobol’ [Paulin et al. 2021], we perform the optimization for
each sample count, and compare our results with the unoptimized
point set in term of #; error. Since Sobol’ is (¢, m, s)-progressive, a
multiscale optimization denoted "Ours (Sobol’- MS)" has also
been considered in Fig. 15 and 16. In the smooth setting, our op-
timized low-discrepancy point sets lower rendering error; in the
discontinuous setting, our method performs equally (Fig. 15 bottom).

Fig. 14. Superimposed results of multiple optimization starting from differ-
ent initial random Owen trees, exhbiting diversity (8 solutions here for 1024
samples for Gaussian kernel loss; each point set is color coded).

5 DISCUSSIONS & PERSPECTIVES

Our differentiable scrambling offers significant advantages to im-
prove low-discrepancy sequences, but it also carries a number of
limitations. First, while Owen trees are often evaluated on the fly
thus requiring no storage, our optimized tree values need to be
stored, requiring O(n) storage. Our resulting trees could be fur-
ther compressed as an interesting future work. Our process also
requires O(n?) storage during the optimization to store the Jaco-
bian, but due to its peculiar sparsity pattern and redundant values,
this could supposedly be brought down to O(n) with engineering
efforts. Block coordinate descent could also help reduce memory
use by only requiring blocks of Jacobian rows per iteration. Our
implementation is limited to base b = 2 binary Owen trees, but ex-
tending it in higher bases [Faure and Lemieux 2016; Ostromoukhov
et al. 2024] would be possible by considering an interpolation on a
(b — 1)-dimensional simplex. Extending our approach to more com-
plex Owen-like permutations such as the 2D approach of Ahmed
and Wonka [2021] would be more difficult, as it requires non-trivial
choices for permuting dimensions. Adapting our approach to the
problem of smooth optimization of permutation sets [Mena et al.
2017] would be an interesting future work. Regarding progressivity
with respect to given energies, we only minimize the energy for
a specific subset of sample counts using a sum of losses approach.
An interesting venue for future work would consist of a progres-
sive per-level optimization of the tree. Nevertheless, we show that

ACM Trans. Graph., Vol. 43, No. 6, Article 255. Publication date: December 2024.

255:10 «

102

B. Doignies, D. Coeurjolly, N. Bonneel, J. Digne, J.-C. lehl, V. Ostromoukhov

Whitenoise
Sobol'+Owen
Ours (Sobol')

Ours (Sobol'-MS) =

Whitenoise
Cascaded Sobol'
Ours (Cascaded Sobol')

IS
o
m
2
N
I
a

Whitenoise
Sobol'+Owen ==
Ours (Sobol')

0urs (Sobol'-MS) =

102

103

4

16 64 256

Whitenoise
Cascaded Sobol'
Ours (Cascaded Sobol')

4 16 64 256

Whitenoise
Sobol'+Owen
Ours (Sobol')
0Ours (Sobol'-MS) =

4

Whitenoise
Cascaded Sobol'
Ours (Cascaded Sobol')

4 16 64 256

4

16 64 256

Fig. 15. 6D rendering ¢ errors, before and after optimizing a sum of ‘W, losses on 2D projections, with the number of samples. (top) Smooth setting with pixel
integration, direct lighting and depth of field. (middle) Pixel integration, direct and indirect lighting. (bottom) Same integration but less smooth setting.

Ours (Sobol’- MS)

8 spp 32 spp

64 spp

8 spp

64 spp

32 spp

Fig. 16. We compare independently (middle) and jointly (bottom) optimized Sobol’ with unoptimized Sobol’+Owen (top).

ACM Trans. Graph., Vol. 43, No. 6, Article 255. Publication date: December 2024.

Lowres version

optimizing Owen trees can be performed in a smooth setting, and
allows enforcing additional properties such as optimal transport
uniformity, Gaussian integration efficiency, blue noise spectrum or
other PCF while retaining the low discrepancy of the point sets.

ACKNOWLEDGMENTS

This work was partially funded by ANR-20-CE45-0025 (MoCaMed),
by ANR-23-PEIA-0004 (PDE-AI), and donations from Adobe Inc.

REFERENCES

Abdalla G.M. Ahmed, Héléne Perrier, David Coeurjolly, Victor Ostromoukhov, Jianwei
Guo, Dongming Yan, Hui Huang, and Oliver Deussen. 2016. Low-Discrepancy Blue
Noise Sampling. ACM Transactions on Graphics 35, 6 (2016). https://doi.org/10.1145/
2980179.2980218

Abdalla G.M. Ahmed, Matt Pharr, and Peter Wonka. 2023a. ART-Owen Scrambling.
ACM Transactions on Graphics 42, 6 (2023), 1-11. https://doi.org/10.1145/3618307

Abdalla G.M. Ahmed, Jing Ren, and Peter Wonka. 2022. Gaussian Blue Noise. ACM
Transactions on Graphics 41, 6, Article 260 (Nov. 2022), 15 pages. https://doi.org/10.
1145/3550454.3555519

Abdalla G.M. Ahmed, Mikhail Skopenkov, Markus Hadwiger, and Peter Wonka. 2023b.
Analysis and Synthesis of Digital Dyadic Sequences. ACM Transactions on Graphics
42, 6, Article 218 (Dec. 2023), 17 pages. https://doi.org/10.1145/3618308

Abdalla G.M. Ahmed and Peter Wonka. 2021. Optimizing Dyadic Nets. ACM Trans-
actions on Graphics 40, 4, Article 141 (jul 2021), 17 pages. https://doi.org/10.1145/
3450626.3459880

Michael Balzer, Thomas Schlémer, and Oliver Deussen. 2009. Capacity-constrained
Point Distributions: a Variant of Lloyd’s Method. ACM Transactions on Graphics 28,
3, Article 86 (jul 2009), 8 pages. https://doi.org/10.1145/1531326.1531392

Paul Bratley and Bennett L. Fox. 1988. Algorithm 659: Implementing Sobol’s Quasi-
random Sequence Generator. ACM Trans. Math. Softw. 14, 1 (mar 1988), 88-100.
https://doi.org/10.1145/42288.214372

Samuel Burer and Adam N Letchford. 2012. Non-convex Mixed-integer Nonlinear
Programming: A Survey. Surveys in Operations Research and Management Science
17, 2 (2012), 97-106. https://doi.org/10.1016/j.s0rms.2012.08.001

Brent Burley. 2020. Practical Hash-based Owen Scrambling. Journal of Computer
Graphics Techniques (JCGT) 10, 4 (December 2020), 1-20. http://jcgt.org/published/
0009/04/01/

Stanley H Chan, Todd Zickler, and Yue M Lu. 2014. Monte Carlo Non-local Means:
Random Sampling for Large-scale Image Filtering. IEEE Transactions on Image
Processing 23, 8 (2014), 3711-3725. https://doi.org/10.1109/TIP.2014.2327813

Zhonggui Chen, Zhan Yuan, Yi-King Choi, Ligang Liu, and Wenping Wang. 2012.
Variational Blue Noise Sampling. IEEE Transactions on Visualization and Computer
Graphics 18 (03 2012). https://doi.org/10.1109/TVCG.2012.94

Per Christensen, Andrew Kensler, and Charlie Kilpatrick. 2018. Progressive Multi-
Jittered Sample Sequences. Computer Graphics Forum 37, 4 (2018), 21-33. https:
//doi.org/10.1111/cgf.13472

Robert L. Cook. 1986. Stochastic Sampling in Computer Graphics. ACM Transactions
on Graphics 5, 1 (1986), 51-72. https://doi.org/10.1145/7529.8927

Roy Cranley and Thomas NL Patterson. 1976. Randomization of Number Theoretic
Methods for Multiple Integration. SIAM J. Numer. Anal. 13, 6 (1976), 904-914.
https://doi.org/10.1137/0713071

Fernando de Goes, Katherine Breeden, Victor Ostromoukhov, and Mathieu Desbrun.
2012. Blue Noise Through Optimal Transport. ACM Transactions on Graphics 31, 6,
Article 171 (nov 2012), 11 pages. https://doi.org/10.1145/2366145.2366190

Qiang Du, Vance Faber, and Max Gunzburger. 1999. Centroidal Voronoi Tessellations:
Applications and Algorithms. SIAM Rev. 41, 4 (1999), 637-676. https://doi.org/10.
1137/50036144599352836

Frédo Durand. 2011. A Frequency Analysis of Monte-Carlo and other Numerical
Integration Schemes. MIT CSAIL Technical report TR-2011-052 (2011). http://hdl.
handle.net/1721.1/67677

Raanan Fattal. 2011. Blue-Noise Point Sampling using Kernel Density Model. ACM
SIGGRAPH 2011 papers 28, 3 (2011), 1-10. https://doi.org/10.1145/1531326.1531328

Henri Faure and Christiane Lemieux. 2016. Irreducible Sobol’ Sequences in Prime Power
Bases. Acta Arithmetica 173, 1 (2016), 59-80. https://doi.org/10.4064/aa8226-1-2016

Leonhard Griinschlof3, Johannes Hanika, Ronnie Schwede, and Alexander Keller. 2008.
(t, m, s)-Nets and Maximized Minimum Distance. Springer Berlin Heidelberg, 397-412.
https://doi.org/10.1007/978-3-540-74496-2_23

Daniel Heck, Thomas Schlomer, and Oliver Deussen. 2013. Blue noise sampling with
controlled aliasing. ACM Transactions on Graphics 32, 3 (2013), 25:1-25:12. https:
//doi.org/10.1145/2487228.2487233

Andrew Helmer, Per Christensen, and Andrew Kensler. 2021. Stochastic Generation
of (t, s) Sample Sequences. In Eurographics Symposium on Rendering - DL-only

Lowres version

Differentiable Owen Scrambling « 255:11

Track, Adrien Bousseau and Morgan McGuire (Eds.). The Eurographics Association.
https://doi.org/10.2312/sr.20211287

Pedro Hermosilla, Tobias Ritschel, Pere-Pau Vazquez, Alvar Vinacua, and Timo Ropinski.
2018. Monte carlo Convolution for Learning on Non-uniformly Sampled Point
Clouds. ACM Transactions on Graphics (TOG) 37, 6 (2018), 1-12. https://doi.org/10.
1145/3272127.3275110

Fred J. Hickernell. 1996. The Mean Square Discrepancy of Randomized Nets. ACM
Trans. Model. Comput. Simul. 6, 4 (oct 1996), 274-296. https://doi.org/10.1145/240896.
240909

James T. Kajiya. 1986. The Rendering Equation. Computer Graphics 20, 4 (1986), 143-150.
https://doi.org/10.1145/15886.15902

Alexander Keller. 2013. Quasi-Monte Carlo Image Synthesis in a Nutshell. In Monte Carlo
and Quasi-Monte Carlo Methods 2012. Springer, 213-249. https://doi.org/10.1007/978-
3-642-41095-6_8

Pierre L’Ecuyer and David Munger. 2016. Algorithm 958: Lattice Builder: A General
Software Tool for Constructing Rank-1 Lattice Rules. ACM Trans. Math. Softw. 42, 2,
Article 15 (may 2016), 30 pages. https://doi.org/10.1145/2754929

Thomas Leimkiihler, Gurprit Singh, Karol Myszkowski, Hans-Peter Seidel, and Tobias
Ritschel. 2019. Deep Point Correlation Design. ACM Transactions on Graphics 38, 6
(2019). https://doi.org/10.1145/3355089.3356562

Bruno Lévy and Erica L Schwindt. 2018. Notions of optimal transport theory and how
to implement them on a computer. Computers & Graphics 72 (2018), 135-148.

Hongwei Li, Diego Nehab, Li-Yi Wei, Pedro V. Sander, and Chi-Wing Fu. 2010. Fast
Capacity Constrained Voronoi Tessellation. In Proceedings of the 2010 ACM SIG-
GRAPH Symposium on Interactive 3D Graphics and Games (Washington, D.C.) (I3D
’10). ACM, Article 13, 1 pages. https://doi.org/10.1145/1730804.1730985

S. Lloyd. 1982. Least Squares Quantization in PCM. IEEE Transactions on Information
Theory 28, 2 (1982), 129-137. https://doi.org/10.1109/TIT.1982.1056489

Jifi Matousek. 1998. On the L2-discrepancy for Anchored Boxes. 7. Complex. 14, 4 (dec
1998), 527-556. https://doi.org/10.1006/jcom.1998.0489

Gonzalo Mena, David Belanger, Gonzalo Munoz, and Jasper Snoek. 2017. Sinkhorn
Networks: Using Optimal Transport Techniques to Learn Permutations. In NIPS
Workshop in Optimal Transport and Machine Learning, Vol. 3.

Harald Niederreiter. 1992. Random Number Generation and Quasi-Monte Carlo Meth-
ods. Society for Industrial and Applied Mathematics. https://doi.org/10.1137/1.
9781611970081

Victor Ostromoukhov, Nicolas Bonneel, David Coeurjolly, and Jean-Claude Iehl. 2024.
Quad-Optimized Low-Discrepancy Sequences. In ACM SIGGRAPH 2024 Conference
Papers (Denver, CO, USA) (SIGGRAPH °24). ACM, New York, NY, USA, Article 72,
9 pages. https://doi.org/10.1145/3641519.3657431

Art B. Owen. 1997a. Monte Carlo Variance of Scrambled Net Quadrature. SIAM 7.
Numer. Anal. 34, 5 (1997), 1884-1910. https://doi.org/10.1137/S0036142994277468

Art B. Owen. 1997b. Scrambled Net Variance for Integrals of Smooth Functions. Ann.
Statist. 25, 6 (1997), 1541-1562. http://dml.mathdoc.fr/item/1031594731

Art B. Owen. 2003. Variance with Alternative Scramblings of Digital Nets. ACM Trans.
Model. Comput. Simul. 13, 4 (oct 2003), 363-378. https://doi.org/10.1145/945511.
945518

A. Cengiz Oztireli, Marc Alexa, and Markus Gross. 2010. Spectral Sampling of Manifolds.
ACM Transactions on Graphics 29, 6, Article 168 (dec 2010), 8 pages. https://doi.org/
10.1145/1882261.1866190

A. Cengiz Oztireli and Markus Gross. 2012. Analysis and Synthesis of Point Distributions
based on Pair Correlation. ACM Transactions on Graphics 31, 6 (2012), 174:1-174:6.
https://doi.org/10.1145/2366145.2366189

Lois Paulin, Nicolas Bonneel, David Coeurjolly, Jean-Claude Iehl, Alexander Keller,
and Victor Ostromoukhov. 2022. MatBuilder: Mastering Sampling Uniformity over
Projections. ACM Transactions on Graphics 41, 4 (Aug. 2022). https://doi.org/10.
1145/3528223.3530063

Lois Paulin, Nicolas Bonneel, David Coeurjolly, Jean-Claude Iehl, Antoine Webanck,
Mathieu Desbrun, and Victor Ostromoukhov. 2020. Sliced optimal transport
sampling. ACM Transactions on Graphics 39, 4, Article 99 (aug 2020), 17 pages.
https://doi.org/10.1145/3386569.3392395

Lois Paulin, David Coeurjolly, Jean-Claude Iehl, Nicolas Bonneel, Alexander Keller,
and Victor Ostromoukhov. 2021. Cascaded Sobol Sampling. ACM Transactions on
Graphics 40, 6 (Dec. 2021), 274:1-274:13. https://doi.org/10.1145/3478513.3480482

Hélene Perrier. 2018. Anti-Aliased Low Discrepancy Samplers for Monte Carlo Estimators
in Physically Based Rendering. Ph.D. Dissertation. Université Claude Bernard Lyon
1. http://www.theses.fr/2018LYSE1040/document

Héleéne Perrier, David Coeurjolly, Feng Xie, Matt Pharr, Pat Hanrahan, and Victor
Ostromoukhov. 2018. Sequences with Low-Discrepancy Blue-Noise 2-D Projections.
Computer Graphics Forum 37, 2 (2018), 339-353. https://hal.science/hal-01717945

Matt Pharr, Wenzel Jakob, and Greg Humphreys. 2016. Physically Based Rendering:
From Theory to Implementation (3rd ed.). Morgan Kaufmann Publishers Inc. https:
//doi.org/10.1016/C2013-0-15557-2

Adrien Pilleboue, Gurprit Singh, David Coeurjolly, Michael Kazhdan, and Victor Ostro-
moukhov. 2015. Variance Analysis for Monte Carlo Integration. ACM Transactions
on Graphics 34, 4 (2015), 124:1-124:14. https://doi.org/10.1145/2766930

ACM Trans. Graph., Vol. 43, No. 6, Article 255. Publication date: December 2024.

https://doi.org/10.1145/2980179.2980218
https://doi.org/10.1145/2980179.2980218
https://doi.org/10.1145/3618307
https://doi.org/10.1145/3550454.3555519
https://doi.org/10.1145/3550454.3555519
https://doi.org/10.1145/3618308
https://doi.org/10.1145/3450626.3459880
https://doi.org/10.1145/3450626.3459880
https://doi.org/10.1145/1531326.1531392
https://doi.org/10.1145/42288.214372
https://doi.org/10.1016/j.sorms.2012.08.001
http://jcgt.org/published/0009/04/01/
http://jcgt.org/published/0009/04/01/
https://doi.org/10.1109/TIP.2014.2327813
https://doi.org/10.1109/TVCG.2012.94
https://doi.org/10.1111/cgf.13472
https://doi.org/10.1111/cgf.13472
https://doi.org/10.1145/7529.8927
https://doi.org/10.1137/0713071
https://doi.org/10.1145/2366145.2366190
https://doi.org/10.1137/S0036144599352836
https://doi.org/10.1137/S0036144599352836
http://hdl.handle.net/1721.1/67677
http://hdl.handle.net/1721.1/67677
https://doi.org/10.1145/1531326.1531328
https://doi.org/10.4064/aa8226-1-2016
https://doi.org/10.1007/978-3-540-74496-2_23
https://doi.org/10.1145/2487228.2487233
https://doi.org/10.1145/2487228.2487233
https://doi.org/10.2312/sr.20211287
https://doi.org/10.1145/3272127.3275110
https://doi.org/10.1145/3272127.3275110
https://doi.org/10.1145/240896.240909
https://doi.org/10.1145/240896.240909
https://doi.org/10.1145/15886.15902
https://doi.org/10.1007/978-3-642-41095-6_8
https://doi.org/10.1007/978-3-642-41095-6_8
https://doi.org/10.1145/2754929
https://doi.org/10.1145/3355089.3356562
https://doi.org/10.1145/1730804.1730985
https://doi.org/10.1109/TIT.1982.1056489
https://doi.org/10.1006/jcom.1998.0489
https://doi.org/10.1137/1.9781611970081
https://doi.org/10.1137/1.9781611970081
https://doi.org/10.1145/3641519.3657431
https://doi.org/10.1137/S0036142994277468
http://dml.mathdoc.fr/item/1031594731
https://doi.org/10.1145/945511.945518
https://doi.org/10.1145/945511.945518
https://doi.org/10.1145/1882261.1866190
https://doi.org/10.1145/1882261.1866190
https://doi.org/10.1145/2366145.2366189
https://doi.org/10.1145/3528223.3530063
https://doi.org/10.1145/3528223.3530063
https://doi.org/10.1145/3386569.3392395
https://doi.org/10.1145/3478513.3480482
http://www.theses.fr/2018LYSE1040/document
https://hal.science/hal-01717945
https://doi.org/10.1016/C2013-0-15557-2
https://doi.org/10.1016/C2013-0-15557-2
https://doi.org/10.1145/2766930

255:12 « B. Doignies, D. Coeurjolly, N. Bonneel, J. Digne, J.-C. lehl, V. Ostromoukhov

Corentin Salaiin, Iliyan Georgiev, Hans-Peter Seidel, and Gurprit Singh. 2022. Scalable
Multi-class Sampling via Filtered Sliced Optimal Transport. ACM Transactions on
Graphics 41, 6 (2022). https://doi.org/10.1145/3550454.3555484

John K. Salmon, Mark A. Moraes, Ron O. Dror, and David E. Shaw. 2011. Parallel
Random Numbers: As Easy as 1, 2, 3. In SC ’11: Proceedings of 2011 International
Conference for High Performance Computing, Networking, Storage and Analysis. 1-12.
https://doi.org/10.1145/2063384.2063405

Rohan Sawhney and Keenan Crane. 2020. Monte Carlo Geometry Processing: A Grid-
free Approach to PDE-based Methods on Volumetric Domains. ACM Transactions
on Graphics 39, 4 (2020). https://doi.org/10.1145/3386569.3392374

Ilya M. Sobol. 1967. On the Distribution of Points in a Cube and the Approximate
Evaluation of Integrals. USSR Computational mathematics and mathematical physics

ACM Trans. Graph., Vol. 43, No. 6, Article 255. Publication date: December 2024.

Lowres version

7 (1967), 86-112. https://doi.org/10.1016/0041-5553(67)90144-9

Kartic Subr and Jan Kautz. 2013. Fourier analysis of stochastic sampling strategies
for assessing bias and variance in integration. ACM Trans. Graph. 32, 4 (2013),
128:1-128:12. https://doi.org/10.1145/2461912.2462013

UTK. 2018. Uniform Tool Kit. https://utk-team.github.io/utk/.

Eric Veach. 1997. Robust Monte Carlo Methods for Light Transport Simulation. Ph.D.
Dissertation. Stanford University. https://graphics.stanford.edu/papers/veach
thesis/thesis-bw.pdf

Yin Xu, Ligang Liu, Craig Gotsman, and Steven Gortler. 2011. Capacity-Constrained
Delaunay Triangulation for point distributions. Computers & Graphics 35 (06 2011),
510-516. https://doi.org/10.1016/j.cag.2011.03.031

https://doi.org/10.1145/3550454.3555484
https://doi.org/10.1145/2063384.2063405
https://doi.org/10.1145/3386569.3392374
https://doi.org/10.1016/0041-5553(67)90144-9
https://doi.org/10.1145/2461912.2462013
https://utk-team.github.io/utk/
https://graphics.stanford.edu/papers/veach_thesis/thesis-bw.pdf
https://graphics.stanford.edu/papers/veach_thesis/thesis-bw.pdf
https://doi.org/10.1016/j.cag.2011.03.031

	Abstract
	1 Introduction
	2 Related works
	3 A differentiable Owen Scrambling Formulation
	3.1 Random Owen scrambling
	3.2 Differentiable Owen scrambling
	3.3 Optimization scheme
	3.4 Optimized losses

	4 Numerical results
	4.1 Comparisons to other methods
	4.2 Timings and bruteforce comparisons
	4.3 Low discrepancy preservation
	4.4 Effect of clamping
	4.5 Effect of tree level
	4.6 Multiscale optimization
	4.7 Rendering

	5 Discussions & Perspectives
	Acknowledgments
	References

